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Background: Pulmonary hypertension is the major cause of morbidity and mortality

in congenital diaphragmatic hernia (CDH). Mutations in several genes that encode

signaling molecules of the transforming growth factor β (TGFβ) and bone morphogenetic

protein (BMP) pathways have previously been associated with CDH. Since studies on

the activation of these pathways in CDH are scarce, and have yielded inconsistent

conclusions, the downstream activity of both pathways was assessed in the

nitrofen-CDH rat model.

Methods and Results: Pregnant Sprague-Dawley rats were treated with nitrofen at

embryonic day (E) 9.5 to induce CDH in offspring. At E21, lungs were screened for the

expression of key factors of both signaling pathways, at both the mRNA transcript and

protein levels. Subsequently, paying particular attention to the pulmonary vasculature,

increased phosphorylation of SMAD2, and decreased phosphorylation of Smad5 was

noted in the muscular walls of small pulmonary vessels, by immunohistochemistry. This

was accompanied by increased proliferation of constituent cells of the smooth muscle

layer of these vessels.

Conclusions: Increased activation of the TGFβ pathway and decreased activation of

the BMP pathway in the pulmonary vasculature of rats with experimentally-induced CDH,

suggesting that the deregulated of these important signaling pathways may underlie the

development of pulmonary hypertension in CDH.

Keywords: lung, vasculature, BMP, TGF, congenital diagraphma hernia

INTRODUCTION

Congenital diaphragmatic hernia (CDH) is a severe developmental anomaly characterized by a
diaphragmatic defect. The concomitant pulmonary hypertension (PH) that develops in affected
lungs can cause severe problems in the newborn, and is responsible for the high morbidity
and mortality in these patients. Although the muscularization of the pulmonary vessels has
been demonstrated to be increased in CDH (1), the pathophysiological basis of PH in these
patients remains largely unclarified. Mutations in different genes involved in the transforming
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growth factor β (TGFβ) and bone morphogenetic protein (BMP)
pathways have been described in both adult and pediatric
patients with familial, heritable, and idiopathic pulmonary
arterial hypertension (PAH). Of these genes, the BMP receptor
2 (BMPR2) is most commonly affected (2).

TGFβ is a negative regulator of airway branching in early
lung development. However, TGFβ signaling is also active in
the vascular and airway smooth muscle and alveolar and airway
epithelium during late lung development. Both up- and down-
regulation of TGFβ signaling impairs the alveolarization process
(3, 4), depending on the period of study during gestation. Both
TGFβ and BMP are documented to influence the proliferation of
endothelial and smooth muscle cells, and control apoptosis and
extracellular matrix secretion and deposition (5).

Studies on the TGFβ pathway in CDH have not yielded
consistent conclusions. Decreased expression of TGFβ1 was
found at the mRNA level in the hearts of the nitrofen-exposed
rat pups with CDH (6), where increased expression of TGFβ1
in affected lungs was evident by immunohistochemistry (7).
In contrast, other studies have reported no perturbations to
TGFβ expression and activity—assessed by the phosphorylation
of SMAD2/3—in both human samples as well as tissues harvested
from the nitrofen-CDH rat model (8). A study performed in
pregnant women carrying CDH fetuses revealed decreased TGFβ
levels in the amniotic fluid, but no differences in expression of
TGFβ in the lungs of these children after birth (9). The expression
of both TGFβ receptor (TGFBR) 1 and 2 as well as endoglin,
an auxiliary receptor of TGFβ, were found to be decreased in
nitrofen-CDH rat pups (10).

In contrast to the TGFβ pathway, conclusions drawn in
several reports on components of the BMP pathway in CDH are
consistent. Reduced expression of BMPR2 (11, 12) and BMP4
(12, 13) was found in the lungs of different animal models of
CDH. Furthermore, the expression of apelin, a target gene of
BMPR2 which can have a hypotensive function, is reported to
be decreased in nitrofen-CDH rat pups (14); whilst expression
of activin receptor-like kinase 1 (ALK1), another receptor of the
BMP signaling pathway, was upregulated in the same animal
model (15). However, Corbett et al. did not report any differences
in downstream signaling of BMPR (16), and did not find any
mutations in the BMPR2 gene in CDH patients (17). All findings
reported to date addressing the TGFβ and BMP pathways in
CDH is summarized in Supplementary Table 1 and an overview
of both pathways is displayed in Figure 1.

Investigations conducted to date have focused largely on the
expression of receptors in both the TGFβ and BMP pathways,
but little is known about the actual activation of these pathways.
Therefore, we hypothesized that the analysis of downstream
mediators would identify changes in TGFβ and BMP signaling
pathways in the lungs of rats in which CDH was induced by
nitrofen exposure.

MATERIALS AND METHODS

Animal Model
Pregnant Sprague-Dawley rats received either 100mg nitrofen
dissolved in 1ml olive oil or just 1ml olive oil by gavage on

gestational age day E9.5. Nitrofen induces CDH in ∼70% of the
offspring, while all pups have pulmonary hypertension (18, 19).
At embryonic day (E) 21, pups were delivered by cesarean section
and euthanized by lethal injection of pentobarbital. Lung tissue
of the CDH and control pups were isolated and processed for
paraffin embedding (left lobes) or immediately snap frozen (right
lobes) for protein and RNA analysis. All animal experiments were
approved by an independent animal ethical committee and were
conducted according to national guidelines.

Quantitative Real-Time Polymerase Chain
Reaction (qPCR)
RNA isolation, cDNA synthesis and subsequent qPCR analysis
on right lung lobes was performed as previously (20). The gene-
specific primers used are available upon request.

Immunohistochemistry and
Immunofluorescence Staining
Immunohistochemistry (IHC) was performed on 5-µm paraffin
sections of the left lobe according to standard protocols, using
the EnvisionTM detection system (Dako Cytomatic, Glostrup,
Denmark) (20). Primary antibody used for IHC was ZEB2
[1:400, (21)]. Primary antibodies used for IF were smooth muscle
actin (α-SMA; MS-113-P1; 1:500, Thermo Scientific, Fremont,
CA, USA), phosphorylated SMAD 2 (pSMAD2; 1:250, Cell
Signaling, Danvers, MA, USA), phosphorylated SMAD 1/5/8
(pSMAD1/5/8; 1:500, Kerafast, Boston, MA, USA), and KI-67
(1:100, Abcam, Cambridge, UK). Secondary antibodies against
mouse (α-SMA) and rabbit (pSMAD2, pSMAD1/5/8, and KI-67)
were used. Negative controls were performed by omitting the
primary antibody. Antigen retrieval with citric acid buffer (pH
6.0) was used. Negative controls were performed by omitting the
primary antibody.

Immunoblotting
Snap-frozen right lung lobes were homogenized on ice in Carin
buffer (20mM Tris pH 8.0, 137mM NaCl, 10mM EDTA, 1%
NP40, 10% glycerol), containing protease inhibitor Complete
(Roche, Basel, Switzerland). Samples were centrifuged at 14,200
r.p.m. for 15min and protein concentration in the supernatant
was measured using the Bradford method. Subsequently 50 µg of
protein per lane was loaded onto an SDS-PAGE and transferred
to nitrocellulose membranes using wet blotting. Antigens were
detected with TGFβ (1:1,000, Abcam), pSMAD2 (1:1,000, Cell
Signaling), SMAD2 (1:1,000, Cell Signaling), pSMAD5 (1:1,000,
Abcam), SMAD5 (1:1,000, Cell Signaling), and Zeb2 [1:1,000,
(21)]. Cofilin (1:400, Abcam) and β-actin (1:1,000, Cell Signaling)
were used for loading control.

Statistical Analyses
Data are presented as percentages, means (SD) for normally
distributed variables. Univariate analyses were performed using
independent samples t-tests for normally distributed variables.
The analyses were performed using SPSS 21.0 for Windows
(Armonk, NY, USA: IBM Corp.). All statistical tests were two-
sided and used a significance level of 0.05.
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FIGURE 1 | Overview of TGFβ/BMP pathway. Overview of the TGFβ and BMP pathways. TGFβ, transforming growth factor β; BMP, bone morphogenetic protein;

ZEB2, zinc finger E-box binding homeobox 2; P, phosphorylation.

RESULTS

TGFβ Activation Is Upregulated in CDH
The expression of key signaling factors in the TGFβ pathway

was assessed in whole lung homogenates at the mRNA level,
where an increase in the abundance of mRNA transcript
encoding both Tgfbr1 and Tgfbr2 receptors, but no difference

in the abundance of the ligand Tgfb1 mRNA transcript was

noted. The abundance of mRNA transcripts encoding both
the receptor-activated SMADs, Smad2, and Smad3, as well

as the co-SMAD, Smad4, which together form a signaling
complex for translocation into the cell nucleus, was increased
in CDH (Figure 2A). No differences were found in expression
of the TGFβ1 ligand at the protein level (Figure 2B). For the
activation of the TGFβ pathway, receptor-activated SMADs must
be phosphorylated. The degree of phosphorylation of SMAD2
was not different in whole lung homogenates of CDH pups
compared to controls (Figure 2C). Since the abnormalities in
the pulmonary vasculature are key pathological hallmarks of

CDH, changes in SMAD phosphorylation were assessed in the
small pulmonary vessels (25–50µm) using immunofluorescence
staining. This approach revealed an increased number of
smooth muscle actin (SMA)-positive cells in the small vessels
of CDH pups expressing phosphorylated SMAD2 (pSMAD2),
which points to an increased activation of this pathway in the
pulmonary vasculature (Figure 2D).

BMP Activation Is Reduced in CDH
In contrast to the TGFβ receptors, a decrease in Bmpr1b
mRNA transcript abundance was noted in CDH, while no
differences in the abundance of the well-studied Bmpr2 were
noted, comparing both groups at mRNA level in whole lung
homogenates. Activin receptor-like kinase 1 (Alk1), another
receptor in the BMP/TGFβ pathway which mediates the signal of
Bmp9 and Bmp10, was slightly increased in CDH. Bmp4, one of
the important ligands in this pathway, and the receptor-activated
Smad1 and Smad5 showed an increase in CDH (Figure 3A).
Western blot on whole lung homogenates showed a decreased
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FIGURE 2 | TGFβ activation is upregulated in experimental CDH. (A) Quantitative PCR revealed a significant increase in Tgfbr1 and Tgfbr2 in CDH (p < 0.001 and

p = 0.033, respectively), but no difference in Tgfb1 mRNA transcript abundance compared to control. The abundance of Smad2, Smad3, and Smad4 mRNA

(Continued)
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FIGURE 2 | transcripts were all significantly higher in CDH (p = 0.001, p = 0.002, and p = 0.002, respectively; n = 6 for both groups). (B) Western blot on whole lung

homogenates revealed no differences in TGFβ1 abundance between control and CDH, when normalized to total protein amount using β-actin as a loading control (n

= 5 for both groups). (C) The abundance of pSMAD2 was related to the total SMAD2 protein levels, which was not different between control and CDH in whole lung

homogenates, where Cofilin was used as a loading control (n = 5 for both groups). (D) Representative images of immunofluorescence staining indicate an increase in

the ratio of pSMAD2/SMA double-positive cells in small pulmonary vessels in CDH (p = 0.049; n = 3 samples for both groups). Six vessels per sample were counted.

Scale bars represent 10µm. *p < 0.05, **p < 0.01, ***p < 0.001. Error bars represent SD.

expression of SMAD5 in CDH with no differences in relative
phosphorylation (Figure 3B). However, when focusing on the
important pulmonary vasculature, the number of SMA positive
cells expressing phosphorylated SMAD1/5/8 was reduced in
CDH on immunofluorescence staining, indicating a decreased
activation of this pathway in the pulmonary vasculature
(Figure 3C).

Downstream Effects of TGFβ and BMP
Signaling
Both the TGFβ and BMP pathways can be inhibited by
the inhibitory SMADs, SMAD6, and SMAD7. These proteins
compete with SMAD4 in the formation of heteromeric signaling
complexes and can, therefore, prevent transcription of target
genes. No differences were noted in the expression of Smad6
at the mRNA level, but lung Smad7 transcript abundance was
increased in CDH. The lung abundance of mRNA transcripts
encoding Zeb2, a transcriptional corepressor of the activated
pathway, were increases in CDH at the mRNA level (Figure 4A).
However, no significant differences in protein levels of ZEB2
were noted by western blot analysis of whole lung homogenates
(Figure 4B), and no changes in the expression of ZEB2
were noted in the small vessels using immunohistochemistry
(Figure 4C). Since increased activation of the TGFβ pathway
can induce proliferation of pulmonary artery smooth muscle
cells, the expression of KI-67, a marker for proliferation, was
used to identify proliferating cells in the vascular wall. In small
pulmonary vessels in CDH, more SMA-positive cells expressed
KI-67 (Figures 4D,E).

DISCUSSION

In this report, upregulated activation of the TGFβ pathway
and downregulated activation of the BMP pathway in
small pulmonary vessels in the nitrofen-CDH rat model
are demonstrated at the cellular level.

No differences were observed in the ligand TGFβ1 and the
degree of phosphorylation of both SMAD2 and SMAD5 at
the protein level in whole lung homogenates. Although the
total amount of SMAD5 and pSMAD5 was less in whole lung
homogenates of CDH pups, no changes were noted in the degree
of phosphorylation in total lung extracts. At the cellular level,
however, the smooth muscle layer of the small pulmonary vessels
of nitrofen-CDHpups revealed increased abundance of pSMAD2
and decreased abundance of pSMAD1/5/8, indicative of more
active TGFβ signaling and reduced BMP signaling, respectively.

The latter is in line with Makenga and colleagues who reported
decreased pSMAD1/5/8 in CDH lung homogenates. Moreover,
the differences observed in the small pulmonary arteries in CDH
lungs may also reflect the fact that the perivascular cells in CDH
lungs are more differentiated compared to perivascular cells in
control lungs (22).

Phosphorylation of the receptor-activated SMADs is necessary
for the activation of downstream mediators and, therefore,
plays an important role in pathway activation. The increased
expression of the inhibitory Smad7 and corepressor Zeb2 at
the mRNA level is in line with SMAD7 being a direct target
of ZEB2 and may point to increased production of these
inhibitors in order to inhibit the increased activity of the
TGFβ pathway (23). The absence of any observed changes
in Smad6, which only inhibits the BMP pathway, strengthens
this idea. However, the expression of ZEB2 at the protein
level in whole lung homogenates exhibited a trend toward an
increase, and no differences were noted by immunostaining
of the pulmonary vessels, indicating a discrepancy between
RNA and protein expression. The latter could, in part, explain
differences between several reports on TGFβ and BMP signaling
in CDH. Moreover, the usage of specific parts of the lung or
isolated lung cells may also lead to differences or even opposing
results between different reports. Both TGFβ and BMP can
regulate proliferation of vascular cells and previous studies have
reported increased proliferation of pulmonary artery smooth
muscle cells from patients with PAH in response to TGFβ1
(24, 25). The increased proliferation of constituent cells of the
smooth muscle layer of small pulmonary vessels was noted in
the present study in nitrofen-CDH pup lungs, which might
indicate an abnormal response of these cells to the increased
TGFβ activity.

TGFβ is a target of retinoic acid (RA) (26), and increased
activity of the TGFβ pathway with higher levels of pSMAD2
has been described in RA-deficient foreguts, and in a mouse
model with RA deficiency. In that study, lung agenesis
was observed both by decreasing RA levels as well as by
increasing TGFβ levels, indicating the interaction between both
pathways early in development (27). Furthermore, a study
in rats with alveolar hypoplasia caused by caloric restriction
exhibited improvement of alveolar formation after treatment
with RA, accompanied by a decrease in TGFβ activity at
postnatal day 21 (28). These findings strengthen the results
presented here, about increased TGFβ activity in nitrofen-
exposed rats, where nitrofen has been reported to disrupt the
retinoid signaling pathway (29). Since a reduction in retinol
and retinol binding protein (RBP) has been found in human
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FIGURE 3 | BMP activation is reduced in experimental CDH. (A) Quantitative PCR revealed a significantly decreased lung abundance of Bmpr1b (p = 0.016) but no

differences in Bmpr2, and increased abundance of Alk1 (p = 0.003) mRNA transcripts in CDH compared to control. The abundance of Bmp4, Smad1, and Smad5

mRNA transcripts was significantly higher in CDH [p < 0.001, p = 0.009, and p < 0.001, respectively; n = 3 (Alk1 and Bmp4) or 6 (rest) for both groups]. (B) The lung

abundance of pSMAD5 was related to the total SMAD5 protein abundance, which was not different between control and CDH samples, where Cofilin was used as a

loading control (n = 5 for both groups). (C) Representative images of immunofluorescence staining indicate a decrease in the ratio of pSMAD1/5/8/ SMA

double-positive cells in small pulmonary vessels in CDH lungs (p = 0.016; n = 3 samples for both groups). Six vessels per sample were counted. Scale bars represent

10µm. *p < 0.05, **p < 0.01, ***p < 0.001. Error bars represent SD.
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FIGURE 4 | Modulators of TGFβ signaling are upregulated in CDH. (A) Quantitative PCR revealed no difference in the abundance of the inhibitory Smad6 mRNA

transcript, but increased abundance of inhibitory Smad7 and Zeb2 mRNA transcripts [p < 0.001 and p = 0.003, respectively; n = 3 (Zeb2) or 6 (Smad6, Smad7) per

group; y-axis indicated fold-change]. (B) Western blot analyses of whole lung homogenates revealed no significant differences in ZEB2 protein abundance comparing

CDH and control groups, where β-actin was used as a loading control, and as a reference for quantification (n = 5 for both groups). (C) Representative images of

immunohistochemistry staining show no differences in expression of ZEB2 in the small vessels of all lungs (n = 3 samples for both groups). Scale bars represent

100µm (low power) and 20µm (high power). **p < 0.01, ***p < 0.001. Error bars represent SD. (D) Increased proliferation of the muscular vessel wall in CDH.

Representative images of immunofluorescence staining revealed an increase in KI-67/SMA double-positive cells in small pulmonary vessels in CDH (p = 0.001; n = 3

samples for both groups). (E) Quantification of proliferative SMA+ cells. Four vessels per sample were counted. Scale bars represent 10µm. **p < 0.01, ***p < 0.001.

Error bars represent SD.
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newborns with CDH (30, 31), and several key components
of the RA pathway are affected in human and experimental
CDH (32), the increased activity of the TGFβ pathway might
play an important role in the development of the lungs
in CDH.

Studies available in the literature have reported conflicting
trends in expression of different signaling factors in CDH, which
might be explained by the differences in the gestation of the
animals under study. In the present study, some variability
between samples was also noted, suggesting that small differences
in gestational age may have an appreciable impact on trends in
the expression of signaling molecules under study.

We initially analyzed the TGF-β and BMP pathways in whole
lungs, and given our previous report on vascular abnormalities
in CDH (22), we focused on the activation of the TGF-β and
BMP pathways in the vasculature, using immunofluorescence
staining, showing a clearly difference in phosphorylation of
SMAD2 and SMAD5.

In conclusion, increased phosphorylation of SMAD2
and decreased phosphorylation of SMAD5 was noted
in the in the vessel walls of small pulmonary vessels
of nitrofen-CDH pups. These data indicate increased
activation of the TGFβ pathway and decreased activation
of the BMP pathway in the pulmonary vasculature of
these animals at day 21 of gestation, possibly leading to
increased proliferation of the muscularized vessel wall.
Since the different factors in these pathways are differently
expressed during gestation and might differ from the human
situation, further research must be conducted at different
developmental stages, and most importantly, in material of
human patients.
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