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Non-alcoholic fatty liver disease (NAFLD) is one of the main causes of fibrosis. Liver

biopsy remains the gold standard for the confirmation of fibrosis in NAFLD patients.

Effective and non-invasive diagnosis of advanced fibrosis is essential to disease

surveillance and treatment decisions. Herein we used routine medical test markers and

logistic regression to differentiate early and advanced fibrosis in NAFLD patients from

China, Malaysia, and India (n1 = 540, n2 = 147, and n3 = 97) who were confirmed by

liver biopsy. Nine parameters, including age, body mass index, fasting blood glucose,

presence of diabetes or impaired fasting glycemia, alanine aminotransferase, γ-glutamyl

transferase, triglyceride, and aspartate transaminase/platelet count ratio, were selected

by stepwise logistic regression, receiver operating characteristic curve (ROC), and

hypothesis testing and were used for model construction. The area under the ROC

curve (auROC) of the model was 0.82 for differentiating early and advanced fibrosis

(sensitivity = 0.69, when specificity = 0.80) in the discovery set. Its diagnostic ability

remained good in the two independent validation sets (auROC = 0.89 and 0.71) and

was consistently superior to existing panels such as the FIB-4 and NAFLD fibrosis score.

A web-based tool, LiveFbr, was developed for fast access to our model. The new model

may serve as an attractive tool for fibrosis classification in NAFLD patients.

Keywords: NAFLD, hepatic fibrosis, advanced fibrosis, FIB-4, NFS, logistic regression

INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD), the manifestation of metabolic syndrome in the liver
that is linked to obesity and insulin resistance, is one of the most frequent chronic liver diseases
(CLDs) and affects approximately 6–40% of the general population, depending on the population,
ethnicity, and diagnostic criteria (1, 2). Most NAFLD patients have simple steatosis without
fibrosis. Diverse stages of fibrosis and/or cirrhosis may develop in the context of non-alcoholic
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steatohepatitis (NASH). Advanced fibrosis (stage 3–4) is
increasingly recognized as the leading cause of hepatocellular
carcinoma and liver transplantation (3). Meanwhile, advanced
fibrosis is at an increased risk for liver-related and cardiovascular-
related mortality (2, 4). As a consequence, patients with
NAFLD should be assessed for the extent of fibrosis,
especially the presence of advanced fibrosis, because of its
prognostic implications.

Liver biopsy is regarded as the gold standard for the
diagnosis and monitoring of hepatic fibrosis progression
in patients with NAFLD. However, this invasive procedure
cannot be performed routinely in a large-scale population
due to its inherent shortcomings (5). In the last decade, a
number of non-invasive approaches based on blood markers,
such as the aspartate transaminase/alanine transaminase
ratio (AST/ALT ratio) (6), AST to platelet ratio index (APRI)
(7), FIB-4 (based on age, AST, ALT, and platelet (PLT)] (8),
NAFLD fibrosis score [NFS; based on age, body mass index
(BMI), impaired fasting glycemia or diabetes (DM/IFG),
AST/ALT, PLT, and albumin (ALB)] (9), FibroMeter (10),
and others (11), have been applied to predict and distinguish
the progression of hepatic fibrosis in CLD patients due to
their simple operation, few complications, and widespread
application (12). Some of them (or their combinations)
have been recommended as an auxiliary method for liver
fibrosis and cirrhosis diagnosis and monitoring, treatment
selection, and risk stratification in some countries and
regions (13), although their universality and performances
are still waiting for further assessment in larger and special
populations (14–16).

Along with the increasing amounts of biomedical data and
the popularity of artificial intelligence, machine learningmethods
have been actively used to develop various tools for disease
state assessment (17–19). For example, our group constructed
a gradient boosting (GB) machine learning model to stage liver
fibrosis and cirrhosis in patients with hepatitis B virus (n =
576) and hepatitis C virus (n = 484) infection (20). Using
the same four parameters of the famous scoring system FIB-
4, our method showed steady and significant improvements
in comparison with FIB-4. In addition, we quantitatively
profiled 98 serum metabolites in 1,006 participants (including
504 CLD patients and 502 normal controls) and identified
four serum metabolite markers, taurocholate, tyrosine, valine,
and linoelaidic acid, which can reliably evaluate the stage
of fibrosis by jointly using two machine learning methods,
least absolute shrinkage and selection operator and random
forest (RF) (21). The prediction models were steadily superior
to existing scoring systems, including the APRI, FIB-4, and
AST/ALT ratio, with greater sensitivity, specificity, area under
the receiver operating characteristic curve (auROC) and area
under the precision–recall curve (auPR). However, in further
studies and clinical applications, increasing attention has been
given to the limitations of machine learning models. First, the
computational process of a model is a “black box” to users,
and no formula can be given. This ambiguity has impeded its
popularity in clinical practice. Second, the overfitting problem
is increasingly recognized in patients with diverse backgrounds.

Machine learning models usually require a much higher number
of training samples and more independent validation sets (to
avoid overfitting) than conventional methods due to their
complicated structure and a large number of parameters. As
large-scale (e.g., over 2,000) samples of liver biopsy-confirmed
NAFLD patients are not easy to obtain, complex machine
learning methods are considered to be an over-examination for
NAFLD patients. Thus, the contradiction between the sample size
demand and the poor compliance of patients could not be solved
in the short term.

Logistic regression (LR), a simple and classical method, has
been used in thousands of studies for disease status assessment.
Considering the limitations of machine learningmethods and the
practical value of LR, in this report, we constructed an LR model
for the differentiation between early and advanced fibrosis in
NAFLD patients. Our strengths include the following: (1) Three
independent cohorts with sample sizes of 540, 147, and 97 were
used for model construction and validation; (2) All the patients
were evaluated by liver biopsy; (3) Our model used routine
medical test markers that can be obtained during routine medical
examinations regardless of the medical condition; (4) Diagnostic
performances were examined and compared comprehensively
with FIB-4 and NFS; and (5) An integrated web tool, LiveFbr,
was developed for biological research and clinical application.
This paper is organized as follows: SectionMaterials andMethods
introduces the cohorts, data sets, and methodology for model
construction and validation. Section Results introduces the basic
characteristics of the cohorts, the process of parameter selection
and model construction, and the results of model evaluation.
Section Discussion summarizes the work and highlights its
strengths and limitations.

MATERIALS AND METHODS

Cohorts and Ethics
A total of 784 patients with hepatic fibrosis from three
independent cohorts were enrolled in this study. Except for
cohort 1, the other two cohorts were collected prospectively
from anonymous data sets of existing studies. The discovery set
(cohort 1) comprising 540 participants was recruited by authors
from Zhongshan Hospital Affiliated to Fudan University, China.
Liver biopsy specimens were acquired from all patients who
met the diagnostic criteria for NAFL or NASH and underwent
liver biopsy (22). Subjects were excluded from the study if
they had any of the following conditions: history of cancer,
alcoholic intemperance, or other causes of chronic liver disease.
Peripheral venous blood samples were taken after a 12-h fasting
period. The samples were provided in a de-identified fashion,
and the lab staff who prepared the samples were blinded to
the clinical information. This study conformed to the ethical
guidelines of the 1975 Declaration of Helsinki, and approval was
obtained from the Research Ethics Committee of Zhongshan
Hospital Affiliated to Fudan University (no. B2013-132, date:
November 2013). Written informed consent was obtained from
each participant. Validation set 1 (cohort 2), consisting of 147
patients, and validation set 2 (cohort 3), consisting of 97 patients,
were recruited by the author from University of Malaya Medical
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FIGURE 1 | The main pages of the web tool LiveFbr.
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Center at different periods (set one was recruited between
November 2012 and April 2014, and set 2 began from 2016; for
detailed information, please refer to the original publications)
(23, 24).

Liver Biopsy
Liver biopsies with ultrasound-guided 1.6-mm-diameter needles
were performed by professionally trained operators for patients
in the discovery set (cohort 1). For the validation sets (cohorts
2 and 3), percutaneous needle biopsy examinations were
performed by one of two experienced operators (WKC and
SM) using an 18-G Temno R© II semi-automatic biopsy needle
(Cardinal Health, Dublin, Ohio, USA) (24). All liver tissue
samples of each cohort were examined by an experienced
pathologist who was completely blinded to the research
design. The non-alcoholic fatty liver disease activity score
was used to assess hepatic status based on a standardized
histological scoring system (25), namely, included steatosis (0–
3), lobular inflammation (0–3), hepatocellular ballooning (0–2),
and fibrosis (0–4).

TABLE 1 | Clinical and demographic characteristics of the discovery cohort.

Discovery set All (n = 540) Early fibrosis

(S0–2)

(n = 391)

Advanced

fibrosis

(S3–4)

(n = 149)

p-value

Age (year) 46.76 ± 13.42 44.39 ± 13.44 52.99 ± 11.22 <0.001

ALB (g/L) 4.44 ± 0.41 4.46 ± 0.43 4.37 ± 0.37 0.087

ALT (IU/L) 76.50 ± 49.94 76.25 ± 50.83 77.14 ± 47.69 0.664

AST (IU/L) 47.11 ± 26.40 44.17 ± 25.98 54.81 ± 26.00 <0.001

BMI (kg/m2 ) 30.38 ± 5.18 30.23 ± 5.28 30.79 ± 4.87 0.200

FBG (mmol/L) 6.36 ± 2.01 6.10 ± 1.80 7.03 ± 2.38 <0.001

GGT (IU/L) 67.77 ± 60.97 64.98 ± 63.51 75.08 ± 53.25 <0.001

HbA1c (%) 6.61 ± 1.43 6.52 ± 1.44 6.86 ± 1.39 0.001

HDL (mmol/L) 1.11 ± 0.28 1.10 ± 0.26 1.14 ± 0.33 0.115

LDL (mmol/L) 2.95 ± 1.16 3.01 ± 1.20 2.76 ± 1.01 0.134

PLT (109/L) 226.70 ± 61.46 235.70 ± 61.20 203.07 ± 55.79 <0.001

TBIL (µmol/L) 12.45 ± 7.08 12.27 ± 7.30 12.93 ± 6.45 0.095

TC (mmol/L) 5.01 ± 1.23 5.06 ± 1.29 4.88 ± 1.06 0.423

TG (mmol/L) 2.02 ± 1.43 2.14 ± 1.58 1.72 ± 0.87 0.001

AST/ALT 0.73 ± 0.38 0.70 ± 0.41 0.80 ± 0.28 <0.001

AST/PLT 0.57 ± 0.39 0.50 ± 0.31 0.75 ± 0.49 <0.001

DM/IFG (no/yes) 233:307 190:201 43:106 <0.001

Sex (M/F) 282:258 221:170 61:88 0.002

Values are expressed as mean ± SD. P-values determined by comparing the

characteristics of individuals with early (fibrosis stage 0–2) and advanced fibrosis (fibrosis

stage 3–4) were evaluated using an independent-samples t-test or Wilcoxon–Mann–

Whitney test. Chi-square test or Fisher’s exact test, when appropriate, was used to

compare categorical variables.

ALB, albumin; ALT, alanine transaminase; AST, aspartate transaminase; BMI, body mass

index; FBG, fasting blood glucose; GGT, gamma-glutamyl transferase; HbA1c, glycated

hemoglobin; HDL, high-density lipoprotein; LDL, low-density lipoprotein; PLT, platelet;

TBIL, total bilirubin; TC, total cholesterol; TG, triglyceride; DM/IFG, presence of diabetes

or impaired fasting glycemia.

Blood Sample Collection and Test
For subjects in the discovery set, routine fasting (12 h)
blood samples were collected. Biochemical measurements
were performed using standard laboratory procedures. The
ALB concentration was examined by the bromocresol green
method. Fasting blood glucose (FBG) was assessed by the
glucose oxidase method. The level of low-density lipoprotein
cholesterol (LDL) was calculated by the Friedewald equation. The
concentrations of γ-glutamyltransferase (GGT), high-density
lipoprotein cholesterol, total cholesterol, triglyceride (TG), total
bilirubin, PLT, ALT, and AST were measured by an automated
bioanalyzer (Hitachi 7600, Hitachi, Tokyo, Japan). Glycated

FIGURE 2 | Flowchart of the study design. In step 1 of parameter set

selection, stepwise logistic regression, receiver operating characteristic curve,

and hypothesis testing were used jointly for preselection, and the final set was

determined from all possible combinations. In step 2 of model construction

and validation, the logistic regression (LR) model was constructed using the

optimal parameter set and was compared with GIB-4 and non-alcoholic fatty

liver disease fibrosis scores on the discovery set. Then, the LR model was

validated on the validation sets. Its independence from possible confounders

was evaluated. Its performances were compared to those of other machine

learning methods. In step 3, we developed a web tool for fast applications.
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hemoglobin (HbA1c) was estimated by a high-pressure liquid
chromatography analyzer (HLC-723 G7, Tosoh Corporation,
Japan). Detailed sample collection and test information for the
validation sets can be found in the original reports (23, 24).

Model Construction and Validation
Marker Selection
Biological markers are characteristics that are objectively
measured and evaluated as indicators of normal biological
processes, pathogenic processes, or pharmacologic responses to
a therapeutic intervention (26). Marker selection is carried out
to eliminate irrelevant or redundant markers (features) and
select key features that are truly relevant to the study aim.
This step is important to reduce the number of features and to
simplify a subsequentmodel construction. In this study, two steps
were taken for marker selection. First, three methods, including
stepwise logistic regression, receiver operating characteristic
curve analysis, and hypothesis testing [Student’s t-test for
normal parameters, Wilcoxon–Mann–Whitney test for non-
normal parameters, and chi-square test or Fisher’s exact test (if
the expected count is <5 in contingency tables) for categorical
parameters] were applied separately for all parameters. The
parameters that met two or more conditions (auROC > 0.6,
stepwise logistic regression p < 0.05, or hypothesis testing p
< 0.05 between early and advanced fibrosis) were screened out
for further selection. Second, all possible combinations among
these selected parameters were used to construct numerous LR
models. The final optimal parameter set was determined by
balancing the number of parameters and themodel performances
(primarily based on the value of auROC + auPR). The design of
our two-step strategy was advanced and effective. The first step
reduced the data size and simplified the problem. The second
step is time-consuming but necessary, as it is not unusual that
a model with fewer parameters performs better than that with
more parameters, probably due to the complicated synergistic

and competitive relationships among parameters. All these were
conducted on the discovery set.

Model Construction and Validation
Based on the optimized parameters, an LR model was established
on the full discovery set to differentiate early and advanced
fibrosis (S0–2 vs. S3–4). The performances of the LR predictive
score were evaluated by ROC and PR curve, auROC, auPR,
accuracy, F1 value, and sensitivity (when specificity is 0.8)
and were compared with FIB-4 and NFS. The ROC curve is
a comprehensive method reflecting sensitivity and specificity.
The PR curve is a comprehensive method reflecting recall and
precision. auROC and auPR are the area values under these
curves. The larger the area is, the better the classification
performance. We also employed Wilcoxon tests and box plots
to compare FIB-4, NFS, and LR scores in early vs. advanced
fibrosis. These results were further validated in two independent
validation sets.

To estimate the independence of the LR model on potential
confounders, we further applied LR to the predictive score of
the model and five parameters that were significantly different
between early and advanced fibrosis but were not used in LR
model construction.

Considering the good performance of machine learning
methods in our previous studies, we constructed an RF and a GB
model using the optimal parameter set (with default parameter
settings) and compared their performance with that of our
LR model.

Code, Data, and Web Tool Availability Statement
R (v 4.0.2) was used for data analysis and figure plotting in this
study. The LR, RF, and GB models were built by the stats (v
4.0.2), randomForest (v 4.6–14), and gbm (v 2.1.8) packages,
respectively. The data sets and code for result generation

FIGURE 3 | Receiver operating characteristic curves (A) of the logistic regression (LR) model (purple), FIB-4 (gray), and non-alcoholic fatty liver disease fibrosis scores

(NFS) (yellow) and boxplot (B) of LR, FIB-4, and NFS scores when differentiating S0–2 vs. S3–4 on the discovery set. P-values were calculated using the Wilcoxon test.
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are accessible at https://github.com/chentianlu/LiveFbr. A web-
based tool, LiveFbr, has also been developed to provide fast
access to our diagnosis system (https://metabolomics.cc.hawaii.
edu/software/LiveFbr/, Figure 1).

Definitions
The formula of FIB-4 was age × AST (IU/L)/[PLT (×109/L) ×√
ALT (IU/L)] (8). The formula of NFSwas−1.675+ 0.037× age

(years)+ 0.094× BMI (kg/m2)+ 1.13×DM/IFG (yes= 1, no=
0)+ 0.99×AST/ALT ratio−0.013× PLT (×109/L)−0.66×ALB
(g/dl) (9). The AST/ALT ratio was calculated as AST (IU/L)/ALT
(IU/L). The AST/PLT ratio was calculated as AST (IU/L)/PLT
(×109/L). The F1 score of a group was calculated as 2PR/(P +
R), where P and R were the precision and the recall of the group,
respectively. The accuracy was calculated as (true positive+ true
negative)/all samples.

RESULTS

Basic Characteristics of the Discovery Set
A total of 540 biopsy-proven NAFLD patients were involved in
model discovery. Two-thirds of the participants, 391 (72.41%),
had early fibrosis, and the remaining one-third, 149 (27.59%),
were diagnosed with advanced fibrosis. Generally, patients with
advanced fibrosis were older, with a higher proportion of females,
and had impaired fasting glycemia or the presence of diabetes.
In addition, their AST, FBG, GGT, HbA1c, AST/ALT ratio, and
AST/PLT ratio levels were higher, and the PLT and TG levels were
lower than those of early fibrosis patients (more details are listed
in Table 1).

Optimal Parameter Set Selection
Two steps were conducted for optimal parameter set selection
using all the samples in the discovery set (step 1 in Figure 2).
After the first step, 14 of the 18 parameters were preselected by
logistic regression, ROC, and hypothesis testing: AST, AST/ALT
ratio, AST/PLT ratio, DM/IFG, FBG, GGT, PLT, TG, ALT, BMI,
LDL, HbA1c, and sex. In the second step, all possible parameter
combinations among them were used to construct numerous
LR models. Eight parameters were finally selected, balancing the
number of parameters used and the values of auPR + auROC,
accuracy, and F1 score (Supplementary Figure 1). The optimal
parameter set consisted of age, ALT, BMI, DM/IFG, FBG, GGT,
TG, and AST/PLT ratio.

Model Construction
An LRmodel was constructed to differentiate early and advanced
fibrosis among NAFLD patients using the optimal parameter
set on the full discovery set. According to the LR model, the
LR score could be obtained as follows: −5.26952 + 0.041784
× age −0.01357 × ALT + 0.043788 × BMI + 0.574987 ×
DM/IFG + 0.089424 × FBG + 0.001741 × GGT −0.490716
× TG + 7.738743 × AST/PLT ratio. As Figure 3A and Table 2

show, the auROC and auPR values of our model (0.82 and 0.63,
respectively) were higher than those of FIB-4 (0.79 and 0.58)
and NFS (0.75 and 0.49), indicating the superiority of the LR
model relative to FIB-4 and NFS. We further assessed the group
differences in the LR model-generated predictive score and the
FIB-4 andNFS scores. All the scores were significantly (Wilcoxon
test, p < 0.05) different between early and advanced fibrosis
(Figure 3B). The detailed classification performances of the LR
model, FIB-4, and NFS are listed in Table 2. As expected, most

TABLE 2 | Performances of the logistic regression (LR) model, FIB-4, and non-alcoholic fatty liver disease fibrosis scores (NFS) in the diagnosis of advanced liver fibrosis.

Method Accuracy F1_S0-2 F1_S3-4 auROC auPR Specificity Sensitivity

Discovery set

LR model 0.78 0.86 0.46 0.82 0.63 0.80 0.69

FIB4_1.45 0.73 0.81 0.52 0.79 0.58 0.80 0.58

FIB4_3.25 0.75 0.85 0.20 0.79 0.58 0.80 0.58

NFS_-1.455 0.68 0.74 0.57 0.75 0.49 0.80 0.47

NFS_0.676 0.74 0.84 0.19 0.75 0.49 0.80 0.47

Validation set 1

LR model 0.84 0.90 0.60 0.89 0.62 0.80 0.81

FIB4_1.45 0.82 0.88 0.60 0.85 0.60 0.80 0.71

FIB4_3.25 0.79 0.88 0.11 0.85 0.60 0.80 0.71

NFS_-1.455 0.77 0.84 0.59 0.85 0.57 0.80 0.74

NFS_0.676 0.80 0.88 0.17 0.85 0.57 0.80 0.74

Validation set 2

LR model 0.74 0.82 0.56 0.71 0.61 0.80 0.50

FIB4_1.45 0.65 0.75 0.43 0.63 0.54 0.80 0.38

FIB4_3.25 0.69 0.81 0.12 0.63 0.54 0.80 0.38

NFS_-1.455 0.46 0.45 0.48 0.59 0.39 0.80 0.25

NFS_0.676 0.65 0.78 0.15 0.59 0.39 0.80 0.25

FIB4_1.45 and FIB4_3.25 indicate FIB-4 with different thresholds of 1.45 and 3.25. NFS_-1.455 and NFS_0.676 indicate NFS with different thresholds of −1.455 and 0.676.
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FIGURE 4 | Receiver operating characteristic curves (A,C) of the logistic regression (LR) model (purple), FIB-4 (gray), and non-alcoholic fatty liver disease fibrosis

scores (NFS) (yellow) and boxplot (B,D) of LR, FIB-4, and NFS scores when differentiating S0–2 vs. S3–4 on the validation sets. P-values were calculated using the

Wilcoxon test.

TABLE 3 | Results of logistic regression (LR) with the LR score only and the LR score + possible confounders.

Dataset Parameters B Wald OR (95% CI) P-value

Discovery set LR score 1.000 87.602 2.718 (2.225–3.384) <0.001

Discovery set LR score + possible confounders 0.981 50.612 2.667 (2.054–3.529) <0.001

Validation set 1 LR score 1.266 25.085 3.545 (2.258–6.120) <0.001

Validation set 1 LR score + possible confounders 1.057 7.204 2.879 (1.387–6.554) 0.007

Validation set 2 LR score 0.903 9.159 2.466 (1.461–4.739) 0.002

Validation set 2 LR score + possible confounders 1.139 5.679 3.124 (1.307–8.717) 0.017

Possible confounders were aspartate transaminase (AST), glycated hemoglobin, platelet, AST/alanine transaminase ratio, and sex.

of the criteria of the LR model were the highest compared with
those of FIB-4 and NFS.

Model Validation
The LR model obtained by the discovery set was validated
in two independent validation sets. Validation set 1 consisted

of 147 NAFLD patients, 116 with early fibrosis and 31 with
advanced fibrosis, and validation set two consisted of 97
NAFLD patients, 65 with early fibrosis, and 32 with advanced
fibrosis. More specific demographic and biological information
is available in Supplementary Table 1. As expected, the LR
model performed best with the highest auROC, auPR, and
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sensitivity (when specificity was 0.8) of 0.89, 0.62, and 0.81,
respectively, for validation set 1 and 0.71, 0.61, and 0.50,
respectively, for validation set 2 (Figures 4A,C and Table 2).
Moreover, the group differences of the LRmodel were apparently
more significant than those of the NFS and FIB-4 in both
validation sets (Figures 4B,D). In summary, the LR model was
consistently superior to FIB-4 and NFS for early and advanced
fibrosis classifications.

Model Independence Evaluation
The 14 parameters selected by step 1 were distinctly different
between early and advanced fibrosis in the discovery set and were
possible confounders for fibrosis staging. Among them, AST,
HbA1c, PLT, AST/ALT ratio, and sex were not chosen in our LR
model. Hence, logistic regression was applied to the independent
assessment of the LR score for these confounders (Table 3). The
crude OR (95% CI) of the LR score was 2.718 (2.225–3.384)
in the discovery set, 3.545 (2.258–6.120) in validation set 1,
and 2.466 (1.461–4.739) in validation set 2, with all p < 0.05.
After adjusting for AST, HbA1c, PLT, AST/ALT ratio, and sex,
the LR score was still statistically significant (p < 0.05) in the
discovery and validation sets, indicating the independence of
our model.

Performance Comparison With Other
Machine Learning Methods
Two machine learning models, an RF and a GB model, were
constructed using the optimal parameter set and the discovery
set and then tested by the validation sets. The auROC, auPR,
and sensitivity (when specificity was 0.8) of the GB model were
0.83, 0.63, and 0.70, respectively, for the discovery set, 0.83, 0.54,
and 0.74, respectively, for validation set 1, and 0.71, 0.60, and
0.47, respectively, for validation set 2. The auROC, auPR, and
sensitivity of the RF model were 0.83, 0.76, and 0.68, respectively,
for the discovery set, 0.89, 0.59, and 0.81, respectively, for
validation set 1, and 0.69, 0.58, and 0.41, respectively, for
validation set 2. Comparatively, the LR model had better or
comparable auROC, auPR, and sensitivity values than the GB and
RF models in the discovery and validation sets.

DISCUSSION

NAFLD has become a significant health problem worldwide;
therefore, accurate and reliable assessment of the severity in
the NAFLD population is increasingly crucial for treatment
decisions and long-term monitoring. A fundamental purpose
in the control and management of NAFLD patients is to
distinguish those who are more likely to develop significant
fibrosis as recently emphasized in the American Association for
the Study of Liver Diseases practice guidance, the European
Association for the Study of the Liver guidelines, and the
Chinese Society of Hepatology guidelines (13, 27, 28). Attempts
to establish non-invasive approaches for the stratification of
NAFLD patients have yielded various diagnostic panels, indices,
and imaging modalities (8, 29, 30) that might be applied in lieu of
liver biopsy.

In this study, an LR model was constructed to differentiate
early and advanced fibrosis. First, three independent data sets
with 784 participants from major ethnic groups in Southeast
Asia (Chinese, Malay, and Indian) were used to assess the
performance of our model. Our LR model shows admirable
diagnostic performance in the discovery and validation sets,
although the result in validation set 2 was slightly inferior to
that in validation set 1. We carefully compared these data sets
and believe that the following differences might lead to different
performances: (1) In original studies, validation set 1 was
collected for a fibrosis study, and validation set 2 was collected
for a steatosis study. The collection criteria for validation set 1
weremore similar to those of the discovery set; (2) The patients in
validation set 2 were generally older than those in the discovery
set and validation set 1; (3) The proportion of patients who
had DM or IFG in validation set 2 (no/yes = 10:87) were quite
different from that in the discovery set (233:307) and validation
set 1 (67:80, Table 1 and Supplementary Table 1). Second,
compared with the markers included in FIB-4 and NFS, three
additional parameters, FBG, GGT, and TG, were used in our
new model. These markers are routine medical test parameters
and are also used in other serological diagnostic tools for staging
fibrosis or for diagnosing steatosis in patients with NAFLD.
Thus, the performance improvement did not come at the cost
of the clinical burden. Third, the two-step parameter selection
strategy is advanced and practical. In addition to the commonly
used difference analysis, all possible combinations of parameters
were involved. This is a time-consuming but necessary step
to ensure the best solution. Fourth, the performance of our
LR model was evaluated comprehensively. Its independence
from other parameters was examined. Its diagnostic capability
was comparable with some machine learning methods,
although LR is sometimes also categorized as a machine
learning method.

The limitations of our study include the following: (1) It
is well-known that virus infection, NAFLD, heavy drinking,
and abnormal immune systems are different etiologies of
fibrosis. The patterns of blood parameters and the manner
of fibrosis progression in NAFLD patients differ from those
in patients with other etiologies. Therefore, our LR model
cannot be used directly on other CLD patients. Investigations
into different patterns of blood test parameters among CLD
patients of various etiologies and the development of general
diagnostic tools are ongoing; (2) Longitudinal studies are
necessary to further validate the effectiveness and stability of
the current findings as well as cross-sectional studies; (3) Our
model was validated only by samples from Southeast Asia. Its
performances in different data sets were slightly different. Further
validation in more and diverse populations is necessary prior to
clinical application.

In summary, we constructed a scoring model for the
distinction of advanced fibrosis in NAFLD patients. We
validated its overall superiority to existing indices and its
independence from possible confounders in two independent
data sets. The online tool LiveFbr was developed, through
which NAFLD patients can obtain auxiliary results of their liver
fibrosis severity.
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