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Inflammatory bowel disease describes chronic inflammatory disorders. The incidence

of the disease is rising. A major step in disease development is the breakdown of the

epithelial cell barrier. Numerous blood vessels are directly located underneath this barrier.

Diseased tissues are heavily vascularized and blood vessels significantly contribute to

disease progression. The gut-vascular barrier (GVB) is an additional barrier controlling

the entry of substances into the portal circulation and to the liver after passing the

first epithelial barrier. The presence of the GVB rises the question, whether the vascular

and endothelial barriers may communicate bi-directionally in the regulation of selective

barrier permeability. Communication from epithelial to endothelial cells is well-accepted.

In contrast, little is known on the respective backwards communication. Only recently,

perfusion-independent angiocrine functions of endothelial cells were recognized in a

way that endothelial cells release specific soluble factors that may directly act on the

epithelial barrier. This review discusses the putative involvement of angiocrine inter-barrier

communication in the pathogenesis of IBD.

Keywords: endothelial, angiocrine, barrier, inflammatory bowel disease, inflammation, angiogenesis, epithelial

CLINICAL PRESENTATION AND EPIDEMIOLOGY OF
INFLAMMATORY BOWEL DISEASE

Inflammatory bowel disease (IBD) includes inflammatory diseases of the colon and small intestine
with Crohn’s disease and ulcerative colitis being themajor clinical presentations (1). Crohn’s disease
affects the small intestine and large intestine, as well as the mouth, esophagus, stomach and the
anus, whereas ulcerative colitis primarily affects the colon and the rectum (2). Crohn’s disease and
ulcerative colitis are different diseases, but commonly present with any of the following symptoms:
abdominal pain, diarrhea, rectal bleeding, severe internal cramps/muscle spasms in the region of
the pelvis and weight loss. In addition, anemia is a common extra-intestinal complication of IBD.

IBD is classically considered as a disease of Westernized countries but has started to rise
worldwide in the beginning of the twenty first century (3). The rise is population-dependent and
categorized into four different epidemiological stages: first, the Emergence Stagewith sporadic cases
of IBD observed in developing countries, second, the Acceleration in Incidence Stage with rising
incidence and relatively low prevalence in newly industrialized countries, third, the Compounding
Prevalence Stage with stable incidence and steeply rising prevalence in countries of the Western
world, and forth, the Prevalence Equilibrium Stage, which represents the opposing forces between
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an aging IBD population and the incidence of IBD. InGermany at
present 620,085 persons are suffering from IBD with a predicted
rise up to 815,200 patients in 2030. In the U.S. presently 2,489,362
patients are registered and a rise up to 3,544,480 is expected
within the next 10 years (4).

IBD is characterized by a chronically relapsing intestinal
inflammation that is thought to result from an exaggerated
immune response to the commensal microbiota. However, the
specific molecular mechanisms driving IBD pathogenesis are still
unclear. Many different putative susceptibility genes for IBD
are reported but all of these are associated with only low risk
and differ in different countries of the world. At present, it
is commonly accepted, that cytokines, such as, tumor necrosis
factor (TNF), interleukin (IL)-10, transforming growth factor
(TGF)-β, IL-6, IL-12, IL-13, IL-17, IL-21, IL-23, interferon
(IFN)-γ and C-X-C motif chemokine ligand (CXCL)10, are
drivers of the excessive immune response, leading to leukocyte
infiltration and mucosal damage. In addition, there is agreement
that IBD pathogenesis is closely associated with a loss of
intestinal epithelial barrier functions associated with bacterial
translocation, likely representing an initiating or early event in
the disease (5–10).

Recently, it became evident that the intestinal barrier involves
two sequential physical barriers. The first being the epithelial
barrier consisting of a single cell layer of epithelial cells and
a mucus layer which physically separates the microbiota in
the gut lumen and epithelial cells (11). Directly below the
epithelial barrier an additional barrier was identified, the gut-
vascular barrier (GVB) controlling the entry of substances
into the portal circulation and their access to the liver after
passage of the first epithelial barrier (12, 13). The discriminative
control of nutrient uptake and tight sealing towards potentially
pathological microorganisms requires a profound regulation of
the barrier permeability.

STRUCTURE AND FUNCTION OF THE
EPITHELIAL BARRIER IN IBD

The epithelial barrier allows the co-existence of commensal
microbiota and mucosal immune cells in the gut. It consists
of a physical barrier established by the epithelial cells situated
on a basement membrane. Collagen type IV and laminins are
the predominant components of the basement membrane (14).
The basement membrane is subject of continuous remodeling.
Increased remodeling was observed under inflammatory
conditions in association with decreased barrier functions
(14). At the cellular level barrier functions are established by (i)
densely packedmicrovilli on the apical side of intestinal epithelial
cells termed the brush border (15), (ii) tight cell-cell interactions
between the epithelial cells, (iii) the cellular resistance to
bacterial transcytosis (16), and (iv) specialized epithelial cells,
such as mucus-producing goblet cells and anti-microbial
peptide secreting Paneth cells (12). Altogether, the epithelium
exerts manifold functions, establishing a physical barrier
against pathogen invasion and also performing innate immune
functions and nutrient uptake (17). Thereby, the preservation

of the epithelial integrity is a major aspect in order to preserve
homeostasis and to avoid the progress of inflammation in
mucosal tissues (18) [for review see: Lopez-Posadas et al. (11)].

At the molecular level the intercellular barrier of the intestinal
epithelium is established by apical junction complexes comprised
of tight and adherens junctions. Adherens junctions consist of
cadherins and nectins and are mainly important for the cell-cell-
adhesion (19, 20). Tight junctions are multiprotein-complexes
consisting of several transmembrane proteins: tight junction
associated MARVEL proteins (TAMP) like occludin, marvelD3
and tricellulin, junctional adhesion molecules (JAM), angulins
and the family of claudins, which has in mammalia 27 members
that either possess barrier- or channel-forming properties
affecting the overall permeability characteristics of the epithelia
[for review see Günzel and Fromm (21)]. Adherens junctions
as well as tight junctions establish zipper-like structures, sealing
the paracellular space within the epithelial cell layer (22). These
intercellular junctions are connected to the actin cytoskeleton
via cytoplasmic adaptors, such as zonula occludens proteins, and
catenins supporting the mechanical strength of the junctions
(23–25). Cell activation with molecules that induce permeability
causes actin reorganization into stress fibers. This is associated
with increasing traction forces, which lead to the detachment
of adherens junctions from the cytoskeleton followed by the
formation of gaps between adjacent cells (26, 27). Further
mechanisms such as the removal of cell-cell interactionmolecules
from the cell surface by internalization and/or by proteolytic
cleavage can regulate the intestinal barrier permeability (11, 28).

The epithelium is constantly renewed without an effect
on its tightness. Within this process stem cells at the crypt
bottom proliferate and differentiate into the different intestinal
epithelial cell subtypes with specialized biological functions (29).
Subsequently, most of the differentiated epithelial cells migrate
upwards to the villus tip, where aged cells die and are shed
into the lumen (30, 31). The tightness of the epithelial layer
is maintained by the intercellular junctions during this process
(23). During cell shedding, epithelial integrity is maintained
in cytoskeleton and membrane trafficking-dependent processes
regulating the redistribution of junctional proteins along lateral
membranes (32, 33).

Increased epithelial tight junction permeability is a hallmark
in the gut of IBD patients (34–38). It is believed that
the disruption of intercellular junctions and cytoskeleton
rearrangements in the context of infection or inflammation
lead to a breakdown of epithelial integrity (39–41). Although a
correlation between epithelial barrier permeability and disease
activity has been observed in patients with Crohn’s disease, the
cause of this barrier collapse is still a matter of controversy
(42, 43). Experimental animal studies demonstrated that a
deficiency of single tight junction proteins is not sufficient to
cause pathology due to compensatory mechanisms (44, 45) with
the exception of claudin-15 (46). However, agreement exists that
inflammation-derived soluble mediators such as IL-6 (47), IL-
13 (48, 49), TNF (50), and IFN-γ (51, 52) affect tight junctions
and may increase intestinal permeability in experimental colitis
models and IBD (53–55). These observations suggested that
the epithelial barrier breakdown occurs as a consequence of
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proinflammatory cytokine stimulation. In contrast, recent studies
in IBD patients demonstrated that an increase of epithelial
permeability precedes flares of inflammatory bowel pointing
towards a causative role of epithelial barrier breakdown in the
development of intestinal inflammation (35, 56–58). The latter
is supported by reports that a decrease of epithelial permeability
by application of vitamin D (59, 60), probiotics (61–63), IL-22-
triggered mucus production (64), butyrate (65, 66), or an anti-
TNF antibody caused clinical amelioration of chronic colitis (67,
68). Moreover, alternative portals for gut leakiness such as brush
border functions and intestinal bacterial endocytosis by epithelial
cells have to be considered and may play important pathogenic
roles providing putative targets for therapy of inflammatory
bowel disease (15). Altogether, these results suggest that the
epithelial barrier function is important and its maintenance can
counteract the development of inflammatory bowel disease.

THE IMPACT OF BLOOD VESSELS ON IBD
PATHOGENESIS

Capillaries are located in close proximity to the intestinal
epithelial cell barrier (Figure 1A). Blood vessels in adult tissues
evolve through sprouting from preexisting vessels, a process
termed angiogenesis (69). Angiogenic activity correlates with
disease severity in IBD suggesting that blood vessels may
contribute to pathogenesis (70–73). Moreover, elevated levels of
angiogenic growth factors including vascular endothelial growth
factor (VEGF)-A and basic fibroblast growth factor (bFGF),
that synergize in angiogenesis activation, have been detected in
the inflamed mucosa and in the blood during active IBD (74,
75). However, experimental colitis models provided conflicting

results on the contribution of angiogenesis to disease activity.
Neutralization of VEGF-A resulted in a decreased vessel density
and improvement of the disease in dextran sulfate sodium (DSS)–
induced and 2,4,6-trinitrobenzenesulfonic acid (TNBS)–induced
colitis (73, 76). In contrast, reduced angiogenic activity induced
by deficiency of placental growth factor failed to ameliorate colitis
in the same experimental models (77). These results indicated
that besides vessel density additional parameters such as vessel
quality are of relevance in IBD pathogenesis. In fact, newly
formed vessels in IBD tissues are strongly disorganized and leaky
as evident by associated edema (78).

The difficulties in determining the precise role of blood vessel
function in IBD may be due to the fact that the intestinal
endothelial cells are both, targets and regulators of inflammation
(78). In this framework, IBD-associated inflammatory cytokines
such as TNF-α, IL-1β and IFN-γ can activate endothelial cells
by inducing the expression of adhesion molecules for leukocytes
such as E-selectin, intercellular adhesion molecule (ICAM)-1 or
vascular cell adhesion molecule (VCAM)-1 (79). Macrophages
are important drivers of IBD and are characteristically expressing
high amounts of TNF-α and IL-1β, which may amplify the
extravasation of these cells being responsible for the high
numbers of macrophages present in IBD tissues (80). In
addition, inflammation is associated with increased angiogenesis
supporting immune cell recruitment by increase of blood flow
and endothelial surface (81). As mentioned above the intestinal
endothelium also establishes an additional barrier in the gut,
the GVB (12, 13). The GVB constitutes a semipermeable
barrier between the blood stream and the interstitium regulating
the transport of nutrients, tissue fluid homeostasis and the
transmigration of immune cells but is non-permissive to bacterial
penetration (13, 28, 78, 82). The latter is in agreement with

FIGURE 1 | (A) Colonic crypt (intestinal gland, asterisk) with vessels (red, arrow) in the lamina propria. Epithelial cells (1st barrier) and endothelial cells (2nd barrier) are

directly adjacent, indicating active inter-barrier communication. Vascular endothelial cells were stained immunohistochemically using an anti-CD31 antibody. Cell nuclei

(blue) were stained by haematoxylin. (B) Graphic presentation of (A) indicating possible factors that may be involved in angiocrine regulation of epithelial barrier

functions in IBD [von Willebrand factor A domain containing 1 (VWA1), von Willebrand factor (VWF), matrix metalloproteinase (MMP)-14, tissue inhibitor of

metalloproteinases (TIMP)-1, C-X-C motif chemokine ligand (CXCL) 10, secreted protein, acidic and rich in cysteine–like 1 (SPARCL1)].
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the observation that bacterial lipopolysaccharides (LPS) in
low concentrations are stabilizing the vascular barrier (83).
In contrast, high concentrations of LPS (>10µg/ml) inhibit
endothelial cell migration, down-regulate intercellular junction
molecules and increase the permeability of the vascular barrier
(83). Paracellular (i.e., in between the cells) or transcellular (i.e.,
across the cells) routes are available to cross the endothelial cell
monolayer. Transcellular exchange is accomplished via either
solute transporters, or transcytosis via vesicular carriers (e.g.,
caveolae), or pore-like subcellular structures (i.e., fenestrae and
transendothelial channels) (84, 85). The paracellular route is
controlled by adherens junctions and tight junction proteins
similar as in the epithelial barrier. In intestinal endothelial cells,
tight junctions are composed mainly of occludin, junctional
adhesion molecule (JAM)-A, zonula occludens (ZO)-1, and
cingulin (13). Claudin-3, -5, and -12 from the claudin family are
known to be mainly expressed in endothelia (86, 87).

Adherens junctions are formed by vascular endothelial (VE)-
cadherin and β-catenin (13). Of note, the same cytokines
regulating immune cell extravasation can also deregulate
adherens and tight junction formation in endothelial cells
supporting translocation of bacteria thereby further amplifying
the inflammatory process [for review see: Lopez-Posadas
et al. (11)].

The impact of the GVB in intestinal inflammation is
substantiated by mouse models of acute and chronic DSS-
colitis. In these models intestinal vessel perfusion remained
constant during colitis whereas vessel permeability strongly
increased (5). Using experimental animal models with an
endothelial cell specific knockout of the interferon-γ-receptor
2 (IFNγR2) it was shown that the IBD-associated cytokine
IFN-γ induces a breakdown of the vascular barrier based
on the disruption of the adherens junction protein VE-
cadherin and this was significantly increasing DSS-induced
experimental colitis. Importantly, the disease-associated vascular
barrier dysfunction could be confirmed in human IBD patients
indicating the clinical relevance of the findings. Imatinib
(brand name Gleevec) is a kinase inhibitor acting against
Abelson tyrosine kinase BCR–ABL, the KIT and PDGF
receptors and is used for therapy of chronic myeloid leukemia
(CML), gastrointestinal stromal tumors (GIST) and several
other malignancies (88). Interestingly, treatment with imatinib
restored adherens junctions, inhibited vascular permeability,
and significantly reduced colonic inflammation in experimental
colitis. Altogether, these results highlighted the pathogenic
impact of inflammation–associated vascular barrier defects in
IBD and opens new avenues for vascular-directed treatment of
the disease (81).

The detection of an additional intestinal barrier rises the
question whether the epithelial and the vascular barriers may
communicate in prevention or progression of the disease.
Epithelial to endothelial cell communication is commonly
accepted. For example, the nutrient composition of the chyme
(partially digested food) and not simply gut distension modulates
blood flow. Specialized subsets of intestinal epithelial cells
transport nutrients through the epithelial monolayer into the
lamina propria from where they are transported through the

fenestrated blood endothelium to be distributed systemically
(89, 90). Moreover, in response to pathogen invasion or
loss of barrier integrity, both intestinal epithelial cells and
tissue-resident leukocytes secrete cytokines, chemokines, reactive
oxygen species, and lipid mediators that activate endothelial cells
to modulate the number and structure of vessels and to promote
immune cell extravasation. For example, intestinal epithelial cells
in IBD were shown to secret the chemokines CXCL8/IL-8 and
CCL20 (91, 92), both of which can activate angiogenesis (93, 94).
In addition, these cells secrete the cytokine TNF-α (91), which
regulates vessel remodeling and by directly acting on endothelial
cells may inhibit angiogenesis (95, 96). In addition, vascular
permeability is increased by inflammatory mediators released
from epithelial cells fostering both, inter- and trans-cellular
diapedesis (90, 97).

ANGIOCRINE FUNCTIONS OF BLOOD
VESSELS IN ORGAN DEVELOPMENT AND
DISEASES

The endothelium is not a passive response organ for nutrient
supply, tissue entry of immune cells, and metabolite removal,
but actively regulates the tissue microenvironment in organ
development and diseases as indicated by novel results.
These perfusion-independent functions of endothelial cells were
recognized in experimental tumor models in mice for the first
time, where the inhibition of angiogenesis in certain instances
did not abrogate tumor growth but instead enhanced tumor
invasiveness (98). Based on this the hypothesis arose that
endothelial cells release specific soluble factors that may directly
regulate tumor growth in a perfusion-independent manner. This
respective mechanism was termed as “angiocrine” regulation of
tumorigenesis (98).

Subsequent studies confirmed that endothelial cells may
activate tumorigenesis by secreted factors (98, 99). For example,
angiocrine factors were reported to stimulate growth and
migration of lymphoma tumor cells (100), to maintain stem cell
like properties in colorectal carcinoma and glioblastoma cells
(101–103), to inhibit anoikis in head and neck cancer stem cells
(104) and, to activate proliferation, survival and epithelial to
mesenchymal transition of lung carcinoma cells (103) [for review
see: Lee et al. (105)].

Vice versa, it was noted that endothelial cells can also suppress
cancer growth through angiocrine signaling. In this framework
contact-dependent interactions between the endothelial cell
surface receptor duffy antigen/receptor for chemokines and the
carcinoma cell surface receptor kang ai-1 were shown to suppress
metastasis (106). In addition, in breast cancer endothelial cell-
released slit homolog 2 protein (Slit 2), perlecan and additional
as yet unknown factors were reported to inhibit proliferation,
invasion and pro-tumorigenic signaling of the cancer cells (107,
108). In addition, thrombospondin is regarded as a putative anti-
angiogenic factor secreted from endothelial cells (98). Angiocrine
factors also exert key functions in physiologic condition
such as kidney development (109, 110), liver bud (111) and
pancreatic bud formation (112), in neuronal development (113),

Frontiers in Medicine | www.frontiersin.org 4 August 2021 | Volume 8 | Article 643607

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Stürzl et al. Angiocrine Regulation of Epithelial Barrier

lung regeneration (114), osteogenesis (115) and hematopoiesis
(113).

Of note, a specific impact of angiocrine signaling on epithelial
barrier functions was observed in retina development (116).
Endothelial cells secrete factors that remodel the retinal pigment
epithelium (RPE) basement membrane and integrin receptors
sense these changes by triggering GTPase signals that modulate
RPE tight junctions and enhance RPE barrier function (116).
Similar parenchymal cell barrier regulatory mechanisms may be
active in other organs.

Altogether, angiocrine factors are involved in tumorigenic,
homeostatic, regenerative and morphogenetic processes in a
paracrine or juxtacrine manner. The term “angiocrine” factors
meanwhile includes secreted andmembrane-bound inhibitory or
stimulatory growth factors, trophogens, chemokines, cytokines,
extracellular matrix components, exosomes and other cellular
products (117). The angiocrine profile of endothelial cells can
differ between tissues, reflecting the diversity of cell types found
adjacent to endothelial cells in organs (113, 117).

THE IMPACT OF ANGIOCRINE SIGNALING
ON EPITHELIAL BARRIER FUNCTION IN
IBD

Angiocrine functions in IBD have not been investigated
extensively as yet, despite the manifold effects of angiocrine
signaling on epithelial cell functions in cancer, organ
development and tissue regeneration. However, first results
indicating angiocrine activities in the colon have emerged.
For example, endothelial cells release jagged 1, generated by
proteolytic activity of ADAM metallopeptidase domain 17
(ADAM17) activating Notch in human colorectal cancer cells
and thereby promoting a cancer stem cell phenotype and
chemo-resistance (103, 118). Moreover, it was shown that
selectively endothelial cells isolated from colorectal carcinomas
with a prognostically favorable Th-1-like immune environment
released the matricellular protein secreted protein, acidic
and rich in cysteine–like 1 (SPARCL1), which autocrinely
and paracrinely inhibited angiogenesis and proliferation of
different cancer cell lines (119, 120). The latter indicated that
angiocrine activities in the colon may trigger the course of
diseases in a microenvironment–dependent manner. A recent
single cell RNAseq approach of intestinal cells and subsequent
bioinformatics interaction analyses supported the molecular
interaction between endothelial cells and epithelial cells in the
colon (121).

Specific support for angiocrine functions in IBD was obtained
from a recent report on an increased susceptibility for acute and
chronic DSS-induced colonic inflammation in mice lacking the
angiocrinely active SPARCL1 protein (122). SPARCL1 is almost
exclusively expressed in vascular cells in the colon (119, 123,
124). In SPARCL1 (Sc1) KO animals colonic inflammation and
colon vessel permeability were significantly increased and colon
length was shorter as compared to wildtype animals. Exaggerated
inflammation in Sc1 KO animals was further supported by
an increased detection of fibrosis and the presence of tertiary

lymphoid structures similar to the human chronic disease.
Altogether, these results indicated that intestinal angiocrine
functions may establish a chemical barrier affecting both,
epithelial and endothelial cell barrier functions in IBD (122).

In a next step, we applied a meta-analysis to further
investigate whether angiocrine signaling may impact barrier
functions. To this goal, an in silico secretome screening
against the human proteome was performed using the VerSeDa
database [Vertebrate Secretome Database (125)]. Transcripts
with a prediction cut-off value > 0.8 (SignalP 4.1, TargetP
1.1, SecretomeP) were considered as secreted proteins. The
resulting 1,050 genes (1,959 proteins; 1,959 gene transcripts)
were used for a functional gene and phenotype annotation using
the Ensembl BioMart database (http://www.ensembl.org/index.
html). Next, candidates were selected based on data mining
(inflammatory, angiocrine, epithel, extracellular, endothelial,
barrier, cytokine, bowel, secreted). Subsequently, the resulting
257 genes were mapped to profiles from human endothelial cells
of different origin, including human umbilical vein endothelial
cells (HUVEC) exposed to shear stress (126), under LPS-
stimulation (127), overexpressing γ-interferon-inducible protein
(IFI) 16 (128) and unstimulated (129), as well as endothelial
cells from brain, lung, heart (130) and colorectal carcinoma
(119, 131). This analysis identified in total 28 genes (Table 1). Six
of these may be of specific interest as candidates of angiocrine
barrier effects in IBD (Figure 1B). This includes components of
the von Willebrand factor domain superfamily (VWA1, VWF)
and tissue inhibitor of metalloproteinases (TIMP)-1, which were
retrieved from three different studies, respectively. vWF is a
classical endothelial cell marker protein, that promotes adhesion
of platelets to the sites of vascular injury by forming a molecular
bridge between sub-endothelial collagen matrix and the platelet-
surface receptor complex (132). Its impact on the epithelial
barrier warrants further investigation. TIMP-1 is an inhibitor
of the matrix metalloproteinases (MMPs). It is able to promote
cell proliferation in a wide range of cell types, has an anti-
apoptotic function and can modulate the vascular barrier (133,
134). TIMP-1 may impact the epithelial cell barrier activity
in the gut through these activities. In this framework, it is
interesting thatMMP-14 was also identified by our meta-analyses
as angiocrine mediator. MMP-14 was reported as an angiocrine
factor in lung regeneration and as a member of the membrane-
type matrix metalloproteinases that are not inhibited by TIMP-1
(114, 135). In addition, CXCL10, regarded as a major driver in
IBD pathogenesis (6), was also identified as angiocrine mediator
in our meta analyses. In the DSS-model blockade of CXCL10
enhanced crypt cell survival (136) and mice with a knock out
of the CXCL10 receptor CXCR3 showed considerably lower
crypt damage (137). Based on these findings it was suggested
that CXCL10 may exert direct effects on epithelial cells in the
gut (138).

The bioinformatical analysis showed that the overlap of
genes retrieved from the different studies was low. This
is well in agreement with the high variation of activation
and organ-dependent plasticity of endothelial cells. In this
framework, the six genes identified in endothelial cells from
colorectal carcinoma may exhibit the highest relevance for IBD

Frontiers in Medicine | www.frontiersin.org 5 August 2021 | Volume 8 | Article 643607

http://www.ensembl.org/index.html
http://www.ensembl.org/index.html
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


S
tü
rzle

t
a
l.

A
n
g
io
c
rin

e
R
e
g
u
la
tio

n
o
f
E
p
ith

e
lia
lB

a
rrie

r

TABLE 1 | Angiocrine barrier-modulating candidate genes in inflammatory bowel disease.

Gene Full name

(according to

GeneBank)

Alias

(GeneBank)

GeneID

(GeneBank)

Burghoff

et al. (126)

Tunica

et al. (129)

Kwon

et al. (127)

Jambusaria

et al. (130)

Baggetta

et al. (128)

Naschberger

et al. (119)

CLU Clusterin AAG4, APO-J, APOJ, CLI, CLU1, CLU2,

KUB1, NA1/NA2, SGP-2, SGP2, SP-40,

TRPM-2, TRPM2

1191 x

CST3 Cystatin C ARMD11, HEL-S-2 1471 x

FBN2 Fibrillin 2 CCA, DA9, EOMD 2201 x

GDF15 Growth differentiation factor 15 GDF-15, MIC-1, MIC1, NAG-1, PDF, PLAB,

PTGFB

9518 x

MGP Matrix Gla protein GIG36, MGLAP, NTI 4256 x x

EDN1 Endothelin 1 ARCND3, ET1, HDLCQ7, PPET1, QME 1906 x

IGF2 Insulin like growth factor 2 C11orf43, GRDF, IGF-II, PP9974, SRS3 3481 x x

TIMP1 TIMP metallopeptidase inhibitor 1 CLGI, EPA, EPO, HCI, TIMP, TIMP-1 7076 x x x

LOXL2 Lysyl oxidase like 2 LOR, LOR2, WS9-14 4017 x x

CST1 Cystatin SN - 1469 x

A2M Alpha-2-macroglobulin A2MD, CPAMD5, FWP007, S863-7 2 x

MMP14 Matrix metallopeptidase 14 MMP-14, MMP-X1, MT-MMP, MT-MMP 1,

MT1-MMP, MT1MMP, MTMMP1, WNCHRS

4323 x

FBLN1 Fibulin 1 FBLN, FIBL1 2192 x

VWF Von Willebrand factor F8VWF, VWD 7450 x x

PDIA3 Protein disulfide isomerase family A

member 3

ER60, ERp57, ERp60, ERp61, GRP57,

GRP58, HEL-S-269, HEL-S-93n, HsT17083,

P58, PI-PLC

2923 x

WFDC2 WAP four-disulfide core domain 2 EDDM4, HE4, WAP5, dJ461P17.6 10406 x

BSG Basigin (Ok blood group) 5F7, CD147, EMMPRIN, EMPRIN, HAb18G,

OK, SLC7A11, TCSF

682 x

CXCL10 C-X-C motif chemokine ligand 10 C7, IFI10, INP10, IP-10, SCYB10, crg-2,

gIP-10, mob-1

3627 x

PTGDS Prostaglandin D2 synthase L-PGDS, LPGDS, PDS, PGD2, PGDS,

PGDS2

5730 x

SAA2 Serum amyloid A2 SAA, SAA1 6289 x

SAA1 Serum amyloid A1 PIG4, SAA, SAA2, TP53I4 6288 x

ICAM1 Intercellular adhesion molecule 1 BB2, CD54, P3.58 3383 x x

SPARCL1 SPARC like 1 MAST 9, MAST9, PIG33, SC1, hevin 8404 x x

VWA1 Von Willebrand factor A domain

containing 1

WARP 64856 x x

FGFR1 Fibroblast growth factor receptor 1 BFGFR, CD331, CEK, ECCL, FGFBR,

FGFR-1, FLG, FLT-2, FLT2, HBGFR, HH2,

HRTFDS, KAL2, N-SAM, OGD, bFGF-R-1

2260 x

PTGS1 Prostaglandin-endoperoxide

synthase 1

COX1, COX3, PCOX1, PES-1, PGG/HS,

PGHS-1, PGHS1, PHS1, PTGHS

5742 x

CTSH Cathepsin H ACC-4, ACC-5, ACC4, ACC5, CPSB 1512 x

TNFRSF1B TNF receptor superfamily member

1B

CD120b, TBPII, TNF-R-II, TNF-R75, TNFBR,

TNFR1B, TNFR2, TNFR80, p75, p75TNFR

7133 x
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(see Table 1). Interestingly, SPARCL1, which has been shown
to affect susceptibility to experimental colitis in mice was part
of this group (122). In summary, this analysis identified several
interesting candidates, which may participate in the angiocrine
inter-barrier communication in IBD. These factors may provide
putative new targets for treatment of the disease. The specific
impact of most of these factors on the epithelial barrier functions
has to be determined in future studies.

CONCLUSION

First evidence exists that the gut-vascular barrier (GVB)
communicates via angiocrine signals with the epithelial barrier
during IBD. The molecules involved in this communication may
provide new targets for clinical monitoring and treatment of the
disease. In-depth elucidation of the underlying effects and the
specific mechanisms warrants further studies.
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