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Background: Because obesity is associated with the risk of posttransplant diabetes

mellitus (PTDM), the precise estimation of visceral fat mass before transplantation

may be helpful. Herein, we addressed whether a deep-learning based volumetric fat

quantification on pretransplant computed tomographic images predicted the risk of

PTDM more precisely than body mass index (BMI).

Methods: We retrospectively included a total of 718 nondiabetic kidney recipients

who underwent pretransplant abdominal computed tomography. The 2D (waist) and

3D (waist or abdominal) volumes of visceral, subcutaneous, and total fat masses were

automatically quantified using the deep neural network. The predictability of the PTDM

risk was estimated using a multivariate Cox model and compared among the fat

parameters using the areas under the receiver operating characteristic curves (AUROCs).

Results: PTDM occurred in 179 patients (24.9%) during the median follow-up period

of 5 years (interquartile range, 2.5–8.6 years). All the fat parameters predicted the risk

of PTDM, but the visceral and total fat volumes from 2D and 3D evaluations had higher

AUROC values than BMI did, and the best predictor of PTDM was the 3D abdominal

visceral fat volumes [AUROC, 0.688 (0.636–0.741)]. The addition of the 3D abdominal

VF volume to the model with clinical risk factors increased the predictability of PTDM, but

BMI did not.

Conclusions: A deep-learning based quantification of visceral fat volumes on computed

tomographic images better predicts the risk of PTDM after kidney transplantation

than BMI.

Keywords: artificial intelligence, body mass index, fat, deep learning, kidney transplantation, post-transplant

diabetes mellitus
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INTRODUCTION

Posttransplant diabetes mellitus (PTDM), a metabolic
complication after kidney transplantation, occurs in 10–
40% of kidney recipients depending on the patient characteristics
(1–4). Because PTDM correlates with adverse outcomes
such as cardiovascular events and death, it is crucial to
predict PTDM precisely and manage its occurrence in
advance (4–6). Several risk factors for PTDM have been
identified, such as obesity (7, 8), high blood pressure (9),
immunosuppressive agents (10–12), infection with hepatitis
C virus (4, 13), hyperuricemia (13), and hypertriglyceridemia
(13). High values of body mass index (BMI), one of the
crude measures for body fat, predict the risk of DM (14),
but this relationship has not necessarily happened in PTDM
(4, 15–18).

BMI is a simple and convenient measure for adiposity
but does not reflect body shape and fat distribution, which
leads to inevitable limitations in the precise estimation of
visceral fat (VF) volumes (19). Furthermore, the relationship
with worse outcomes may depend on the race as Asians
have a higher proportion of body fat mass for a given
BMI than Caucasians (20). A bioelectrical impedance
analysis, dual-energy X-ray absorptiometry, and cross-
sectional computed tomography (CT) have been used
to substitute BMI (21–25). Analyzing body components
in cross-sectional CT imaging is regarded as a reference
standard. However, its clinical use remains limited because
the analysis requires a considerable amount of time and effort
of specialists.

The introduction of a deep-learning algorithm in medicine
attempts to change the paradigm of the clinical process (26, 27),
particularly of diagnostic imaging (28). Deep learning algorithms
have shown potential in automatic fat quantification on CT
images and thus can reduce the laborious work involved in
fat segmentation (29). Herein, we addressed whether deep-
learning-based volumetric fat quantification on CT images after
segmenting body fat distribution predicted the risk of PTDM
more precisely than BMI.

METHODS

Study Subjects
The study was approved by the institutional review board of
the Seoul National University Hospital (no. H-1907-072-1047)
and complied with the Declaration of Helsinki. Among 1,377
adults (aged ≥ 18 years) who consecutively underwent kidney
transplantation at Seoul National University Hospital between
2003 and 2017, 983 patients who underwent abdominal CT scans
within 1 year before transplantation were initially reviewed. Of
these, 38 patients in whom the CT scan did not sufficiently cover
the abdominal waist from the iliac crest to the lowermargin of the
ribs and 227 patients who had DM before transplantation were
excluded. Accordingly, 718 patients were analyzed in the present
study. Under the review board’s approval, informed consent
was waived.

Data Collection and Definition
Baseline information such as age, sex, weight, height, type
of pretransplant dialysis, donor type (living or deceased),
ABO incompatibility, positivity for hepatitis B surface antigen
and anti-hepatitis C virus antibody, the number of human
leukocyte antigen mismatches, and the immunosuppressive
regimens for induction (e.g., basiliximab and anti-thymocyte
globulin) and maintenance (e.g., steroid, calcineurin inhibitor,
and mycophenolic acid) were collected. A combination therapy
of steroids, tacrolimus, and mycophenolic acid was primarily
used for maintenance in our center. BMI was calculated as weight
(kg)/height (m2). Laboratory findings such as total cholesterol,
high-density lipoprotein cholesterol, triglyceride, and uric acid
were collected in the fasting state before kidney transplantation.

TABLE 1 | Baseline characteristics of the study subjects.

Variables Total (n = 718)

Age (years) 45.2 ± 12.6

Male sex (%) 60.0

Body mass index (kg/m2) 22.5 ± 3.4

Deceased donor (%) 34.5

Type of pre-transplant dialysis (%)

Preemptive 14.4

Hemodialysis 66.4

Peritoneal dialysis 19.2

Pre-transplant dialysis duration, months 23 [2–79]

Cause of kidney failure (%)

Hypertension 9.5

Glomerulonephritis 51.7

Polycystic kidney disease 10.3

Others 28.6

Hypertension (%) 81.8

Positivity for anti-hepatitis C virus antibody (%) 2.1

Positivity for hepatitis B surface antigen (%) 6.7

ABO incompatibility (%) 9.6

Number of HLA mismatch > 3 (%) 39.7

Induction agent (%)

None 11.8

Basiliximab 85.8

Anti-thymocyte globulin 2.4

Calcineurin inhibitor (%)

None 2.9

Cyclosporine 8.6

Tacrolimus 88.4

Mycophenolic acid (%) 98.6

Laboratory findings

Total cholesterol (mg/dL) 159.0 ± 36.7

Triglyceride (mg/dL) 123.7 ± 80.3

HDL cholesterol (mg/dL) 50.2 ± 16.5

LDL cholesterol (mg/dL) 92.4 ± 32.5

Uric acid (mg/dL) 6.0 ± 2.0

HLA, human leukocyte antigen; HDL, high-density lipoprotein; LDL,

low-density lipoprotein.

Frontiers in Medicine | www.frontiersin.org 2 May 2021 | Volume 8 | Article 632097

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Kim et al. Visceral Fat Quantification Predicts PTDM

Low-density lipoprotein cholesterol was calculated using the
following formula: total cholesterol – high-density lipoprotein
cholesterol – (triglyceride/5).

The primary outcome was PTDM. PTDM was diagnosed
when recipients needed antidiabetic medications because of high
blood glucose levels. The secondary outcomes were delayed graft
function (i.e., the requirement of dialysis within 7 days after
transplantation) and biopsy-proven acute rejection such as acute
T-cell-mediated and antibody-mediated rejections.

Deep Learning-Based Measurement of 2D
and 3D Fat Volumes
All abdominal CT scans were performed using multidetector
CT scanners without the intravenous administration of
contrast media. The mean interval between CT scanning
and transplantation was 91.1 ± 54.5 days. After uploading
precontrast volumetric abdominal CT images to commercially
available segmentation software (MEDIP Deep Catch v1.0.0.0,
MEDICALIP Co. Ltd., Seoul, Korea), a 3D U-Net automatically
generated a volumetric mask of 7 compartments in <1.5min
with the recommended specifications (30): skin, bone, muscle,
VF, subcutaneous fat (SF), internal organs with vessels, and
central nervous system. The network was developed using
39,286 labeled whole-body CT images and provided an average
segmentation accuracy for VF and SF of 92.4–98.9% and 94.1–
99.7%, respectively, in internal and external validation datasets
of whole-body CT scans. After the volumetric segmentation
of VF and SF, the range of the whole abdominal waist was
automatically extracted between the iliac crest and the margin
of the lowest rib, with subsequent calculation of the 3D

volumes of VF and SF in the whole abdominal or waist area
and 2D volumes at the midpoint of the abdominal waist
(31). An experienced body radiologist (SH Yoon) identified
whether the results of segmentation and the range of the
abdominal waist were appropriate. VF and SF volumes
were summed to calculate total fat (TF) volumes. All of
the TF, VF, and SF volumes were normalized by the height
squared (m2) (32).

Statistical Analysis
All statistical analyses were performed with the STATA (version
15.1; StataCorp, College Station, TX, USA) and R (version
3.5.0; R Core Team) software. Continuous variables are

TABLE 2 | 2D and 3D fat volumes and their correlations with body mass index.

Parameters Mean ± standard deviation r2 P

2D volume of waist TF 0.66 ± 0.41 m2/m2 0.539 <0.001

2D volume of waist VF 0.28 ± 0.23 m2/m2 0.426 <0.001

2D volume of waist SF 0.38 ± 0.23 m2/m2 0.420 <0.001

3D volume of waist TF 0.41 ± 0.36 m3/m2 0.448 <0.001

3D volume of waist VF 0.17 ± 0.18 m3/m2 0.399 <0.001

3D volume of waist SF 0.24 ± 0.21 m3/m2 0.381 <0.001

3D volume of abdominal TF 2.08 ± 1.42 m3/m2 0.526 <0.001

3D volume of abdominal VF 0.76 ± 0.57 m3/m2 0.466 <0.001

3D volume of abdominal SF 1.32 ± 0.90 m3/m2 0.454 <0.001

TF, total fat; VF, visceral fat; SF, subcutaneous fat.

FIGURE 1 | Representative image of the volumetric extraction of body compositions. (A) 3D translucent image shows a volumetric segmentation of muscle (pink),

subcutaneous fat (light yellow), abdominal visceral fat (orange), and bone (green) using a deep neural network. Two black horizontal planes indicate the range of the

abdominal waist between the lowest end of the rib cage and the uppermost end of the iliac crest. Blue and red lines indicate the levels of the umbilicus and the middle

of the abdominal waist, respectively. Axial (B), coronal (C), and sagittal (D) images show the results of segmentation, which are overlaid on orthogonal cross-sectional

images.
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FIGURE 2 | Nonlinear regression models of body mass index (BMI) with 2D waist (A), 3D waist (B), and 3D abdominal fat volumes (C). The gray area indicates 95%

confidence intervals. TF, total fat; VF, visceral fat; SF, subcutaneous fat.

TABLE 3 | Risk of posttransplant diabetes mellitus according to the fat parameters.

Model 1 Model 2 Model 3

Parameters HR (95% CI) P HR (95% CI) P HR (95% CI) P

2D volume of waist TF (per 1 m2/m2) 3.71 (2.74–5.04) <0.001 3.22 (2.31–4.48) <0.001 3.01 (2.07–4.36) <0.001

2D volume of waist VF (per 1 m2/m2) 8.73 (5.36–14.22) <0.001 5.88 (3.44–10.05) <0.001 5.74 (3.07–10.73) <0.001

2D volume of waist SF (per 1 m2/m2 ) 5.64 (3.25–9.79) <0.001 6.45 (3.50–11.90) <0.001 4.94 (2.55–9.57) <0.001

3D volume of waist TF (per 1 m3/m2) 3.05 (2.26–4.11) <0.001 2.98 (2.17–4.09) <0.001 2.47 (1.74–3.50) <0.001

3D volume of waist VF (per 1 m3/m2) 9.45 (5.36–16.65) <0.001 7.41 (4.04–13.62) <0.001 6.45 (3.15–13.23) <0.001

3D volume of waist SF (per 1 m3/m2 ) 5.31 (3.04–9.26) <0.001 6.24 (3.49–11.16) <0.001 4.02 (2.15–7.53) <0.001

3D volume of abdominal TF (per 1 m3/m2 ) 1.34 (1.24–1.44) <0.001 1.30 (1.21–1.41) <0.001 1.24 (1.14–1.35) <0.001

3D volume of abdominal VF (per 1 m3/m2) 2.41 (1.98–2.94) <0.001 2.22 (1.78–2.77) <0.001 2.10 (1.64–2.70) <0.001

3D volume of abdominal SF (per 1 m3/m2 ) 1.42 (1.27–1.59) <0.001 1.40 (1.25–1.57) <0.001 1.29 (1.13–1.46) <0.001

Body mass index (per 1 kg/m2 ) 1.12 (1.07–1.16) <0.001 1.10 (1.05–1.15) <0.001 1.08 (1.03–1.13) 0.001

Model 1: Unadjusted.

Model 2: Adjusted for age and sex.

Model 3: Adjusted for age, sex and variables which had P < 0.1 in univariate analysis (ABO incompatibility, induction agents, triglyceride level, high density lipoprotein cholesterol level

and positivity for anti-hepatitis C virus antibody).

HR, hazard ratio; CI, confidence interval; TF, total fat; VF, visceral fat; SF, subcutaneous fat.

Frontiers in Medicine | www.frontiersin.org 4 May 2021 | Volume 8 | Article 632097

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Kim et al. Visceral Fat Quantification Predicts PTDM

FIGURE 3 | Restricted cubic spline curves for the risk of posttransplant diabetes mellitus (PTDM) according to the 2D waist (A), 3D waist (B), 3D abdominal fat

volumes (C), and body mass index (BMI) (D). Curves were adjusted by multiple variables, such as age, sex, ABO incompatibility, anti-hepatitis C virus antibody, the

induction agents, and serum levels of high-density lipoprotein cholesterol. Solid and dashed lines indicate hazard ratios and 95% confidence intervals, respectively. TF,

total fat; VF, visceral fat; SF, subcutaneous fat.

presented as the mean and standard deviation or median and
interquartile ranges and compared by Student’s t-test or the
Wilcoxon rank-sum test, respectively. Categorical variables are
presented as percentages and compared by the chi-squared
test. Ordinary least-squares linear regression and fractional
polynomial regression with continuous variables were used to
determine a nonlinear relationship. Univariate and multivariable
Cox regression models were applied to estimate the hazard
ratio of the risks of outcomes. The Stata function mkspline was
used to create a restricted cubic spline function to describe
the hazard ratio of outcomes according to the fat parameters.
The areas under the receiver operating characteristic curves
(AUROCs) for predicting the risk of PTDM were compared
between fat parameters using permutation tests (33, 34). The
AUROCs for cumulative predictive probability depending on the
follow-up duration were drawn using the survivalROC package
in R. For the risk of delayed graft function, a multivariate
logistic regression model was applied. A P-value of < 0.05 was
considered significant.

RESULTS

Baseline Characteristics
The mean age was 45.2 ± 12.6 years old, and 431 patients
(60.0%) were male. A total of 81.8% of patients were treated with

anti-hypertensive agents. A total of 65.5% of patients received
transplants from living donors. The mean preoperative BMI
was 22.5 ± 3.4 kg/m2. Other baseline characteristics of kidney
recipients are shown in Table 1.

Fat Volume Parameters and Their
Correlation With BMI
Figure 1 shows the schematic diagram to measure 2D waist,
3D waist, and 3D abdominal fat volumes using the deep
neural network algorithm on 3D-reconstructed CT images.
The mean values of 2D waist, 3D waist, and 3D abdominal
TF volumes were 0.66 ± 0.41, 0.41 ± 0.36, and 2.08 ±

1.42 m3/m2, respectively. Although all the 2D and 3D fat
volumes correlated with BMI (Table 2), their coefficients of
determination (r2) in linear regression models were <0.6.
When the nonlinear relationship was subsequently applied, a J-
shaped relationship, but not a linear one, was shown between
them (Figure 2).

Fat Volume Parameters and the Risk of
PTDM
During the median follow-up duration of 5 years (2.5–
8.6 years), PTDM occurred in 179 patients (24.9%). The
prevalence of PTDM was 13.2 and 18.1% at 1 year and 3
years after transplantation, respectively. Among the baseline
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clinical variables, age, ABO incompatibility, induction regimens,
and serum levels of high-density lipoprotein cholesterol were
associated with the risk of PTDM (Supplementary Table 1). All
2D and 3D fat parameters and BMI were associated with the
risk of PTDM irrespective of adjustment for multiple variables
(Table 3). When a nonlinear relationship was applied, the
relationship with the PTDM risk seemed to be more prominent
in the VF and TF volumes compared with the SF volumes and
BMI (Figure 3).

The AUROCs for predicting the 3-year risk of PTDM
were higher in VF and TF volumes from 2D and 3D
quantification than in BMI (Table 4). The highest value was
identified in 3D abdominal VF volumes. The corresponding
curves support these results (Supplementary Figure 1). When
the cumulative AUROCs were evaluated, VF volumes had
higher values than BMI irrespective of the follow-up period
(Supplementary Figure 2). We evaluated whether the addition
of fat parameters to the risk model with other clinical
factors, which had P < 0.05 in Supplementary Table 1,
increased the overall predictability for the 3-year PTDM.
The 3D abdominal VF volumes elevated the predictability
of the model when added (P = 0.015), but BMI did not
(P = 0.206). The corresponding ROC curves support these
results (Figure 4).

Association With Other Transplant
Outcomes
Because high fat volumes may confer the risk of rejection
and delayed graft function according to previous studies (35,
36), other risks such as delayed graft function and rejections
were assessed. For delayed graft function, the 3D volumes
of abdominal VF and TF were predictors with odds ratios
of 2.08 (1.12–3.87) and 1.33 (1.01–1.75) per 1-unit increase,
respectively, but other fat parameters, including BMI, were
not (Supplementary Table 2). None of the fat parameters were
associated with the risk of rejections in the present cohort
(Supplementary Table 3).

DISCUSSION

The present study used the deep learning algorithm to
quantify the 2D and 3D fat volumes in pretransplant CT
images and identified that their relationship with BMI was
not linear. Although all the fat parameters were associated
with the risk of PTDM, the predictability was greater in VF
volumes than in BMI. The addition of 3D abdominal VF
volume to the model with clinical risk factors increased the
predictability of PTDM, but BMI did not. The present results
indicate that precise quantification of fat volumes by deep
learning algorithm may help to alert clinicians of the risk
of PTDM.

Precise measurement of fat components is a critical issue
in classifying risky patients based on obesity-related outcomes.
BMI, which is based on weight and height, is a commonly
used method to measure fat mass, but it does not take into
account other body compositions such as muscle and bone. BMI

TABLE 4 | Area under the receiver operating characteristic curves of fat

parameters in predicting 3-year posttransplant diabetes mellitus.

Parameters AUROC (95% CI) P

2D volume of waist TF 0.684 (0.632–0.735) 0.001

2D volume of waist VF 0.688 (0.635–0.740) 0.001

2D volume of waist SF 0.628 (0.576–0.679) 0.532

3D volume of waist TF 0.669 (0.617–0.720) 0.023

3D volume of waist VF 0.685 (0.634–0.735) 0.002

3D volume of waist SF 0.628 (0.575–0.681) 0.561

3D volume of abdominal TF 0.672 (0.619–0.724) 0.008

3D volume of abdominal VF 0.688 (0.636–0.741) < 0.001

3D volume of abdominal SF 0.634 (0.581–0.687) 0.378

Body mass index 0.612 (0.559–0.664) Reference

AUROC, area under the receiver operating characteristic curve; CI, confidence interval;

TF, total fat; VF, visceral fat; SF, subcutaneous fat.

FIGURE 4 | Receiver operating characteristic curves in predicting the 3-year

risk of posttransplant diabetes mellitus along with clinical risk factors.

According to Supplementary Table 1, clinical risk factors included age, ABO

incompatibility, induction regimens, and serum levels of high-density

lipoprotein cholesterol. VF, visceral fat; AUROC, area under the receiver

operating characteristic curve; BMI, body mass index.

seems to be an insufficient marker to assess PTDM based on
inconsistent research results (16–18). VF components have been
revealed as a risk factor for metabolic and cardiovascular diseases
in the general population, independent of BMI (37). VF was
related to glucose intolerance in kidney recipients (38). Based
on both the previous and present results, the estimation of VF
volumes is needed to predict the risk of PTDM more precisely
than BMI.

Abdominal imagingmethods, including CT, have been used to
assess the volumes of fat components using computer calculator
more than before (9, 39–41). This method has been validated in
several studies, but optimization is needed to reduce bias and the
time consumed by the task (42–44). The present study applied
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a deep learning algorithm to automatically segment the VF and
SF components and exclude muscle and bone, which eventually
detected the fat volumes quickly and unbiasedly for a number of
images. Because kidney transplant recipients undergo abdominal
CT scans for routine preoperative work-up, our approach using
readily available software is implementable for more accurate
prediction of PTDM than BMI, which may help in designing a
plan to prevent PTDM occurrence.

Despite the valuable findings of our study, there are some
limitations that need to be addressed. Waist circumference, a
useful method for fat volume, was not evaluated. Follow-up CT
images may be helpful to predict the risk of PTDM, but the
present study could not obtain these data. Other unidentified
factors, such as diet and exercise information, could have an
interacting effect on the relationships observed in the study.
Only Korean patients were analyzed, and no other populations
were analyzed. Nevertheless, the primary purpose of the study
was to address the application of the deep-learning-algorithm-
based quantification of 2D and 3D fat volumes in kidney
recipients, not to build a final model. A prospective application
and adjustment of our algorithm to other cohorts is warranted in
future studies.

Quantification of VF components with a deep learning
algorithm successfully predicts PTDM, which is better than
the measurement of BMI. Deep-learning-based approaches are
increasingly used in many clinical aspects, and the present results
will be a basis for application in the transplant field.
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