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Chronic kidney disease (CKD) is a major cause of morbidity and mortality worldwide,

imposing a great burden on the healthcare system. Regrettably, effective CKD therapeutic

strategies are yet available due to their elusive pathogenic mechanisms. CKD is featured

by progressive inflammation and fibrosis associated with immune cell dysfunction,

leading to the formation of an inflammatory microenvironment, which ultimately

exacerbating renal fibrosis. Transforming growth factor β1 (TGF-β1) is an indispensable

immunoregulator promoting CKD progression by controlling the activation, proliferation,

and apoptosis of immunocytes via both canonical and non-canonical pathways. More

importantly, recent studies have uncovered a new mechanism of TGF-β1 for de novo

generation of myofibroblast via macrophage-myofibroblast transition (MMT). This review

will update the versatile roles of TGF-β signaling in the dynamics of renal immunity, a better

understanding may facilitate the discovery of novel therapeutic strategies against CKD.
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INTRODUCTION

Chronic kidney disease (CKD), an increasing contributor to morbidity and mortality, is predicted
to become the 5th most common cause of death worldwide in 2040 (1, 2). CKD can be a
primary disease or a complication initiated by other disorders, including glomerulonephritis (3),
hypertension (4), diabetes (5), infection (6), and genetic causes (7). Its gradual development into
end-stage renal disease (ESRD) is featured by the deposition of excessive extracellular matrix
(ECM) and loss of kidney function (8). Unfortunately, current treatments are ineffective because
of the complicated pathophysiological mechanisms of CKD. Despite there being multiple causes, it
is well-accepted that CKD is a consequence of unresolved inflammation and renal fibrosis (9–14).
Importantly, increasing evidence suggests the dysregulation of renal immunity is important for
CKD development (15–17), e.g., promoting inflammation by their recruitment and adhesion to
the renal epithelium (11, 18) and fibrosis by their secretome induced pro-fibrogenic responses
respectively (17).
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Transforming growth factor-beta (TGF-β) consists of 3
isoforms (TGF-β1, TGF-β2 TGF-β3), TGF-β1 is well-established
as an indispensable driver of renal fibrosis in the pathogenesis
of CKD, while the role of TGF-β2 and TGF-β3 remains largely
undefined (11, 19–21). However, direct targeting of TGF-β1
signaling would affect its physiological functions in the regulation
of cell differentiation, apoptosis, and immune homeostasis (22).
Consequently, disease-specific pathogenic downstream of TGF-
β1 pathway has been proposed to serve as an alternative
therapeutic target and prognostic marker for CKD (23, 24).
Recently, emerging studies have uncovered the downstream
mechanisms of TGF-β1 in both adaptive and innate immunity
during CKD. Better understanding of the regulatory mechanisms
of TGF-β1 signaling in renal immunity may largely facilitate the
therapeutic development of CKD (25).

IMPORTANCE OF TGF-β1 IN CKD
PATHOLOGY

TGF-β1 plays an essential role in the pathogenesis of CKD due
to its anti-inflammatory and fibrotic actions. TGF-β1 is well-
demonstrated as an anti-inflammatory cytokine during the renal
repair process at the early stage of kidney injury (26). In a
mice model of crescentic glomerulonephritis, TGF-β1 inhibits
the release of inflammatory cytokines as well as the infiltration
of macrophages and CD3+ T cells for protecting injured kidney
(27). TGF-β1 can promote the macrophages transiting from pro-
inflammatory M1 into anti-inflammatory M2 phenotype (28).
Nevertheless, short-term activation would facilitate the renal
repair process, whereas endured activation would lead to renal
fibrosis (15). Interestingly, TGF-β1 interrupts NF-κB pathway
via Smad7 (29), interacts with β-catenin/Foxo complex (30), or
modulates c-Jun N-terminal kinase signaling (31) to exert anti-
inflammatory effect. In mice UUO and ischemic/reperfusion
models, TGF-β1 also promotes β-catenin/T-cell factor (TCF)
interaction, thereby simultaneously driving anti-inflammatory
and pro-fibrotic responses via promoting β-catenin binding to
Foxo and TCF, respectively (30, 31). Moreover, several studies
further demonstrated the pro-fibrotic role of TGF-β1 signaling
through mediating the ERK1/2 pathway, P38/MAPK pathway,
and Akt/ERKs pathways (32, 33).

CKD would ultimately progress into end-stage renal disease
(ESRD) due to the progressive fibrotic processes mediated by
TGF-β1 signaling (34). TGF-β1 exerts its pro-fibrotic effects via
both canonical (Smads dependent) and non-canonical (Smads
independent) pathways. In the canonical pathway, Smad2 and
Smad3 are two key downstreammediators of TGF-β receptor that
are highly activated in renal fibrosis (35). Subsequently, activated
Smad2 and Smad3 first complexed with Smad4 (36), then
translocated into the nucleus to transcriptionally regulate pro-
fibrotic molecules expression, including collagens, fibronectin,
and alpha-smooth muscle actin (37–39), thereby facilitating
fibrotic responses. However, each Smads protein is functionally
distinct in the pathogenesis of CKD. Smad3 promotes while
Smad2 suppresses CKD progression (40–42). Notably, Smad3
and Smad2 bind directly to the target gene, and Smad4 is lack

of DNA-binding domains, but Smad4 still serve as regulators of
the transcription process (43–47).

In the non-canonical pathways, TGF-β1 directly activates
non-Smads signaling pathways, including MAPK pathway (48),
PI3K/Akt/mTOR pathway (49), TGF-β1/p38 MAPK pathway
(50), ILK (51), EGFR (52), and Wnt/β-catenin pathway
(53). These non-canonical pathways largely contribute to the
pathogenesis of renal fibrosis, including matrix formation (54),
de-differentiation of proximal tubular cells (55), cell proliferation
and migration (54), and apoptosis (56).

TGF-β1 signaling is the key mechanism of ECM synthesis
by inducing myofibroblasts generation from number of origins,
including epithelial cells, endothelial cells, resident fibroblasts,
and pericytes. Epithelial to Mesenchymal Transition (EMT)
is a well-characterized pathological process of renal fibrosis
featured by the conversion of epithelial cells into mesenchymal
phenotypes. TGF-β1 signaling drives key events of EMT in
vivo and in vitro, including loss of epithelial adhesion, de novo
α-SMA expression, and cell migration (57, 58). During EMT,
the migratory ability and mesenchymal markers, fibronectin,
and α-smooth muscle actin (α-SMA) were acquired, while
epithelium adhesion and E-cadherin protein were lost after the
transition (59–61). Thus, EMT contributes to the pathogenesis of
kidney fibrosis via direct generation of the collagens producing
myofibroblasts (62). In the canonical pathway, Smad3 is highly
activated in the UUO kidney in vivo, and TGF-β1 treated renal
tubular epithelial cells in vitro, driving EMT for themyofibroblast
generation and associated kidney fibrosis, which is blocked
by Smad3 deletion and TGF-β1 neutralizing antibody (63–65).
Non-canonical pathways, including MAPK, Rho-like GTPase,
PI3K/Akt, and Wnt signaling, have been illustrated to have
played emerging roles in EMT induction (28, 66, 67). TGF-
β1/Smad3 signaling also drives Endothelial to Mesenchymal
transitions (EndoMT), where smad3 inhibitor and endothelium-
specific TGF-β receptor knockout reduces EndoMT mediated
diabetic nephropathy in streptozotocin (STZ)-induced diabetes
and tubulointerstitial fibrosis in unilateral ureteral obstruction
models in vivo (68, 69). Resident fibroblasts and pericytes are
rich sources of myofibroblasts, demonstrated by lineage tracing
studies with P0-Cre and Foxd1-Cre to label myofibroblasts
derived from fibroblasts and pericytes, respectively (70, 71).
Resident fibroblasts and pericytes were activated into α-SMA+

myofibroblasts in mice model of obstructive kidney fibrosis via
TGF-β1/Smad3 signaling (72–74). Therefore, TGF-β1 activates
various cell types via both of the canonical and non-canonical
pathways, generating myofibroblast for excess ECM deposition,
ultimately contributing to fibrotic responses in CKD.

TGF-β1 IN ADAPTIVE IMMUNITY OF CKD

B Cell
Interestingly, dysregulation of humoral immunity was observed
in ESRD patients; only 65% of ESRD patients can produce
sufficient titer of antibodies upon vaccination, in contrast to the
95% in healthy control (16, 75). A previous study demonstrated
that B1 (CD19+CD5+) and B2 lymphocytes (CD19+CD5–)
are negatively associated with the progression of CKD but

Frontiers in Medicine | www.frontiersin.org 2 February 2021 | Volume 8 | Article 628519

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Tang et al. TGF-β1 Signaling in Kidney Diseases

positively correlated with the survival of elderly CKD patients,
suggesting B cell deficiency could be a prognostic factor of
CKD progression (76). Autoantibodies production by B-cells
is crucial for the development of IgA nephropathy and lupus
nephritis. In the pathogenesis of IgA nephropathy, B-cells
produce aberrant galactosylated IgA and its autoantibodies
(anti-glycan antibodies) to form immune complexes, which
deposition on mesangial cells to initiates glomerulonephritis
and subsequent CKD progression (77–79). Similarly, in Lupus
nephritis, multiple autoantibodies were involved in the immune
complexes formation, including anti-dsDNA (80), anti-C1q
(81), and anti-nucleosome (82) autoantibodies. Mechanistically,
TGF-β suppresses B-cell maturation into antibody-producing
cells, resulting in antibody abnormalities or autoantibodies
production (83, 84). TGF-β1 inhibits pre-B cell proliferation
via suppressing PI3K/Akt signaling and induces a cell cycle
arrest of pre-B cells specifically at the G0/G1 phase (85). TGF-
β1 also hinders B cell proliferation and activation indirectly via
contacting the regulatory T cells, associated with the upregulation
of granzyme A, granzyme B, and perforin (86). TGF-β1
induces B cell-activating factor (BAFF) production from the
macrophages via Smad3/4 and PKA/CREB signaling pathways
(87). BAFF is a key cytokine regulating B-cells activity, including
proliferation, differentiation, apoptosis, and immunoglobulin
secretion; excessive BAFF would suppress B-cell development
resulting in autoantibodies production in IgA nephropathy and
Lupus nephritis (83, 84, 88) Taken together, TGF-β1 suppress B
lymphocytes development in the pathogenesis of kidney diseases
via both direct and indirect mechanisms.

T Cell
T lymphocyte infiltration has been observed in CKD biopsies
(89, 90) and is positively correlated with the deterioration in
glomerular filtration rate (91), indicating a pathogenic role
of T lymphocytes in the pathogenesis of CKD. Interestingly,
CD8+ T cell abundance is significantly associated with the TGF-
β1 level in the kidney biopsies of lupus nephritis (92). In a
mice model of Crescentic Glomerulonephritis (GN), CD3+ T
cell infiltration and associated glomerular and tubulointerstitial
injuries were largely suppressed in latent TGF-β1 transgenic
mice, compared with wildtype mice (93). TGF-β1 plays a
crucial role in the modulation of T cell migration, activation,
proliferation, and death. The recruitment and differentiation
of CD4+ T cells were regulated by mesenchymal stem cells
(MSCs) via TGF-β1 signaling (94) while TGF-β1 enhances
CD8+ T-cell activation and proliferation by switching the
immune-suppressive myeloid-derived suppressor cells (MDSCs)
into immune-stimulating phenotype in a SMAD-2 dependent
manner (95). This may explain CD8+ T-cell tubulitis and
associated TGF-β1/Smad2/3 signaling activation in a rat model of
aristolochic acid nephropathy (AAN) (96). In addition, TGF-β1
induces oxidative stress in injured renal tissue via mitochondrial
and NADPH oxidases ROS production and suppression of
antioxidant system (97–99). In Mercuric chloride intoxication
and Dahl salt-sensitive rat models, elevated ROS level leading to
the interstitial CD8+ T cells infiltration and associated tubular
damage (100, 101). Adoptive transfer of oxidizing agents treated

CD4+ T cells also caused immune complex glomerulonephritis
in syngeneic recipient mice (102).

On the other hand, regulatory T cells (Tregs) play a protective
role in CKD by suppressing inflammation and immune
cell-mediated fibrosis (30, 103–106). Notably, abundance of
peripheral Tregs is significantly reduced in CKD patients
compared to the healthy controls (107). TGF-β1 is well-
characterized as a Tregs inducer (108, 109). TGF-β1 has been
demonstrated to increase the proliferation, differentiation, and
function of Tregs by not only up-regulating Foxp3 (a master
transcription regulator of Tregs) expression via PP2A pathway
(110) but also suppressing IL-12R (111). Furthermore, TGF-β1
induces membrane-bound TGF-β1 on the Treg cells to suppress
naive CD4+ T cells expansion for immune suppression via
activating Smad3 (112). Surprisingly, Tregs are able to convert
into TGF-β1-producing cells in the inflammatory environment,
which markedly up-regulates the level of TGF-β1 in UUO-
obstructed kidney, therefore aggravating chronic inflammation
and renal fibrosis (113).

TGF-β1 in Innate Immunity of CKD
Neutrophil

Neutrophils are well-documented because of their aggravating
role in inflammation (114), where neutrophil-to-lymphocyte
ratio is a popular prognostic marker for estimating the
mortality of CKD patients (115). Neutrophils can initiate and
amplify inflammatory responses by releasing pro-inflammatory
cytokines (114, 116), and serves as a rich source of TGF-β1
in inflamed tissues (117, 118). During inflammation, TGF-β1
facilitates the accumulation of neutrophils (119, 120), therefore
inhibiting TGF-β1 effectively alleviates neutrophil infiltration
and inflammation (121). Furthermore, TGF-β1 signaling can
be blocked by preventing Smad3 activation, which has been
proposed as a potential therapeutic strategy for fibrotic diseases
driven by neutrophil-mediated inflammation (122, 123).

Dendritic Cell
Dendritic cells (DCs) facilitate renal inflammation via promoting
CD8+ T cell proliferation and activation during the development
of CKD (124, 125). Mechanistically, TGF-β1 promotes DCs
accumulation in fibrotic tissue (126) and modulates DCs-
mediated proliferation and activation of T cells (127–130),
contributing to the imbalance between Th17 and Treg (131)
and the interleukin 17 (IL-17) release from naive CD4+ cells
(132). Importantly, TGF-β1 further stimulates TGF-β1 release
from DCs in an autocrine manner, serving as a major source
of TGF-β1 in the tissue biopsies from stage IV–V CKD patients
(133, 134) and suppressing inflammatory cytokines (IL-12, IL-
18) production in DCs (135, 136). These findings suggest DCs
can regulate the proliferation, activation, differentiation, and
function of T cells via TGF-β1 signaling during inflammation.
It has been demonstrated that targeting of DCs maybe able to
suppress CKD progression by attenuating renal inflammation
and fibrosis (94, 137, 138).
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FIGURE 1 | TGF-β1 in immune cell mediate CKD progression. TGF-β1 modulates immune cell activity in the progression of chronic kidney disease (CKD). After kidney

injury, TGF-β1 is released by kidney cells to aid the resolution of inflammation. However, persistent TGF-β1 signaling activation would promote a chronic inflammation

state via amplification of inflammatory responses. Notably, chronic TGF-β1 signaling activation would further transdifferentiate macrophage into myofibroblast to

produce excessive extracellular matrix molecules (Collagen I and fibronectin), thus eventually lead to the pathogenesis of CKD.

Macrophage
Macrophage is a key player in the pathological process of
CKD that their infiltration due to their pathogenic actions
in both renal inflammation and fibrosis (15, 16, 87, 89,
139, 140). It has been reported that TGF-β1 participated
in macrophages-mediated immune dysfunction during the
progression of CKD (15, 141, 142). TGF-β1 largely increases
macrophages infiltration and accumulation in the injured
kidney via stimulating the release of a potent cytokine for
macrophages recruitment monocyte chemoattractant protein-1
(MCP-1) from various types of renal cells (143–145). TGF-β1
also regulates macrophage polarization and immunomodulatory
cytokines secretion. Upon the kidney injury, TGF-β1 transits
M1 macrophage into regulatory M2c phenotype to facilitate
kidney repair by producing the immunosuppressive and matrix
remodeling activities (146–148). However, the CCL18 secreted
from these CD163+ macrophages also promotes fibroblast
proliferation, leading to the acceleration of kidney fibrosis (149).
TGF-β1 also induces the expression of B cell-activating factor
(BAFF), a key regulator of B cell activities, in macrophages via
Smad3/4 dependent mechanism to influence the macrophages-
mediated pathogenic function of B cells (87). The elevated plasma
level of BAFF was observed in ESRD patients compared to the
control group (150–152). Interestingly, the interaction between
macrophages and TGF-β1 is mutual, where macrophage is the
effector and a rich source of TGF-β1, actively producing and
secreting TGF-β1 in inflamed kidney tissue (153, 154). Thus,
blockade of TGF-β1 signaling effectively reduces macrophages
infiltration (41, 155, 156) as well as significantly reduces

macrophage polarization and extracellular matrix deposition
(157, 158).

Novel Fibrotic Mechanism of TGF-β1:
Macrophage-Myofibroblast Transition
Myofibroblast is an important effector cell type that contributes
to the switching of unresolved inflammation to be renal fibrosis,
they featured by a high level of α-SMA expression and excessive
extracellular matrix deposition (159). The sources of pathogenic
myofibroblasts are highly heterogeneous and still largely
unclear and controversial (160, 161). Macrophage-myofibroblast
transition (MMT) is a newly-identified phenomenon driven
by TGF-β1 signaling as a direct mechanism of macrophage
for promoting myofibroblast generation under unresolved renal
inflammation (15, 162, 163) (Figure 1). Mechanistically, TGF-
β1/Smad3 signaling is suggested as the key regulator for initiating
MMT during renal fibrosis in a UUO model in vivo, where
TGF-β1 induces the de novo expression of myofibroblast marker
α-SMA and effector collagen I in the bone marrow derived
macrophages (BMDMs) via a Smad3-dependent mechanism
(164). Bioinformatic analysis of TGF-β1/Smad3 dependent
transcriptome of MMT in vitro further reveals Src and Pou4f1
as the pathogenic mediator in the Smad3 downstream signaling,
representing a precise therapeutic target for blocking MMT (24,
165). In brief, TGF-β1/Smad3 directly activates a Src-centric gene
network in BMDMs via transcriptional regulation for promoting
theMMT process in the fibrosing kidney (15). More importantly,
Tang et al. further discovered the importance of a neural-
specific homeobox/POU domain protein Pou4f1 in the Smad3
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FIGURE 2 | Role of TGF-β1 in unresolved inflammation. TGF-β1 activation promotes innate immune cells accumulation (neutrophil, macrophage, and dendritic cell)

at the inflammatory site, which in-turn further activate adaptive immune cells (B and T cells) and dendritic cells to amplify the inflammatory responses in chronic

inflamed kidney.

downstream as a specific mediator for regulating MMT (24).
Besides, non-canonical TGF-β1 signaling also induces MMT via
β-catenin/TCF pathway, promoting pro-fibrotic gene expression
in the kidney infiltrating macrophages (30, 166). Inhibitor of
Src (PP1) and TCF (ICG-001) and BMDM-specific Pou4f1
silencing effectively suppress the MMT process and associated
renal fibrosis, suggesting MMT may be therapeutically targeted
to restrain CKD progression (24, 165).

THERAPEUTIC STRATEGIES FOR
TARGETING THE TGF-β1-MEDIATED CKD

TGF-β1 signaling is essential for the progression of renal
fibrosis and has been proposed as a therapeutic target for
CKD (Figure 2), however systematically targeting TGF-β1
would also suppress its physiological functions and may result
in adverse side effects (167, 168). Emerging clinical trials
demonstrated that direct targeting TGF-β1 signaling was highly
associated with adverse events in 23 to 87% of the kidney
patients (167, 169, 170). Nevertheless, alternative approaches
that specifically targeting the pathogenic mediators in TGF-
β1 downstream may prevent the side effects. The molecular
mechanism of Smad3 in renal pathology is intensively elucidated
among the other Smads, genetic deletion of Smad3 effectively
protected mice against collagen deposition after kidney injury
(63, 171, 172). Therefore, several strategies targeting Smad3
have been investigated in a number of pre-clinical studies.

Encouragingly, a Smad3 specific inhibitor SIS3 and a natural
compound isolated from Poria cocos Poricoic acid effectively
suppressed renal fibrosis development in experimental models
of diabetic nephropathy (68), obstructive nephropathy (173),
and ischemia-reperfusion injury (174) in vivo. In addition,
diterpene and triterpenes (175), 25-O-methylalisol F (176), and
IC-2 derivatives (177) are also capable of suppressing Smad3
activation and pro-fibrotic molecules production (Collagen I and
fibronectin) in the renal epithelial cells. Importantly, emerging
evidence showing macrophages mediate the therapeutic effect
of Smad3 inhibition. Smad3 inhibition or genetic deletion
suppressed MMT in mouse models of chronic Renal Allograft
Injury (178), unilateral ureteric obstruction (164), contributed
50–60% reduction of myofibroblast population, and suppressed
macrophage infiltration in type 2 diabetic nephropathy (179),
thus contributing to the protective effect of Smad3 targeted
therapy. Furthermore, noncoding RNAs including LRNA9884
(180), Erbb4-IR (20, 181), miR-29b (182), anti-miR-433 (183),
lnc-TSI (184), and anti-miR-21 (185) were discovered from
the TGF-β/Smads signaling for the obstructive and diabetic
nephropathy. Among them, RNA therapies targeting LRNA9884
and miR-29b could modulate leukocytes infiltration via
inflammatory cytokines expression, thus suppressing renal
inflammation in diabetic nephropathy (180, 182, 186, 187).
Importantly, these RNA-based therapies effectively restrained
CKD progression with minimal side effects thanks to their
specificity (188, 189). In addition, targeting the non-canonical
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TABLE 1 | Pre-clinical studies for the treatment of CKD by specifically targeting the downstream of TGF-β1.

Drugs Target Route and effective dose Disease model Results References

Canonical pathway

SIS3 Smad3 I.p. 0.2, 2 mg/kg/day UUO kidneys

1 week

BALB/c male mice

↓ Fibrosis

↓ p-Smad3/Fn/Collagen I/III

↓ Myofibroblast

(α-SMA+ cells)

(173)

SIS3 Smad3 In vitro

1µM

I.p. 2.5, 5µg/g SIS3

TGF-β1/AGEs induced Mouse pancreatic

microvascular endothelial cells (MMECs)

5 Days STZ 50µg/g induced diabetes on

Tie2-Cre; Loxp-EGFP mice (C57BL/6J)

↓ p-Smad3

↓ RAGE-mediated EndoMT

↓ Collagen I/ α-SMA/ Fn

(68)

Poricoic Acid A (PAA) Smad3 In vitro

10µM

10 mg/kg oral gavage

TGF-β/ hypoxia/reoxygenation treated

HK-2 cells

Rats IRI model

↓ p-Smad3

↓ Collagen I/ α-SMA/ Fn

(174)

IC-2 derivatives Smad3 In vitro

10, 20µM

TGF-β1 induced

Tubular epithelial cells

HK-2 cells

↓ p-Smad3

↓ Collagen 1

(177)

25-O-methylalisol F

(MAF)

Smad3 In vitro

10µM

TGF-β1/ANG stimulated

NRK-52E cells

Tubular epithelial cells

↓ p-Smad3

↓ Wnt/β-catenin

↑ Smad7 expression

↓ Collagen I, Fn, α-SMA

(176)

Diterpene (PZF) and

triterpenes (PZH)

Smad3 In vitro

10µM

TGF-β1/ANGII induced

Human kidney proximal epithelial cells

(HK-2) Immortalized mouse

podocytes (MPC5)

↓ p-Smad3

↓ Collagen I/ α-SMA/ Fn

↓ Wnt/ β-catenin

↓ MMP-7/PAI-1/Fsp-1

(175)

miR-29b Smad3 Ultrasound microbubble

mediated-Mir-29b gene

transfer

db/db or db/m mice

AGE induced rat MC line and tubular

epithelial cell line (NRK52E)

↓ p-Smad3/ Collagen I/III

↓ Microalbuminuria

↓ Mesangial index

(histological injury)

(182)

Anti-miR-433 Smad3 Ultrasound-mediated gene

transfer of inducible

miR-433 shRNA

Obstructive nephropathy mouse model

(UUO)

Normal rat TEC line, NRK52E

↓ Collagen I/ α-SMA/ Fn

↓ p-Smad3

(183)

lnc-TSI Smad3 i.v. injection of

pcDNA3.1-lnc-TSI

UUO rat model

TGF-β1 treated human TECs

↓ Collagen I/ α-SMA/ Fn

↓ Kidney fibrosis (tubular

interstitial fibrosis

indexes/Serum creatinine)

(184)

Anti-miR-21 Smad3 Ultrasound-mediated gene

transfer of inducible miR-21

knockdown

High glucose-induced rat mesangial cell

(MC)

and tubular epithelial cell (TEC), NRK52E

Kidneys of db/db mice

↓ Collagen I/ IV/ Fn

↓ p-Smad3

(185)

Non-canonical pathway

Trametinib

(MEK inhibitor)

ERK1/2,

mTORC1

3 mg/kg oral gavage UUO mouse model ↓ α-SMA/ Vimentin

↓ p-ERK1/2, p-Akt

(191)

Renalase ERK1/2 Adenovirus renalase gene

delivery

UUO mouse model ↓ p-ERK1/2

↓ Collagen I/ α-SMA/ Fn

(190)

QiShenYiQi (QSYQ)

Traditional Chinese

Medicines

β-catenin 250, 500 mg/kg/d

intra-gastric

In vitro

5, 10, 20µg/ml

UUO rat model

TGF-β treated

Normal kidney proximal tubular (NRK52E)

and renal fibroblast cells (NRK49F)

↓ Collagen I/ α-SMA/ Fn

↓ β-catenin

(192)

α1-adrenoceptor

inhibitors

p38 Tamsulosin (i.p.)

0.4 mg/kg/day

UUO mouse model ↓ Serum creatinine and urea

↓ KIM-1/NGAL/ PAL-1

↓ α-SMA/vimentin/Snai1/

Fibronectin

(193)

Aloe-emodin PI3K/Akt/

mTOR

20 mg/kg/day

oral gavage

UUO mouse model ↓ Tubule injury index score.

↓ Masson trichromatic +ve

area

↓ Collagen I/Fn

↓ Scr/BUN/urine volume

(49)

UUO, unilateral ureteral obstruction; EMT, epithelial-mesenchymal transition; SIS3, specific Inhibitor of Smad3; CKD, chronic kidney disease; Fn, Fibronectin; Scr, Serum creatinine;

BUN, blood urea nitrogen; α-SMA, Alpha-smooth muscle actin; STZ, Streptozotocin; ANG, Angiotensin; KIM-1, Kidney Injury Molecule-1; NGAL-1, neutrophil gelatinase-associated

Lipocalin; PAL-1, plasminogen activator inhibitor 1, RAGE MMP-7/PAI-1/Fsp-1.
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TGF-β1 signaling including ERK1/2 (190, 191), β-catenin
(192), p38 (193), and PI3K/Akt (49) also suppressed the pro-
fibrotic actions in obstructive nephropathy, demonstrating
the therapeutic potential of targeting the TGF-β1 downstream
mediators (Table 1).

CONCLUSION AND FUTURE
PERSPECTIVES

TGF-β1 exerts its pathogenic roles in the progression of
CKD by regulating both of the innate and adaptive immunity
in the injured kidney via the canonical and non-canonical
pathways including a novel fibrotic mechanism MMT. The
TGF-β1 driven development of renal fibrosis from unresolved
inflammation is well-observed, but underlying mechanisms
remain largely unexplored. Better understanding of the
underlying mechanisms of TGF-β1 pathways uncovered a
number of novel pathogenic mediators from the downstream
signaling, which may represent an effective therapeutic
strategy to prevent renal inflammation progress into fibrosis.
Moreover, the TGF-β1 regulating immune cells also contribute
to other fibrotic diseases. In addition, further studies of TGF-β

isoforms (TGF-β2, TGF-β3) on immune cells may reveal
their therapeutic potential in renal immunity driven CKD
progression. Current clinical trials targeting renal immunity
shows promise, further investigation for validating the safety
and effectiveness of these therapeutic approaches would
discover new hope for patients with fibrotic diseases in the
coming future.
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