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Pruritus represents one of the most common symptoms in dermatology and general

medicine. Chronic pruritus severely impairs the quality of life of affected patients.

During the last two decades a number of modulators and mediator of pruritus

have been identified. Recently, Interleukin (IL)-31 and its receptor complex attracted

significant interest, as clinical phase two studies demonstrated therapeutic efficacy of

the neutralizing IL-31 receptor A (IL-31RA) antibody nemolizumab in patients suffering

from atopic dermatitis or prurigo nodularis. IL-31 has also been shown to play relevant

roles in allergic contact dermatitis, urticaria, mastocytosis, allergic rhinitis and asthma.

Here, we summarize the current knowledge of the novel cytokine IL-31 and its receptor

regarding cellular origin, regulation, signaling pathways and their involvement in biological

processes such as pruritus, neuronal growth, inflammation, barrier dysfunction and

tissue remodeling.
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INTRODUCTION

Pruritus represents an important archaic sensation, and its evolutionary role is to sensitize the
host to a distinct body site in order to remove invading parasites or plant matter. Chronic
pruritus severely impairs the quality of life of affected patients and represents a significant unmet
medical need. In 2004, Dillon et al. first demonstrated the involvement of IL-31 signaling in the
development of pruritus and atopic dermatitis-like skin lesions (1). Subsequently an emerging body
of evidence supported a central role of IL-31 and its receptor in bridging the immune system with
neurons, epithelial surfaces and connective tissue. Recently, phase two clinical trials demonstrated
therapeutic efficacy of the neutralizing IL-31RA antibody nemolizumab in patients suffering from
atopic dermatitis or prurigo nodularis (2, 3). In addition, IL-31 also plays a role in TH2-driven
and autoimmune diseases such as contact dermatitis, urticaria, mastocytosis, allergic rhinitis; but
also systemic sclerosis, dermatomyositis, and lupus erythematosus (4–12). Here, we summarize the
current knowledge on the novel cytokine IL-31 and its receptor regarding cellular origin, regulation,
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signaling pathways and their involvement in biological processes
such as pruritus, neuronal growth, inflammation, barrier
dysfunction and tissue remodeling.

INTERLEUKIN-31

IL-31 represents a member of the IL-6 family of cytokines, which
share a four-helical structure and the majority signals through
receptor complexes containing glycoprotein 130 (gp130). This
family consists of nine members including IL-6, IL-11, ciliary
neurotrophic factor (CNTF), leukemia inhibitory factor (LIF),
oncostatin M (OSM), cardiotrophin 1 (CT-1), cardiotrophin-like
cytokine (CLC), IL-27 and IL-31. Members of the IL-6 family
are predominantly expressed under proinflammatory conditions
and realize pleiotropic functions in immune-related processes
(13). The IL31 gene is located on chromosome 12q24.31 (1).
Recent studies support the production of IL-31 in a variety
of leukocyte subsets including T cells, eosinophils, basophils,
mast cells, monocytes and dendritic cells. However, it is widely
accepted that effector memory T cells with a TH2 phenotype
represent the major source of IL-31 (4, 14–18). Interestingly,
findings linking IL-31 expression with patients suffering from
Dedicator of cytokinesis protein 8 (DOCK8) deficiency-related
hyper IgE syndrome pointed to an important upstream
regulation pathway. DOCK8 loss-of-function mutations lead to
a combined immunodeficiency with elevated serum levels of
IgE, eosinophilia, decreased number of B and T cells as well as
severe atopic dermatitis with increased IL-31 expression (19).
Subsequent in vitro- as well as in vivo-studies demonstrated
that DOCK8 is a negative regulator of the nuclear translocation
of Endothelial PAS domain-containing protein 1 (EPAS1). This
function is dependent of STK4 (MST1), a serine threonine kinase
involved in apoptosis (20, 21). Knockdown of the MST1 gene
led to an increased translocation of EPAS1 to the nucleus in
alignment with DOCK8 knockout models showing elevated IL-
31 expression (21). Consequently, clinical symptoms of patients
with STK4 (MST1) mutations leading to deficiency at the
protein level are resembling those with DOCK8 deficiency
(22). EPAS1 is regulated by IL-4-mediated signal transducer
and activator of transcription 6 (STAT6) signaling in CD4+ T
cells (23). Jabara et al. reported that DOCK8 is constitutively
associated with myeloid differentiation primary response protein
(MyD88), an adaptor protein of Toll-like receptors (TLR)
(24). Hence it is interesting to speculate whether microbes
such as S. aureus may influence IL-31 production through
TLR engagement.

Interleukin-31 Receptor
Within the IL-6 family IL-31 is special, since it shares the
four helical structure but does not signal through a receptor
complex containing gp130. Instead, it binds to a heterodimeric
receptor composed of the IL-31RA chain and the oncostatin
M receptor (OSMR) β chain. The IL31RA gene is located
on chromosome 5q11.2, 24 kb downstream of IL6ST (25, 26).
From a phylogenetical view, IL-31RA is paralogous to gp130,
although they share only 28% amino acid identity. It has five

fibronectin type III (FNIII)-like domains and shares the WSxWS
motif and the conserved cysteines with other type I cytokine
receptors within the cytokine binding domain [as reviewed in
(27)]. Horejs-Hoeck et al. showed that STAT1 is a relevant
transcription factor to activate the promoter region of the
IL31RA gene following IFN-γ stimulation and this regulation
pathway was confirmed in several studies and cell types (28).
Cytokine effects are based on their capacity to assemble receptor
complexes to bring the associated kinases in spatial proximity for
phosphorylation. Therefore, the expression pattern of relevant
receptor chains in target cells determines their ability to respond
to specific cytokine signals. The OSMRβ chain is considered
to be widely expressed (29). Hence the limiting factor for IL-
31 signal transduction appears to be the expression of the IL-
31RA chain. Recent studies demonstrate that multiple leukocyte
subsets, as well as epithelial and stromal cells express IL-
31RA in steady state or more importantly under activated
conditions (14, 17, 28, 30, 31). At first, the expression of IL-
31RA on itch-conducting dorsal root ganglia (DRG) neurons
attracted significant attention (4). Non-immune cells such as
keratinocytes, fibroblasts and a distinct subset of DRG neurons
also express and signal via IL-31RA (18, 31, 32). Binding of
IL-31 to the receptor complex leads to phosphorylation of
STAT1, STAT3 and STAT5 via the associated Janus kinase (JAK)
1 and JAK2 (33, 34). Besides JAK/STAT signaling the IL-31
receptor complex activates MEK/ERK and PI3K/Akt pathways
as well as the JNK pathway (33, 35–37). Negative feedback
mechanisms of IL-31RA signaling include suppressor of cytokine
signaling (SOCS)1- and SOCS3-dependent inhibition of STAT3
activation (34). Interestingly, OSMR is a shared subunit of the
receptor complexes of IL-31 and OSM, although their biological
functions differ. While IL-31 is involved in many TH2-driven
diseases as mentioned above, OSM plays an important role in
hematopoiesis and cancer development (38). It will be of interest
to elucidate the distinct roles of IL-31 and OSM. Taken together,
the diverse distribution of its receptor enables IL-31 to target
the nervous system, immune functions, epithelial surfaces and
stromal cells.

Nervous System
Within the cytokine superfamily IL-31 has a unique position,
because it bridges the gap between the immune and the
peripheral nervous systems (see Figure 1). During recent years,
several independent studies confirmed the expression and
signaling of IL-31RA and OSMRβ in a subset of murine as well as
human DRG neurons (4, 18, 39–41). These findings stimulated
further research on IL-31 targeting sensory neurons. Cevikbas
et al. demonstrated in murine behavioral studies that IL-31
induces itch but not pain and mediates its effects independent
of mast cells by activating the ion channels TRPV1 and TRPA1.
In DRG neurons IL-31 induces intracellular Ca2+ mobilization
as well as STAT3 and ERK phosphorylation (18). Following
the activation of afferent DRG neurons, neurotransmitters
such as natriuretic polypeptide b (Nppb) forward the signal
further to the dorsal horn of the spinal cord, where the
gastrin-releasing peptide receptor (Grpr) system is subsequently
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activated transmitting the signal further to projection neurons
that transport the information to the brain (42–45). Recently,
Meng et al. showed that IL-31 stimulation increased Nppb in
DRG neurons in vitro and in vivo and induced soluble N-
ethylmaleimide-sensitive-factor attachment receptor (SNARE)–
dependent brain natriuretic peptide (BNP) release (46). In
pharmacological studies, Ma et al. demonstrated that activation
of the spinal neuropeptide Y system dampens IL-31-induced
scratching behavior through activation of neuropeptide Y2

receptor on DRG neurons (47). Notably, noxious signals activate
neuropeptide Y interneurons, and this may explain, how the
infliction of pain, e.g., through scratching, heat, cold, etc., may
reduce itch perception in atopic dermatitis patients. Next to the
initiation of pruritus signals, Feld et al. recently demonstrated
that IL-31 also induces a distinct transcriptional program in
sensory neurons, leading to nerve elongation and branching
both in vitro and in vivo. Hence the increased density of
neuronal networks in the skinmay help us understandwhy atopic
dermatitis patients experience increased sensitivity to minimal
stimuli inducing sustained itch (48).

Immune Functions
Since the IL-31 receptor heterodimer is expressed on a variety of
different leukocyte subsets including monocytes, macrophages,
dendritic cells, eosinophils, mast cells and basophils, it is
interesting to have a closer look at immune functions that
are targeted by IL-31. Recently, Raap et al. demonstrated that
basophils upon IL-31 stimulation do not release histamine but
secrete large amounts of IL-4 and IL-13 (14). This is of particular
importance since IL-4 is a critical factor for the differentiation
of T cells into a TH2 phenotype and the source of IL-4 in
this dendritic cell-driven process is still debated (49, 50). Thus,
IL-31 secretion may serve as an early upstream signal during
the development of type 2 skin inflammation. In eosinophils
and dendritic cells IL-31 induced a set of proinflammatory
cytokines and chemokines including TNF-α, IL-1β, IL-6, CXCL1,
CXCL8, CCL2 and CCL5 and CCL22 (16, 51). Through these
molecules, IL-31 may recruit neutrophils (CXCL1, CXCL8),
dendritic cells (CCL2), TH1 (CCL5) and TH2 (CCL22) cells to
sites of inflammation or promote angiogenesis (CXCL1, CXCL8)
and tissue remodeling (CCL2, IL-6) (52, 53). On the other

FIGURE 1 | IL-31 signaling bridges the gap between the immune system, neurons and epithelial surfaces. During T cell activation DOCK8 dissociates from EPAS1

enabling EPAS1 to translocate to the nucleus. Within the nucleus EPAS1 forms a complex with SP1 initiating IL31 transcription. TH2 cells are a major source of IL-31

production. In IL-31RA/OSMRß-expressing sensory neurons IL-31 induces the activation of ion channels (TRPV1, TRPA1) and transmits pruritus signals via BNP to

the CNS. Moreover, IL-31 stimulates neuronal growth and the branching of sensory nerves. Furthermore, IL-31 targets immune cells such as mast cells, eosinophils,

basophils and monocytes/dendritic cells to induce inflammation. Within the skin, IL-31 impairs keratinocyte differentiation as well as barrier function and in turn

activates keratinocytes to produce cytokines, chemokines and pruritus mediators amplifying skin inflammation and itch. Interestingly, IL-31 also interacts with dermal

fibroblasts initiating tissue remodeling by inducing collagen production and cytokine as well as chemokine expression. Hence, IL-31 signaling exerts pleiotropic effects

beyond pruritus.
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hand, cytokines such as TNF-α, IL-1β, and IL-6 may directly
affect T cell, B cell and dendritic cell functions as well as
activate surrounding stromal or epithelial cells (54). Hence, IL-
31 signaling is able to amplify inflammation via different self-
reinforcing loops.

Epithelial Surfaces
In 2004, Dillon et al. demonstrated for the first time the
expression of IL-31RA and OSMRß in epidermal keratinocytes
and IL-31 stimulation resulted in chemokine (CXCL1, CCL1,
CCL4, CCL17, CCL19, CCL22, and CCL23) expression (1).
Subsequently, a number of studies confirmed IL-31 receptor
expression on keratinocytes and showed downstream signaling
leading to STAT3 and ERK phosphorylation. Recent findings
in 2D and 3D keratinocyte culture systems unravel, that IL-
31 stimulation also modulates keratinocyte differentiation and
disrupts epithelial barrier function (55–57). Cornelissen et al.
demonstrated that IL-31 induced cell cycle arrest in keratinocytes
and inhibited proliferation (55). Moreover, IL-31 elicited a
differentiation defect with decreased filaggrin expression and
impaired barrier functions facilitating transepidermal allergen
penetration in organotypic keratinocyte cultures (55–57). Next
to the production of chemokines, IL-31-stimulated keratinocytes
contribute to skin inflammation through the expression of
key proinflammatory mediators including IL-1α, IL-1β, IL-
6, S100A7, S100A8, S100A9, β-defensin-2, β-defensin-3 (57).
Moreover, IL-31-induced BNP release from sensory neurons may
activate keratinocytes to produce proinflammatory cytokines
and chemokines (46). Hence, inflammation circuits between
epithelial surfaces, nerves and immune cells are connected and
amplified via IL-31 signaling.

More recently, another keratinocyte-driven circuit
potentially amplifying pruritus has been proposed. Andoh
et al. demonstrated that intradermal injection of IL-31
induced thromboxane synthase in epidermal keratinocytes
and significantly increased the concentration of thromboxane
B2, a metabolite of the pruritus mediator thromboxane A2

(58). Moreover, keratinocytes produced the pruritus mediator
leukotriene B4 (LTB4) following IL-31 treatment and the LTB4
receptor antagonist CMHVA as well as the 5-lipoxygenase
inhibitor, zileuton, suppressed the scratching behavior of mice
intradermally injected with IL-31 (59).

Thus, next to the direct engagement of peripheral sensory
neurons, IL-31 may sustain pruritus via keratinocyte activation
and the release of other pruritus mediators (58–60). Notably,
besides epidermal keratinocytes, bronchial and gut epithelial cells
have been shown to be a target of IL-31 (61, 62).

Tissue Remodeling
Given the pleiotropic functions of IL-6 family members it
has been reasonable to also investigate the role of IL-31 in
tissue remodeling. Several studies report a direct effect of IL-
31 on fibroblasts (17, 63). IL-31 signaling resulted in STAT3
phosphorylation and the activation of ERK, JNK and AKT
(17). It is important to note that pro-fibrotic processes often
follow STAT3 signaling pathways representing a considerable
checkpoint for tissue fibrosis (64). Indeed, high levels of IL-
31 were reported in plasma, fibrotic skin and lung lesions of
systemic sclerosis (SSc) patients (10). Moreover, IL-31RA was
upregulated in fibrotic skin and lung fibroblasts. Gene expression
analysis of IL-31-treated dermal fibroblasts revealed a total of
561 differentially expressed genes with 200 genes involved in

FIGURE 2 | Disease associations of IL-31 signaling. The circle diameter of each item correlates to the number of disease-associated publications listed in PubMed

(pubmed.ncbi.nlm.nih.gov). The green color of an item corresponds to the therapeutic efficacy in clinical trials of targeting IL-31 signaling. The distance of an item from

the center indicates whether IL-31 signaling hypothetically could serve as a therapeutic target.
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processes such as cell proliferation and growth. Furthermore,
the authors showed that IL-31 stimulated dermal fibroblast
activated STAT3 and PI3K/Akt pathways and induced collagen
I production (10). Several expression studies in fibroblasts also
support that IL-31 stimulation promotes inflammation and tissue
remodeling through the induction of IL-6, IL-16, IL-32, CCL2,
CCL13, CCL15, CXCL1, CXCL3, CXCL8, and CXCL10 and
matrix metalloproteinases (MMP-1, MMP-3, MMP-7 and MMP-
25) (63).

Taken together, IL-31 represents a master regulator of
neuroimmune inflammation and bridges the gap between
immune cells, the nervous system and epithelial tissues.

DISCUSSION

During recent years a variety of diseases have been associated
with IL-31 signaling (see Figure 2). An initial focus was directed
on processes accompanied with pruritus and following, at least
partly, concepts of type 2 inflammation. These included atopic
dermatitis, allergic contact dermatitis, urticaria, mastocytosis,
allergic rhinitis and asthma (4–9). Given the role of IL-
31 signaling in the development of itch it is interesting
to speculate whether IL-31 may also be involved in the
stimulation of sneezing, coughing or bronchial hyperreactivity.
In this context, other epithelial surfaces such as the gut and
conditions such as irritable bowel syndrome also come to mind.
STAT1 related regulation of IL-31RA may link this pathway
also with autoimmune diseases such as systemic sclerosis,
dermatomyositis and lupus erythematosus (10–12). A subset of
affected patients experience severe pruritus but IL-31 signaling
in autoimmune inflammation may also facilitate fibrosis and
amplify inflammatory circuits. These are interesting aspects that
need to be further explored in the future. Among autoimmune

skin diseases, bullous pemphigoid has a unique position
since patients develop autoantibodies against hemidesmosomes
(BP180, BP230), eosinophilia, urticarial skin lesions, blisters and
suffer from severe pruritus. A number of studies demonstrated
the expression of IL-31 and its receptor in this condition and
bullous pemphigoid appears to be a very interesting candidate
for clinical studies targeting IL-31 signaling (65–68). Early
on IL-31 expression and serum levels have been investigated
in patients suffering from cutaneous T cell lymphoma (69–
71). Notably, an increasing body of literature links IL-31 with
malignant diseases such as endometrial carcinoma, lung cancer,
myeloproliferative disorders, mastocytosis, cutaneous T cell
lymphoma and follicular B cell lymphoma (7, 69, 71–76). The role
of IL-31 in malignant diseases remains largely obscure but this
aspect is worth to closely follow in the future. Taken together, IL-
31 is a neuroimmune cytokine and IL-31RA signaling represents
a master regulator of inflammation that bridges the gap between
immune cells, the nervous system and epithelial tissues.
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