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INTRODUCTION

Precision medicine aims to tailor healthcare to sub-groups of patients identified by common
characteristics instead of a one-approach-fits-all paradigm (1–5). By creating prognostic machine
learning models based on patient characteristics, we can stratify patients into multiple risk groups,
allowing patients in the low(er) risk group to be treated less aggressively, while high(er) risk groups
may be treated more aggressively.

When reporting the performance of a binary classifier (such as a machine learning model or a
positive/negative lab test with a classification threshold), a pervasive metric in medical literature
is the area under the receiver operating characteristic curve (AUROC, or more commonly, AUC)
(6, 7), in addition to measures derived from the confusion matrix such as sensitivity, specificity,
positive predictive value (PPV), and negative predictive value (NPV).

When assessing the association between a binary patient characteristic, say the presence of
a comorbidity such as heart disease, and a binary patient outcome, say death within a certain
follow-up period, a ubiquitous metric in medical literature is the odds ratio (OR) (8). The odds
ratio is defined as the ratio of the odds of the outcome in the presence and the absence of that
characteristic. The risk ratio (RR), which is the ratio of the probabilities rather than the odds used
in the OR, is arguably a more intuitive and useful metric. If the outcome is rare (<<1%), the OR is
approximately equal to the RR (9, 10). Several publications exist explaining the rationale for using
OR despite its limitations (11–13). The strongest reasons for using OR are: (1) clinical data often
makes it impossible to calculate RR, making OR the practical choice, and (2) OR can be easily
calculated when using logistic regression.

In this paper, we aim to prove that when using a binary patient characteristic for patient
stratification, it is essential to include metrics in addition to OR to provide a complete picture;
we do not advocate replacing OR, but supplementing it. While the limitations of OR compared to
RR have been discussed in the literature (14–16), in this work, we illustrate their interdependence.
Furthermore, using a deterministic simulation, we elucidate the relationship betweenOR and AUC,
providing insight into why reporting OR without AUC can be misleading. We do not suggest that
AUC is the most important metric. The reason we chose AUC for performing our simulations is
that unlike sensitivity/specificity and PPV/NPV, it is not a pairedmetric, and thus easy to use in 2-D
figures (i.e., OR and AUC), whereas paired metrics would require 3-D figures (e.g., OR, PPV, NPV).

DESCRIPTION OF SIMULATIONS

Two experiments were performed. In the first experiment, the simulated patient cohort included
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non-exposed and exposed groups, each of size 1,000. Five levels
of disease incidence in the non-exposed group (1–5%) were
investigated. The RR was varied from 1 to 10 in increments of
0.1. Four cohorts were defined: diseased and non-exposed (DN),
healthy and non-exposed (HN), diseased and exposed (DE),
healthy and exposed (HE). The odds ratio is then given by:

OR = (DE/DN)/(HE/HN)

The second experiment was similar to the first, except that the
non-exposed groupwas of size 10,000, and the exposed groupwas
of size 500 (i.e., 20 times smaller than the non-exposed group).
In terms of real-world counterparts, the first experiment is
similar to a randomized control trial where both the experimental
and control arms have 1,000 patients. The second experiment
is analogous to a situation where a small percentage of the
total patient cohort has a rare condition that impacts patient
outcome. In both experiments, the exposure in the simulation is
naturally binary, rather than a count distribution that has been
dichotomized as is the case for Sroka et al. (17). The software
used for the simulation was MATLAB R2019a (MathWorks,
Natick, MA) and the perfcurve function was used to calculate the
AUC, with exposure being the feature of interest (0 representing
non-exposed and 1 representing exposed).

To demonstrate the negative impact (with respect to
predictive modeling) of collecting naturally continuous features
as dichotomous, we included a brief study using real world
COVID-19 data from a recent publication (18). The training
set included 1,810 patients from Bergamo and Pavia; the test
set had 381 patients from Rome. We used two features (age
and lactate dehydrogenase level during admission) to predict in-
hospital mortality. When treating the two features as continuous
(like the original publication), we used a Random Forest classifier
(with the MaxNumSplits parameter set to 5 to limit overfitting).
When treating the two features a binary (age >65 years and LDH
>280 U/L), we used a linear discriminant. We compared the
AUC of these two models on the test set, using the DeLong test to
establish statistical significance.

RESULTS OF SIMULATION

Figure 1 (left panels) shows the relationship between RR and OR
as the disease incidence in the non-exposed group increases from
1% (blue) to 5% (green) for both experiments. For low values of
RR (<3), the five curves overlap, but for higher values of RR,
the divergence is striking; at an RR of 10, the OR varies between
11 for 1% disease incidence and 19 for 5%. Irrespective of the
ratio of non-exposed and exposed groups (1:1 for Experiment
1 or 20:1 for Experiment 2), the relationship between RR and
OR is unaffected, as expected from their definitions. The slight
jaggedness in the bottom-left plot is because of rounding effects
in the simulation.

Figure 1 (right panels) shows the relationship between OR
and AUC as the disease incidence in the non-exposed group
increases from 1% (blue) to 5% (green). The dependence on
disease incidence in the non-exposed group is less marked
for AUC-OR relationship than RR-OR relationship. However,

unlike the RR-OR relationship, the AUC-OR relationship differs
between the experiments. For example, for an OR of 10, the
AUC varies between 0.71 and 0.73 in Experiment 1, and between
0.61 and 0.64 in Experiment 2. For the same OR, as exposure
becomes less common in the cohort (1:1 for Experiment 1 vs.
20:1 for Experiment 2), the AUC decreases. Also, for the AUC-
OR relationship, the order of the curves is different in Experiment
1 (the 1% curve has lower values than the 5%) compared to
Experiment 2, where the order is reversed. Thus, disease incidence
in the non-exposed group and proportion of exposed patients in
the total cohort both impact the AUC-OR relationship, unlike
the RR-OR relationship which is independent of proportion of
exposed patients in the total cohort.

RESULTS FOR REAL-WORLD DATA

For age alone, in the total cohort (training + test), AUC was
0.78 (continuous) and 0.71 (binary). The optimum classification
threshold to maximize Youden’s Index (sensitivity+ specificity -
1) was 71 years. For LDH alone, in the total cohort, AUCwas 0.66
(continuous) and 0.57 (binary). The optimum threshold was 380
U/L. In both cases, we noticed large differences compared to the
pre-selected thresholds (65 years and 280U/L, respectively).With
the features combined, in the training set, the models achieved
AUC of 0.83 (continuous) and 0.74 (binary). In the test set, the
models achieved AUC of 0.84 (continuous) and 0.78 (binary), a
statistically significant difference (p= 0.006).

DISCUSSION

The use of OR is a valid starting point when investigating if
there is any association between a binary feature, say gender,
and a binary outcome, say overall survival after 5 years of
cancer treatment. However, the presence of such an association
should not be taken to mean that the feature can be used
as a predictor for the outcome. In this paper, we performed
two experiments, one where the binary feature is common
in the cohort (50% patients exposed), and another where the
binary feature is relatively rare in the cohort (4.76% patients
exposed). To illustrate why the incidence/prevalence of a binary
feature in the population has a massive impact on its predictive
performance, let us consider two numerical examples.

In example 1 (analogous to Experiment 1), DE = 140, HE =

60, DN= 60, HN= 140. In this case, the exposed group (140+60)
and non-exposed group (60+140) both have the same size. The
odds ratio is 5.44, and the AUC is 0.7. If we were to build a linear
discriminant classifier using just this feature, it would classify all
the exposed patients as diseased, and all the non-exposed patients
as healthy. Thus, the sensitivity would be 140/(140+60)= 0.7, as
would the specificity, balanced accuracy (mean of sensitivity and
specificity), PPV, and NPV.

In example 2 (analogous to Experiment 2), DE = 7, HE =

3, DN = 60, HN = 140. In this case, the exposed group (7+3)
is 20 times smaller than the non-exposed group (60+140). The
odds ratio is still 5.44, but the AUC is only 0.54. If we were to
build a linear discriminant classifier using just this feature, it
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FIGURE 1 | The top row summarizes Experiment 1, and the bottom row summarizes Experiment 2. Left: Relationship between RR and OR as the disease incidence

in the non-exposed group increases from 1% (blue) to 5% (green). Right: Relationship between OR and AUC as the disease incidence in the non-exposed group

increases from 1% (blue) to 5% (green).

would classify all the exposed patients as diseased, and all the
non-exposed patients as healthy. Thus, the sensitivity would be
7/(7+60) = 0.10, the specificity would be 140/(140+3) = 0.98,
and the balanced accuracy would be 0.54. The PPV would be
7/(7+3)= 0.7 and the NPV would be 140/(140+60)= 0.7.

If the goal is to use a binary feature for patient stratification,
it is essential to mention the predictive performance of
such a feature, including the metrics mentioned above.
Sensitivity and specificity are intrinsic to the classifier and
independent of prevalence. When it is necessary to account for
sensitivity/specificity as well as prevalence, PPV and NPV are
useful metrics. AUC and balanced accuracy values above 0.8
are routinely achieved for continuous predictors, for example
tumor volume for predicting the risk of distant metastasis in
head and neck cancer (19). For binary predictors, however, such
an AUC value is evidently scarce in literature. Hence, it is more
realistic that (i) binary predictors may improve the performance
of an already existing predictive model (e.g., adding gender to a
COVID-19 model that uses blood biomarkers at time of hospital
admission to predict risk of severe disease and assist triage) or
(ii) several binary predictors may work in conjunction to create
a well-performing predictive model. But the discovery of a single
binary feature with a large OR (e.g., 5.44, as in the example above)
does not necessarily mean that precision medicine is possible
using only that particular predictor or biomarker.

When collecting data for a predictive model, whenever
possible, it is better to use ordinal categorical variables (i.e.,

a scale) or continuous variables rather than convert them to
binary variables. This statement does not apply to features that
are naturally dichotomous (e.g., pregnancy). For example, when
considering a pre-existing condition like alcohol abuse, using a
scale (say 0–4, tied to the average alcohol consumption per week)
is superior to a simple binary feature (alcoholic vs. not alcoholic).
When considering a pre-existing condition like obesity, using a
continuous variable like body mass index is superior to a simple
binary (BMI ≥ 30 vs. BMI < 30). The reason is that the decision
threshold of the predictive model can then be tuned based on
the training set data, whereas for a binary variable, no such
tuning is possible. This has been demonstrated in our Results
using real-world COVID-19 data. Nonetheless, we emphasize
that our statement is about collecting data, not necessarily about
data analysis. If the data analyst wants to use the feature as
dichotomous, they may. A feature that has been collected as a
continuous or ordinal categorical variable can easily be converted
to a binary feature during data analysis. By contrast, if the feature
has been collected as dichotomous, it is cumbersome to recover
the feature as a continuous or ordinal categorical variable.

CONCLUSIONS

We have presented a simple deterministic simulation to
demonstrate the relationships between AUC, RR, and OR. It
confirms our hypothesis that in the context of modeling clinical
outcome data, presenting only odds ratios of binary predictive
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features is misleading and should be supplemented by metrics
like AUC and balanced accuracy which are needed to understand
the predictive performance.
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