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Age-related macular degeneration (AMD) is characterized by the accumulation of

debris in the posterior eye. In this study we evaluated peripheral blood monocyte

phagocytic function at various stages of AMD and in aged matched control participants.

Real-time tri-color flow cytometry was used to quantify phagocytic function of peripheral

blood monocyte subsets (non-classic, intermediate and classic) isolated from subjects

with intermediate or late AMD and compared with age matched healthy controls.

Assessment of phagocytic function of monocytes isolated from those with and without

reticular pseudodrusen was also made, and the effect of glatiramer acetate on

phagocytic function assessed. Phagocytic function was reduced in all subjects with AMD,

irrespective of stage of disease. However, there was no correlation between phagocytic

function and drusen load, nor any difference between the level of phagocytosis in those

with or without reticular pseudodrusen. Treatment with glatiramer acetate increased

phagocytosis of classical and non-classical monocytes, normalizing the reduction in

phagocytosis observed in those with AMD. These findings suggest that defective

systemic phagocytosis is associated with both intermediate and late stages of AMD,

highlighting a potential role in the accumulation of debris that occurs early in the disease

process. Assessing peripheral monocyte phagocytic function provides further insights

into the etiology of this disease and offer a novel therapeutic target.
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INTRODUCTION

Age related macular degeneration (AMD) is the leading cause of irreversible vision loss in the
western world (1). The early stages of the disease develop in ∼1 in 7 people over the age of fifty, of
whom∼1 in 7 progress to vision threatening late AMD (2). Drusen, the early clinical sign of AMD,
are lipid rich deposits located beneath the retinal pigment epithelium (RPE) whose increasing size
is associated with increasing risk of progression to vision threatening late disease; characterized
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by atrophic changes in the retina called geographic atrophy or
aberrant vascular pathology called choroidal neovascularization
(3, 4). Recently, another distinct deposit seen clinically as
reticular pseudodrusen (RPD), located between the RPE and
photoreceptors, as sub retinal drusenoid deposits, has emerged
and their importance highlighted in disease progression (5–7).
These different deposits, in combination with an accumulation
of lipid rich deposits within Bruch’s membrane (BM), a semi-
permeable membrane located between the choroidal blood
supply and the retina, are considered integral to the pathogenesis
of AMD. The underlying mechanisms that lead to drusen and
RPD formation and accumulation of debris in BM, however, are
poorly understood.

Inflammation and innate immunity are thought to play a role
in the pathogenesis of AMD with complement activation, retinal
microglial activation and choroidal macrophage infiltration
being key components (8–11). Genetic mutations in the
alternative complement pathway, particularly involving the
complement factor H (CFH) gene, are associated with an
increased risk of development of AMD (12–14) and infiltrating
mononuclear phagocytes have been identified within drusen as
well as lesions associated with more late disease (15). One of
the central functions of innate immunity involves tagging of
pathogens or extracellular debris for binding, engulfment and
removal by immune cells (16). While much data has established a
major role of the RPE in phagocytosis of products generated from
the turnover of photoreceptor outer segments, mononuclear
phagocytes including monocytes and retinal microglia in the
subretinal space also perform a phagocytic function and express
scavenger receptors including CD36 (17), MER receptor tyrosine
kinase, CX3CR1 (10) as well as integrins such as CD11b and
CD11c (18).

Previous studies indicate that circulating monocytes are
altered in those with late AMD (19, 20). In particular, gene
expressional studies demonstrate broad changes in specific
subtypes of monocytes in those with neovascular AMD (19),
and differences in transcriptome between the distinct forms of
late AMD (20). Our previous work has implicated defects in
monocyte phagocytosis in late AMD (21, 22). P2X7 receptors are
expressed by peripheral blood monocytes/macrophages, as well
as retinal microglia, where they act as a scavenger receptor of
non-opsonized beads, live and dead bacteria, as well as apoptotic
cells (23–25). Inheritance of a rare haplotype of P2X7 G150R
and P2X4 Y315C is associated with increased risk of late AMD
as well as reduced phagocytosis (21). In addition, P2X7null mice
show reduced phagocytic rate in monocytes and retinal microglia
in association with signs of early stages of AMD including
thickening of Bruch’s membrane (22).

Here, we hypothesized that dysregulation of monocyte
phagocytosis may occur in those with AMD and in particular, is
present in the early stage of the disease, when debris accumulates
in several locations within the posterior eye in the form of drusen,
RPD and deposits within BM. We, therefore, sought to assess
the peripheral pool of monocytes for their phagocytic ability
at different stages of AMD. In addition, we and others have
shown that defective phagocytosis can be reversed, in part, by
glatiramer acetate, a currently available treatment of multiple

sclerosis, which acts on monocyte to facilitate phagocytosis (26–
28). Therefore, in this study, we also examined the in vitro effect
of glatiramer acetate on phagocytic function in cells isolated from
participants with AMD.

MATERIALS AND METHODS

Human Subjects
Participants (all Caucasians) with AMD were recruited from
Center for Eye Research Australia (CERA, East Melbourne,
Australia). The inclusion criteria for all AMD participants
included being 50 years of age or older and for the early stages
of AMD they had drusen ≥125µm in both eyes [Beckman
intermediate stage of AMD (4)] and no late AMD (4). We refer
to these subjects as “intermediate” AMD (iAMD). Participation
in a sub threshold laser intervention study (29), was permitted
as long as participants had not received laser treatment for at
least 6 months at the time of blood draw. For participants with
late-stage AMD, at least one eye had to have geographic atrophy
(GA) or choroidal neovascularization (CNV). Cases undergoing
treatment for CNV were included only if their last treatment was
>30 days prior to blood draw.

Healthy controls (HC) aged 50 or over, and all Caucasians
were recruited either through CERA or through the Australian
Imaging Biomarker and Lifestyle study of aging (AIBL), usually
as friends or unrelated relatives of cases. Controls were all
assessed in an identical manner as the AMD cases and graded
as having no drusen > 63µm in either eye (4). Exclusion criteria
for both cases and controls included other ocular diseases that
could compromise the ability to examine the retina and any
medication known to affect retinal health. Participants with
diabetes, uncontrolled hypertension, neurological or systemic
disease affecting vision, or had systemic inflammatory disease,
or were on treatment with anti-inflammatory medication were
also excluded. All cases and controls had their visual acuity
tested, had multimodal imaging of the retina and a clinical ocular
examination. Written informed consent was obtained from all
participants and the research adhered with the Declaration
of Helsinki.

Ocular Imaging
In order to quantify the level of drusen burden, multimodal
imaging was performed that included color fundus photography
(CFP; Canon CR6-45NM; Canon, Saitama, Japan), near-
infrared reflectance (NIR) and fundus autofluorescence (FAF)
using 488 nm blue light excitation, and SD-OCT scans using
a Spectralis HRA+OCT device (Heidelberg Engineering,
Heidelberg, Germany) and Cirrus Zeiss SD-OCT (Carl Zeiss
Meditec, Dublin, CA). The grading of the color fundus images
was performed using OptomizePro (Digital Healthcare Image
Management System, Digital Healthcare Ltd., Cambridge, UK)
by experienced graders to determine the Beckman stage of AMD
(4). The drusen area and volume within a 3- and 5-mm diameter
circle centered on the fovea was automatically calculated from
the Cirrus OCT. A close correlation was found between drusen
area and volume and thus total drusen area within a 5mm circle
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centered on the fovea in both eyes was used as the measure of
drusen load.

The presence of absence of reticular pseudodrusen in those
with intermediate AMD was confirmed based on multimodal
imaging using OCT as well as imaging with NIR, FAF or CFP.
The total RPD area, as a percent of the total fundus area, was
measured on both the NIR and fundus FAF images using image J
software to determine the area occupied by RPD. The greater of
the two measurements was taken as the area of RPD. The graders
were masked to the results of the phagocytosis assays.

Leucocyte Phenotyping

Human peripheral blood was collected into EDTA anti-coagulant
Vacutainer R© tubes. For surface staining, aliquots of 100 µL fresh
blood were added into FACS R© tubes with pre-mixed antibody
cocktails. Fluorescein isothiocyanate (FITC) conjugated anti-
human CD16 and CD19 monoclonal antibody (mAb) were from
DAKO; FICT-conjugated anti-CD15 mAb, R-Phycoerythrin (R-
PE) conjugated anti-CD16, Peridinin chlorophyll (PerCP)
conjugated anti-human CD14, Allophycocyanin (APC)
conjugated anti-human CD14 and CD3 R-phycoerythrin
(RPE) conjugated anti-human CD11b, anti-CD33 mAb,
FICT-conjugated anti-CD34 mAb, Peridinin chlorophyll
(PerCP) conjugated anti-human CD14, Allophycocyanin (APC)
conjugated anti-human CD14 and CD11c mAb were from BD
Bioscience (New Jersey, USA). The titration of each antibody
was determined by an initial saturation test. The mixture was
incubated for 15min at room temperature with gentle shake,
followed by the addition of 2mL of BD FACS Lysing solution
(BD Biosciences Cat# 555899). After 15min, equal volume
of phosphate buffered saline (PBS) was added and leukocytes
were centrifuged at 1,400 rpm for 4min. The cells were then
resuspended into 0.3mL PBS. The cells were kept at 4◦C in the
dark and analyzed on the same day using a FACSCaliburTM

flow cytometer. The neutrophils, lymphocytes and monocytes
populations (counts and percentage) were initially gated
according to their forward and side scatters, then further gated
with specific CD markers (CD15 and/or CD16 for neutrophils,
CD14 and CD16 for monocytes, CD3 for T lymphocytes and
CD19 for B lymphocytes). Results were analyzed using Flowjo
software (version 7.65&10).

Real-Time in vitro Phagocytosis of Beads
Assay
Monocyte phagocytosis was performed as previously described
(28). Briefly, human peripheral blood mononuclear cells
(PBMCs) (2 × 106/mL) were labeled with APC-CD14
and FITC-CD16 mAb, the two main cell surface markers
that distinguishes human monocyte subsets: classical
(CD14+CD16−); intermediate (CD14+CD16+) and non-
classical (CD14dimCD16+) (30). After washing, cells were
incubated in 5 µL of 1.0µm Fluoresbriter carboxylate
1.0µm Yellow-Orange (YO) latex microspheres (Polysciences,
Warrington, PA, USA) and the level of uptake of fluorescent
beads quantified over 6min using a FACSCalibur flow cytometer
(BD Bioscience) with TimeZero attachment to maintain cuvette
temperature at 37◦C. The area under the bead uptake curve in

the first 6min was used to calculate phagocytosis using Excel
(Microsoft) (31). In some experiments, 100µg/mL glatiramer
acetate (Copaxone R©, 20 mg/mL; TEVA Pharmaceutical
Industries Ltd., Petah Tikva, Israel) was applied to cells for
10min at 37◦C prior to performing the bead uptake assay.

Statistical Analysis
Results are expressed as mean ± standard deviation. One- or
Two-way ANOVA was used where comparisons across two
factors or more means were evaluated and a Tukeys post-hoc
test was used to make individual comparisons as appropriate
(GraphPad Prism version 9; GraphPad Software, Inc.). In order
to account for age, gender or previous laser treatment, analysis of
covariance (ANCOVA)was performed using SPSS25 (IBM). Data
presented in all graphs is unadjusted for age, gender or laser and,
with p-values in the graphs relate to unadjusted comparisons.

RESULTS

A total of 104 participants with AMD; 72 with intermediate AMD
(iAMD) (mean age: 69.4 ± 7.7 years) and 32 with late AMD
(mean age 77.8± 6.9) as well as 74 healthy aged-matched control
subjects (mean age 73.0 ± 6.9) were investigated (Table 1).
As a consequence of the amount of sample available for each
subject, it was not possible to undertake all experiments on each
subject. Therefore, some subjects were assessed for monocyte
phagocytosis whilst others were used for expression studies using
flow cytometry, as indicated.

Monocyte Phagocytosis Is Reduced in
Intermediate AMD
As shown in Figure 1A, flow cytometry was used to identify
different monocyte populations based on their expression of
CD14 and CD16. Phagocytosis of each cell class was then
evaluated by quantifying uptake of fluorescent beads (YO beads)
over time in those with intermediate AMD (n = 60), advanced
AMD (n= 30) and healthy controls (n= 35). In a typical healthy
control subject, intermediate monocytes (CD14+CD6+) showed
the highest level of phagocytosis of all three types of monocytes,
whilst. classic monocytes (CD14+CD16−) displayed lower levels
of phagocytosis and non-classic monocytes (CD14−CD16+)
showed an even lowest level of phagocytosis (Figure 1B).

TABLE 1 | Summary of participants in this study.

Group Total Sex

(female/male)

Age P (vs. HC)

Healthy controls (HC) 74 44/30 73.0 ± 6.9 -

AMD (all) 104 70/34 72.0 ± 8.4 0.3687

Intermediate# 72 53/19 69.4 ± 7.7 0.0031

Late AMD* 32 17/15 77.8 ± 6.9 0.0018

# Includes 42 with no RPD, 18 with RPD.
* Include 17 GA and 15 CNV patients.
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FIGURE 1 | Quantification of phagocytosis across the different types of monocytes. Whole blood leukocytes were labeled with different surface markers in four-color

flow cytometry panels. (A) A typical gate strategy used in YO bead uptake for gating CD14dimCD16+ nonclassical monocytes (red), CD14+CD16+ intermediate

monocytes (blue) and CD14+CD16− classic monocytes (green). (B) The corresponding kinetic curve of YO beads uptake in gated populations are shown.

Phagocytic function of monocytes isolated from healthy
control subjects, those with intermediate and those with
advanced AMD was assessed. Representative fundus images
of each participant type are shown in Figure 2A. Figure 2B
shows representative uptake curves for each of the three
monocyte subtypes that were isolated from a healthy control
(blue circles), a subject with intermediate AMD (green
circles) and a subject with late AMD (red circles). When
assessed across the entire cohort of subjects, phagocytosis was
found to be significantly reduced in monocytes isolated from
subjects with both intermediate AMD and advanced disease
(Figure 2C; One Way ANOVA, Tukeys post-hoc). Moreover,
the reduction in phagocytosis was of a similar amount in
all monocyte subtypes [∼40% reduction in phagocytosis in
those with AMD (iAMD or advanced AMD compared to
controls)]. In view of the differences in age of the three
populations of subjects, and the potential for age to influence
phagocytic function, we performed an Analysis of Covariance
(ANCOVA) to assess the effect of iAMD and late AMD
on phagocytosis independent of age. For all monocyte types,
iAMD and late AMD was associated with a lower level of
phagocytosis compared to healthy controls (ANCOVA, data
not shown).

The size of drusen is known to be an important risk factor

for progression of disease (4). Therefore, we evaluated whether

a higher burden of drusen was associated with lower levels of

phagocytosis. We measured the area of the retina covered by
drusen in the iAMD group within the central 5mm of the fovea
and correlated this with monocyte phagocytosis. As shown in
Figure 2D there was no significant correlation between the level
of phagocytosis and drusen area for any of the three monocyte
subtypes evaluated.

Reticular pseudodrusen (RPD) are a recently recognized
deposit that has been associated with increased risk of disease
progression and altered response to potential treatment such
as with subthreshold nanosecond laser (7, 29). We examined
whether phagocytic function was differentially affected in
those with AMD and RPD (referred to here as RPD+)
compared to those with conventional drusen only (RPD−). RPD
were quantified by both near-infrared reflectance and fundus
autofluorescence in HC (n = 35), RPD− AMD (n = 42) and
RPD+ AMD (n = 18) (Figure 3A). As shown in Figure 3B, all
patients with intermediate AMD, irrespective of the presence
of RPD showed reduced phagocytosis in all monocyte subsets.
In addition, there was no significant correlation between the
phagocytic function and RPD area for any of the monocyte
types examined (Figure 3C). These effects were observed even
when data was adjusted for age, gender or laser intervention
(ANCOVA, data not shown).

Glatiramer Acetate Restores AMD
Monocyte Phagocytic Ability in vitro
Having shown a reduction in phagocytosis activity in all
three monocytes in those with AMD, irrespective of stage of
disease or monocyte type, we evaluated whether monocyte
phagocytosis could be modified therapeutically. Glatiramer
acetate (Copaxone R©), is an approved compound used in the
treatment of multiple sclerosis and is known to alter immune
cell phagocytosis (27). We evaluated the potential of glatiramer
acetate to modify monocytes by pre-treating monocytes isolated
for all subjects for 10min in 100µg/mL glatiramer acetate
at 37◦C. Figure 4A shows phagocytic function of the three
monocyte subtypes isolated from the healthy control, iAMD
and advanced AMD subjects before and after application of
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FIGURE 2 | Monocyte phagocytosis in subjects with AMD. (A) Representative fundus images from a healthy control (normal) subject, person with intermediate AMD

(iAMD), geographic atrophy and choroidal neovascularization. (B) A typical example of YO beads uptake curve by three monocyte subsets from a healthy control (HC;

blue) a patient with intermediate AMD (green) and a subject with late AMD (red) Fresh human peripheral blood monocytes (PBMCs) were labeled with APC-conjugated

CD14 and FITC-conjugated CD16 before the addition of 1µm YO beads. The YO beads fluorescence intensity was analyzed by real time flow cytometry. (C) Graph

showing mean ± standard deviation basal phagocytic function of monocytes subsets isolated from healthy control subjects (HC) (n = 35), subjects with iAMD (iAMD)

(n = 61) and subjects with late AMD (n = 30). P-values from One-way ANOVA analysis and Tukey’s multiple comparisons tests are shown for comparison between

specific groups. (D) Correlations of basal phagocytic function for the three monocyte subtypes compared to drusen area. There was no significant correlation between

phagocytosis and drusen area for any of the monocytes examined.

glatiramer acetate (Copaxone). Glatiramer acetate enhanced
phagocytosis of non-classical monocytes isolated from healthy
control subjects by ∼45% (p < 0.0046), whereas it had very little
effect on phagocytosis by intermediate or classical monocytes.
In contrast, phagocytosis by non-classic and classic monocytes
was enhanced by treatment with glatiramer acetate in monocytes
isolated from subjects with intermediate AMD (Figure 4A).
These effects were observed even when data was adjusted
for age, gender or laser intervention (ANCOVA, data not
shown). Phagocytosis was also enhanced in non-classic and
classic monocytes isolated from subjects with advanced AMD.
Moreover, the enhancement in phagocytosis in both non-classic
and intermediate monocytes was significantly correlated with
drusen area (Figure 4B).

Figure 5 shows the effect of glatiramer acetate on monocyte
phagocytosis isolated from subjects intermediate AMD with
and without RPD. Glatiramer acetate enhanced phagocytosis
of non-classic and classical monocytes isolated from subjects
with intermediate AMD, irrespective of the presence of RPD

(Figure 5A). These effects were observed even when data was
adjusted for age, gender or laser intervention (ANCOVA, data
not shown). However, there was no correlation between the effect
of glatiramer acetate on phagocytosis and area of the retina
covered by RPD (Figure 5B). A larger area of retina covered by
RPD was not associated with a higher effect of glatiramer acetate
on phagocytosis.

Surface expression of phagocytosis-associated molecules
in AMD and control participants Phagocytosis is known to
depend on a range of surface receptors. To further explore the
mechanisms underlying the defective phagocytosis found in
AMD patients, we examined the surface expression of a number
of receptors and molecules associated with innate phagocytosis
on peripheral blood leukocytes. Integrins are important
membrane receptors regulating leukocyte adhesion, migration,
phagocytosis and many other activities (32). We investigated
the expression of two well-known membrane receptors of this
family: CD11b and CD11c. The integrins, CD11b and CD11c
are known to form complexes with CD18 and are referred to as
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FIGURE 3 | Phagocytic function in participants with and without reticular pseudodrusen (A) Fundus auto-fluorescence (FAF; top) and near Infrared reflectance (NIR;

bottom) spectroscopy images showing reticular pseudodrusen (RPD) area outlined using Image J software. (B) Graph showing mean+standard deviation of

monocyte phagocytosis in healthy controls (HC, n = 35), subjects with intermediate AMD without RPD (RPD−; n = 42) and intermediate AMD with RPD (RPD+; n =

18). P-values from One-way ANOVA analysis and Tukey’s multiple comparisons tests are shown for comparison between specific groups. (C) Correlations of basal

phagocytic function of three monocyte subsets with RPD area (n = 60). There was no significant correlation between phagocytosis and drusen area for any of the

monocytes examined.

complement receptor 3 (CR3, CD11b/CD18) and complement
receptor 4 (CR4, CD11c/CD18) respectively (33, 34). These
receptors are known to mediate phagocytosis via mechanisms
involving complement and/or antibody opsonization (32). In
view of the known importance of the complement pathway
in AMD, we reasoned that a reduction in these integrins may
contribute to the reduced phagocytosis observed in patients. As
shown in Figures 6A–F, the surface expression of both CD11c
and CD11b across the three subsets of monocytes were all
reduced. Besides integrins, we also examined some other surface
molecules. P2X7 and CD33 are known phagocytosis-related
biomarkers (25, 35). However, both molecules showed increased
expression on the surface of monocytes (Figures 6G,H),
especially when those with late disease were compared with
healthy controls. Finally, we tested for CD34, a marker of
haemopoietic stem cells was reduced in those with late AMD,
implying that the capacity for differentiation of haemopoietic

stem cells into monocytes was reduced in those with
late AMD (Figure 6I).

Correlations of Leukocyte Surface
Biomarkers With Drusen or RPD
It is well-known that individuals with larger drusen have a greater
risk of progression to vision threatening stages (4). We evaluated
whether there were differences in monocyte proportions in those
with a larger overall load of drusen compared with those with a
smaller drusen load. Figure 7 shows changes in the proportion
of the different subsets of monocytes in healthy control subjects,
those with intermediate AMD and those with late AMD.
Overall, classic monocytes (CD14+CD16−) comprise ∼80% of
the entire monocyte population, and intermediate and non-
classical monocytes represent only ∼10% of the total monocyte
population. In those with intermediate AMD there as an increase
in the proportion of non-classical monocytes (CD14dim, CD16+;
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FIGURE 4 | The effect of glatiramer acetate treatment on phagocytosis and its correlation with drusen size. (A) Graph of monocyte phagocytosis before and after

10min treatment with glatiramer acetate 100µg/mL for healthy controls, subjects with intermediate AMD (iAMD) and subjects with late AMD. P-values from a

Two-way ANOVA analysis with post-hoc Tukey’s-test are shown on top of each panel. (B) Correlations of drusen area with phagocytic function following glatiramer

acetate treatment in subsets of monocytes. There was a significant correlation between drusen area and glatiramer acetate stimulated phagocytosis for non-classical

and intermediate monocytes. ns: no significance.

One-way ANOVA, p = 0.0011) and a corresponding decrease in
the proportion of classical (CD14+CD16−; One Way ANOVA, p
= 0.015) and intermediate monocytes (CD14+CD16+; OneWay
ANOVA, p = 0.005). In contrast, the proportion of monocytes
in late AMD was no different from health controls for any
monocyte type. In agreement with these findings, the ratio of
neutrophils to monocytes was reduced in those with intermediate
and late AMD (Figure 7D; One Way ANOVA, p = 0.023).
The proportions of other cell types, including neutrophils and
lymphocytes were unchanged (data not shown). These significant
differences were observed even when considered independently
of age and gender (ANCOVA).

Phagocytosis-Associated Leukocyte
Surface Molecules Have the Potential
Prognostic Values for AMD Progression
The results shown above suggest that monocyte function is
altered in those with intermediate or late AMD. Although the
different stages of AMD are readily diagnosed using ocular

imaging, we evaluated whether leucocyte factors could be used
to differentiate the different forms of disease. By comparing
healthy controls and AMD participants using receiver operating
characteristic (ROC) analysis, we identified several leukocyte
surface variables which may have potential prognostic value
identifying those with AMD (Figure 8), including phagocytic
function of non-classic and intermediate monocytes and CD11b
and CD11c expression by monocytes. Further comparison
between healthy control and those with intermediate AMD
indicated that phagocytic function of all monocyte classes in
particular was a useful discriminator of those with intermediate
AMD. Figure 9 shows receiver operating characteristic (ROC)
analysis for those with intermediate AMD compared late AMD
and demonstrates that with a combination of the top six
selected variables (Figure 9), a theoretical 92.9% accuracy can
be achieved that distinguishes early stage from late AMD. We
took a similar approach to compare RPD− and RPD+ AMD.
With a combination of top six selected biomarkers, an 88.4%
accuracy could be achieved in distinguishing AMD patients who
also had RPD from those without RPD− (Figure 9B). Notably,
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FIGURE 5 | The effect of glatiramer acetate treatment on monocytes phagocytosis isolated from those with and without RPD and its correlation with RPD area. (A)

Graph showing phagocytic function before and after 10-min application of glatiramer acetate in monocytes isolated from healthy controls, subjects with intermediate

AMD without RPD (RPD−) and subjects with intermediate AMD with RPD (RPD+). P-values from a Two-way ANOVA with post-hoc Tukey’s analysis analysis are shown

on top of each panel. (B) Correlations of RPD area with phagocytic function following glatiramer acetate treatment in subsets of monocytes. There was no significant

correlation between RPD area and glatiramer acetate stimulated phagocytosis. ns: no significance.

factors relating to lymphocytes including CD11b, CD11c, and
P2X7 expression by lymphocytes as well as the proportion of
lymphocytes were major distinguishing factors that separated
those with RPD from those without RPD. It is worth noting that
none of the leukocyte surface biomarkers were associated with
age or sex of participants. These results highlight that there is a
different leucocyte profile in the various types of AMD (i.e., early
compared to late disease; presence or absence of RPD).

DISCUSSION

The main findings of this study were that both intermediate
and late AMD were associated with a reduction in monocyte
phagocytosis that could be ameliorated in part by application
of glatiramer acetate. In addition, the presence of RPD had no
additional effect on monocyte phagocytosis compared to that
observed in those without RPD. These results highlight a novel
systemic change in monocyte function in those with AMD that
may reflect a novel mechanism of disease and could have the
potential as a novel therapeutic target.

Our results showing that phagocytosis was reduced in all
monocyte subtypes in patients with intermediate and late

AMD, highlights that systemic monocyte function may be
important in the development of AMD. Although, previous
studies have shown that monocytes are altered in one late
form of AMD—neovascular AMD (19, 36–41), no information
is currently available about potential functional changes that
occur in monocytes at an earlier stage of disease. Anomalies
in the innate immune system have been implicated in
the development and progression of AMD. Migration of
mononuclear phagocytes into the subretinal space has been

implicated in the changes that occur during the early stages
of AMD. Notably, mononuclear phagocytes that includes
peripheral blood monocytes, macrophages and retinal microglia,
accumulate within and around drusen, RPD, and also in
zones of atrophy (11). In addition, mononuclear phagocytes
accumulate within the subretinal space with age in animal models
with features of early stages of AMD and can influence both
photoreceptor and RPE integrity. Indeed, reduced mononuclear
phagocyte phagocytosis has been previously associated with
enhanced neuroinflammation and accelerated photoreceptor loss
(42). When taken together with these previous observations, we
propose that a reduction in monocyte phagocytosis observed in
subjects with AMD could be important in for the development of
deposits, and potentially contribute to the ongoing pathological
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FIGURE 6 | Surface expression of phagocytosis related molecules in leukocyte from HC, early and late AMD. Whole blood leukocytes were labeled with different

surface markers in four-color flow cytometry panels. Samples were from healthy controls (n = 52), early AMD (n = 39) and late AMD (n = 22). Parameters that showed

significant differences are shown. P-values from One-way ANOVA analysis and Tukey’s multiple comparisons tests are shown for comparison between specific

groups. In B, the p-value for the One-Way ANOVA across all three groups is shown.

changes that occur in the posterior eye during AMD. However,
additional studies are required to identify a causal link between
monocyte phagocytosis and development and/or progression
of AMD.

A number of previous studies have highlighted anomalies in
monocyte function in those with neovascular AMD. Notably,
the proportions as well as chemokine receptor expression of
monocytes is altered in subjects with neovascular AMD (40, 43–
45) and monocytes isolated from those with neovascular AMD
secrete greater levels of cytokines including VEGF (46). Our
findings showing reduced expression of CD11b in all monocyte
subtypes isolated from those with late AMD is in agreement
with these previous studies. CD11b is an integrin that combines
with CD18 to form the complement receptor 3 complex, an
important mediator of phagocytosis of complement- coated

particles. CD11c, another member of the integrin family, is
also thought to be important for mediating phagocytosis, via
a mechanism involving binding to iC3b. Our results showing
reduced monocyte phagocytosis in combination with reduced
expression of CD11b and CD11c suggest that complement
mediated phagocytic mechanismsmay be perturbed in those with
neovascular AMD.

Anomalies in monocyte function have been implicated in
a number of diseases known to be associated with anomalies
in innate immune signaling including multiple sclerosis,
Alzheimer’s disease and Parkinson’s disease (28, 47). Defective
myelin phagocytosis by monocytes has been implicated in
increased inflammation in those with multiple sclerosis (48).
Similarly, defective monocyte phagocytosis is associated with
elevated α-synuclein, and increased inflammation in those
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FIGURE 7 | Changes in proportions of monocyte subtypes in healthy control, early and late AMD subjects Graph of the mean ± SD proportion of (A) non-classical

monocytes (CD14−CD16+), (B) intermediate monocytes (CD14+CD16+), (C) classic monocytes (CD14+CD16−) and (D) and ratio of neutrophils to monocytes.

Samples were from healthy controls (n = 35), intermediate AMD (n = 42) and late AMD (n = 30). Parameters that showed significant differences are shown. P-values

from One-way ANOVA analysis and Tukey’s multiple comparisons tests are shown for comparison between specific groups.

with Parkinson’s disease (47, 49, 50). Our previous study
demonstrated that individuals withmild cognitive impairment or
Alzheimer’s disease associated with a high Aβ burden, had higher
levels of monocyte phagocytosis compared to healthy controls
(28). The results of this study confirm that assaying peripheral
blood monocyte function can provide important information
about the role of the innate immune system in disease.

The underlying mechanisms leading to reduced monocyte
phagocytosis remain to be determined. Age has been associated
with reduced monocyte phagocytosis in one study (51), and
our experimental groups did differ in age between the healthy
controls and the late AMD cases. However, we found no
significant correlation between phagocytosis and age in our
cohort and when data was adjusted for age and gender there
was no impact on experimental outcomes- phagocytosis was
reduced in subjects with iAMD and Late AMD. Moreover, our
observation that AMD was associated with reduced phagocytosis
is unlikely to be due to aging because the mean age of control
subjects was older than our subjects with intermediate AMD.

It has been reported that monocytes isolated from those
with late AMD have a distinct transcriptome profile (19) as

well as modified DNA methylation compared to monocytes
isolated from health aged matched controls (37). Our previous
work has implicated the scavenger receptor, P2X7 in AMD
(21, 22). The P2X7 receptor has a tight molecular association
with non-muscle myosin heavy chain IIA (NMMHC-IIA) in
monocytes (24) and this complex regulates phagocytosis of non-
opsonized beads, live and dead bacteria, as well as apoptotic
cells (25). Our previous report examining P2X7null mice,
shows that rate of monocyte phagocytosis in peripheral blood
monocytes reduces with age, and is associated with gradual
thickening of Bruch’s membrane, a critical change in the
development of AMD (22). In addition, we have found that
a rare haplotype of P2X7 G150R together with P2X4 Y315C
leads to loss of innate phagocytosis and confers increased risk
of late AMD (21). However, in view of the large number of
participants showing reduced monocyte phagocytosis in this
study, there are likely to be additional scavenger receptor
types and cellular processes involved. More work is needed, to
determine whether additional scavenger receptors, or cellular
processes affecting monocyte phagocytosis are affected in those
with AMD.
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FIGURE 8 | Phagocytic function and leukocyte biomarkers with potential diagnosis values for AMD. Top potential variables for diagnosis of AMD are shown in the

table. AUC, area under curve of Receiver Operating Characteristic (ROC); Mono, monocytes; exp, surface expression; SD, standard deviation; phago, phagocytic

function. Binary logistic regression was performed among selected multiple variables to create predicted probabilities for ROC analysis. ROC curves distinguishing

between (A) healthy controls (HC) and all AMD (intermediate, GA and CNV) and (B) HC and intermediate AMD are shown. P-values are for asymptotic significance

calculated by SPSS v24.

Recently, the importance of a distinct deposit called RPD
has emerged (5–7). RPD form within the subretinal space
between photoreceptor outer-segments and the RPE and have
a distinct composition compared to conventional drusen (7,
52). The underlying mechanisms leading to the formation of
RPD compared to conventional drusen are not well-understood
(7). We evaluated whether patients with RPD showed altered
monocyte function compared to those with conventional drusen.
Our results indicate that phagocytosis by all subsets of monocytes
was uniformly reduced in all participants with AMD, irrespective
of the presence of RPD suggesting that defective phagocytosis is
similarly abnormal in those with or without RPD.

Treatment with glatiramer acetate was found to ameliorate
the changes in phagocytosis associated with the intermediate

and late AMD. These positive effects were observed in non-
classical and classical monocytes isolated from patients with or
without RPD. Moreover, glatiramer acetate had a greater effect
on monocyte phagocytosis isolated from patients with a greater
drusen load. These results are in agreement with our previous
study showing glatiramer acetate enhancement of monocyte
phagocytosis in individuals with Alzheimer’s disease or mild
cognitive impairment associated with high levels of Aβ (28).
Our previous study showed that the higher the level of Aβ,
the greater the effect that glatiramer acetate had on monocyte
phagocytosis. Aβ is known to be enriched in drusen and it is
therefore possible that similar biological mechanisms underpin
the enhanced phagocytosis induced by glatiramer acetate in those
with AMD. Glatiramer acetate is approved for the treatment of

Frontiers in Medicine | www.frontiersin.org 11 March 2021 | Volume 8 | Article 634177

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Gu et al. Impaired Monocyte Phagocytosis in AMD

FIGURE 9 | Leukocyte proportion and surface biomarkers with potential prognostic values for AMD. Top 6 potential variables for prognosis of AMD are shown in the

table. AUC, area under curve of Receiver Operating Characteristic (ROC); Mono, monocytes; exp, surface expression; SD, standard deviation. Binary logistic

regression was performed among multiple parameters to create predicted probabilities for ROC analysis. ROC curves distinguishing between (A) early stages

(intermediate) and late stages of AMD (GA and CNV) and between (B) RPD− and RPD+ AMD patients are shown. P-values are for asymptotic significance calculated

by SPSS v24.

multiple sclerosis and although its mode of action is not well-
understood, it is thought to target T cell as well as monocyte
function (26–28). The mechanism by which glatiramer acetate
changes monocyte phagocytosis is, however, not clear. Our
previous work has shown that glatiramer acetate interacts rapidly
with the cell membrane of monocytes, perhaps potentiating the
recognition of particles by scavenger receptors (28). In addition,
a previous small study has demonstrated resolution of drusen
in those with AMD treated for 12 weeks with subcutaneous
glatiramer acetate (53, 54). More work is needed, however, to
determine whether in vivo treatment with glatiramer reduces the
development or progression of AMD.

Our results indicate that in those with AMD, glatiramer
acetate selectively enhances phagocytosis of non-classical and

classical monocytes but has little effect on intermediate
monocytes. The selective effect of glatiramer acetate on specific
monocyte subtypes is consistent with our previous study that
showed a preferential enhancement of phagocytosis by non-
classical and classic monocytes in healthy control subjects, or
those with a high burden of Aβ (28). It is possible that glatiramer
acetate preferentially enhances phagocytosis in cell types that
show low basal phagocytosis such as non-classic or classic
monocytes. There may be a limitation in the ability to enhance
phagocytosis, once a threshold level has been attained.

The results of this study should be viewed in the context
of a number of limitations. This study was a cross-sectional,
in vitro laboratory study and, the findings are yet to be validated
in a longitudinal manner. Importantly, the association between
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AMD and phagocytosis observed in this study requires further
investigation to determine whether there is a direct causal link
betweenmonocyte phagocytosis and development or progression
of disease. Secondly, there are a number of co-morbidities that
are known to alter innate immune cell function and that may
have influenced our results, including aging, sex, and lifestyle
factors such as smoking. Although our analysis failed to detect
any effect of sex or age on phagocytic function, other lifestyle
factors were not accounted for in our analysis. Finally, our results
demonstrating the effect of glatiramer acetate on monocyte
phagocytosis was performed in vitro. A follow-up study is
required to determine whether glatiramer acetate influences
monocyte phagocytosis in vivo and whether this can change
disease progression.

In conclusion, this study has shown an identifiable and
measurable systemic defect in innate immune cell function
in a cohort of AMD cases that cover the spectrum of
disease severity. Moreover, in vitro treatment with glatiramer
acetate ameliorated the reduced phagocytic function in AMD
participants with intermediate and late AMD. Importantly, our
results show that glatiramer acetate was able to restore monocyte
phagocytosis in the most common subtypes of monocytes,
non-classical and classical monocytes, to a level similar to
healthy controls, suggesting a potential novel intervention for
the earlier stages of AMD, before there are vision threatening
complications of atrophy or neovascularization. Further work is
needed to elucidate the contribution that reduced phagocytosis
has to the development and progression of AMD, and in
particular to evaluate whether glatiramer acetate has potential
as a therapeutic agent for reducing drusen and/or reticular
pseudodrusen burden.
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