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This work presents the production cross-sections of Ce, Tb and Dy radionuclides

produced by 300 MeV to 1.7 GeV proton-induced spallation reactions in thin tantalum

targets as well as the related Thick Target production Yield (TTY) values and ratios.

The motivation is to optimise the production of terbium radionuclides for medical

applications and to find out at which energy the purity of the collection bymass separation

would be highest. For that purpose, activation experiments were performed using the

COSY synchrotron at FZ Jülich utilising the stacked-foils technique and γ spectrometry

with high-purity germanium detectors. The Al-27(p,x)Na-24 reaction has been used as

monitor reaction. All experimental data have been systematically compared with the

existing literature.
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INTRODUCTION

Radionuclides are used in medicine as radiopharmaceutical components to target cells and/or
follow the metabolism for diagnosis and/or therapeutic purposes. A specific molecule can be
linked to different radioisotopes with similar chemical behaviour. In this case, a theranostic
approach is possible if two isotopes have properties suitable for either diagnostics or therapy. Since
four terbium radioisotopes have properties suitable for medical applications, terbium is regarded
as the “Swiss army knife of nuclear medicine” (1). Tb-152 is of interest for imaging through
Positron Emission Tomography (PET) and Tb-155 emits γ-rays compatible with the Single Photon
Emission Computed Tomography (SPECT) method. Tb-149 has properties suitable for targeted
alpha therapy and PET imaging, while Tb-161 is a good candidate for targeted β- therapy and
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TABLE 3 | Comparison among the stopping power (dE/dx) calculated with SRIM and FLUKA.

Energy

(MeV)

1 50 100 300 500 600 1,000 1,400 1,500 2,000 2,500

Ratio dE/dx

FLUKA/SRIM

1.0 1.0 1.0 1.1 1.1 1.2 1.3 1.4 1.5 1.6 1.6

FIGURE 8 | Thick Target production Yields (TTY) for Ce-133m (Left) and for Ce-139 (Right).

FIGURE 9 | Thick Target production Yields (TTY) for Tb-149 (Left) and for Tb-152 (Right).

range from 4.9 to 5.4 GBq/(µAh) with a relative uncertainty of
15%, which would become 300 to 340MBq/(µAh) (±15%) of Tb-
155 after 40 h. At 1.4 GeV, the Tb-155 TTY values are between
2.7 GBq/(µAh) (±12%) and 3.5 GBq/(µAh) (±13%). The Dy-
155 activity values are more than 10 times higher and range from
33 to 42 GBq/(µAh) (±12%), which would scale to between 2.1
and 2.6 GBq/(µAh) (±12%) of Tb-155 after 40 h.

Thick Target Yield Ratios and Assessment
of Tb-149, Tb-155 and Dy-155 Purity
Tb-149 and Dy-155/Tb-155 collections can be contaminated by
their pseudo-isobaric oxide forms, Ce-133O-16 and Ce-139O-
16, respectively, when collecting these radionuclides through

mass separation. This section presents purity levels expressed in
terms of activity which are based on the in-target production
TTY values (in Bq/µAh) presented in section Thick Target
Production Yields (TTYs) and on Ce isotopes as only isobaric
contaminants of Tb-149, Tb-155 and Dy-155. The other collected
isobars will either decay into the radionuclide of interest (e.g.,
Ho-155 decaying into Dy-155, decaying itself to Tb-155) or be
a decay product of the collected isotope (e.g., Gd-155 from Tb-
155 decay). In both cases, isobars can be chemically separated
after the mass separation and the collection. It should be noted
that these in-target TTY ratios are not equal to those of the
actually collected samples at it is done at ISOLDE/MEDICIS,
since the diffusion, effusion and ionisation efficiencies have to be
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FIGURE 10 | Thick Target production Yields (TTY) for Tb-155 (Left) and for Dy-155 (Right).

FIGURE 11 | Tb-149 purity with the ratio TTYTb−149/(TTYCe−133m+TTYTb−149).

considered, which differ for each element and isotope. Efficiency
values of the order of 1% have been achieved with Tb at CERN-
MEDICIS in 2018 (15) and further developments have been
carried out to increase this value up to 10% in 2019 and 2020 (34).

Tb-149 Purity
Figure 11 allows for assessing the purity of Tb-149 calculated as
the TTY ratio between Tb-149 and Ce-133mO-16 production:
TTYTb−149/(TTYCe−133m+TTYTb−149). Slightly lower values are
calculated in the case of the spline fit performed on the data set
from “This work (2021)” in comparison with the values obtained
when considering all data sets. The extracted activity ratios show
that considering only Ce-133m as in-target contaminant for the
collection of Tb-149, a purity higher than 99% can be reached if
the proton beam energy is below 940 MeV. Keeping the beam
energy below 900 MeV allows for achieving a purity higher than
99.9%. At 1.4 GeV ratios between 88 and 89% are expected. It
has to be noted that Ce-133m and Tb-149 have similar half-lives
with 4.9 and 4.1 h, respectively. Therefore, the purity levels shown

in Figure 11 are representative of the activity purity of the final
product that will not vary substantially as a function of time.

Tb-155 and Dy-155 Purity: Considerations on Offline

and Online Mass Separation
Figure 12 shows the Tb-155 (left) and Dy-155 (right) activity
purity levels, for which the collection by mass separation can
be affected by the presence of Ce-139O-16 molecules. Figure 12
(left) shows that a Tb-155 purity higher than 99% can be reached
if the beam proton energy is below 1,200 MeV. With a beam
energy below 660MeV a purity higher than 99.9% can be reached.
At 600 MeV and 1.4 GeV the purity level would reach >99.9 and
98.6% respectively. Figure 12 (right) shows that a Dy-155 purity
higher than 99.9% can be achieved with a proton beam impinging
a tantalum target with an energy below 1.4 GeV. With an energy
above 1.4 GeV and up to 2.6 GeVDy-155 is produced in the target
with a purity higher than 99.8%, once again considering Ce-139
as the only contaminant of Dy-155 in the target.

However, it should be noted that, in practise, an offline
collection (i.e., offline refers to a collection performed after
the target has been irradiated) of Tb-155, as performed at
CERN-MEDICIS, starts few days after the end of irradiation
to allow for the decay of part of the Dy-155 nuclei into Tb-
155 nuclei in the target. Therefore, one has to keep in mind
that the Dy-155/Tb-155 ratio will evolve with time. The Dy-155
activity will be considerably higher than the Tb-155 activity at
the end of irradiation. Then, 40 h after the end of irradiation,
both radionuclides will show similar activities which lead to a
radionuclidic purity close to 0.5. After this period the relative
proportion of Dy-155, being the main impurity in the sample,
decreases while continuously feeding Tb-155 through its decay.
A decay time above 40 h will reduce the Tb-155 activity but will
significantly increase its isobaric purity.

Online collections of Dy-155, producing Tb-155 by decay,
have been already performed at CERN-ISOLDE (16) from a Ta
target irradiated with a 1.4 GeV proton beam. After a Dy-155
collection performed in 2013 at CERN-ISOLDE, a sample has
been successfully shipped and processed at the Paul Scherrer
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FIGURE 12 | Tb-155 purity with the ratio TTYTb−155/(TTYCe−139+TTYTb−155) (Left)–Dy-155 purity with the ratio TTYDy−155/(TTYCe−139+TTYDy−155 ) (Right).

TABLE 4 | TTY values for Tb-149, Tb-152, Tb-155 and Dy-155 (in GBq/µAh) and purity levels of Tb-149, Tb-155 and Dy-155 based on Ce-133m and Ce-139 as

isobaric contaminants.

Thick Target production Yield (GBq/µAh) Purity levels based on Ce-133m and Ce-139 as isobaric contaminants

Tb-149 Tb-152 Tb-155 Dy-155 Tb-149 Tb-155 Dy-155

600 MeV 1.5–2.1 2.0–2.5 0.39–0.45 4.9–5.4 100% > 99.9% > 99.9%

1.4 GeV 21–27 16–20 2.7–3.5 33–42 88–89% 98.6% > 99.8%

Institute in Switzerland. Three days after the end of the collection,
the Dy-155 activity was 280 kBq, the Tb-155 activity was 136MBq
and the Ce-139 activity was 4.7MBq (16). This results in a Tb-155
activity purity of 96.5% 3 days after the end of collection. It also
gives a Dy-155 purity level of 99.99% at the end of the collection,
which corresponds to an amount of Ce-139 impurities 10 times
lower than estimated above using the in-target TTY values. Yet,
one has to take into account the corresponding diffusion, effusion
and ionisation efficiencies of Dy-155 and Ce-139O-16 and the
additional efficiency of the CeO molecular formation.

Onemay conclude that collections of Tb-155 with ion ratios as
observed here will invariably require a chemical post-separation
to assure sufficient radionuclidic purity for clinical use. The
issue of Dy-155 as a contaminant of Tb-155 could be resolved
by a decay time much longer than 40 h [e.g., 3 days as done
in (16)] but at the expense of a rising contribution of the
Ce-139 activity.

Table 4 summarises the previously discussed TTY values
expressed in GBq/µAh, as well as the purity levels based on Ce-
133m and Ce-139 as isobaric contaminants, at 600 MeV and 1.4
GeV.

CONCLUSIONS

Spallation cross-sections have been measured at the COSY
synchrotron at FZ Jülich with fixed energies between 0.3 and
1.7 GeV. This article focuses on the production of three terbium
radioisotopes of medical interest Tb-149, Tb-152 and Tb-155 as
well as on Dy-155, which feeds Tb-155 by decay, and Ce-133

and Ce-139, which are collected by mass separation as molecular
isobaric radioactive contaminants. Some discrepancies between
the existing data sets could be highlighted but an overall good
agreement has been found between our new data set and the ones
available in the literature. In the light of more recent findings for
branching ratios, an official re-evaluation of Winsberg’s cross-
section values could be of interest. Thick Targets production
Yield (TTY) values and ratios have been calculated at different
energies, using our new experimental cross-section data set as
well as the ones available in the literature. These calculations
have been carried out using the different computational models
of SRIM and FLUKA to determine the energy deposition. One
sees the onset of hadronic effects which become more important
with increasing energies above 100 MeV. Depending on the
energy, neglecting these effects can lead to an overestimation
of the calculated TTY. Using their corresponding TTY, activity
purity levels of the Tb-149, Tb-155 and Dy-155 radionuclides
have been assessed, considering their pseudo-isobaric molecules
as sole contaminant. The production of these radionuclides of
medical interest via spallation reactions in tantalum is now
better known and it will allow for optimising their production
at proton energies available at ISOLDE and MEDICIS at CERN
(Switzerland), but also at ISAC or ARIEL at TRIUMF (Canada)
as well as at the future ISOL@MYRRHA facility at the Belgian
Nuclear Research Centre SCKCEN and other high energy proton
accelerators worldwide. While this article focusses on terbium
isotopes for medical applications, the complete analysis of all
radionuclides quantified from the measured γ-spectra will be
discussed in a forthcoming article.
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