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The coronavirus disease 2019 (COVID-19) pandemic has caused considerable

socio-economic burden, which fueled the development of treatment strategies and

vaccines at an unprecedented speed. However, our knowledge on disease recovery

is sparse and concerns about long-term pulmonary impairments are increasing.

Causing a broad spectrum of symptoms, COVID-19 can manifest as acute respiratory

distress syndrome (ARDS) in the most severely affected patients. Notably, pulmonary

infection with Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), the

causing agent of COVID-19, induces diffuse alveolar damage (DAD) followed by fibrotic

remodeling and persistent reduced oxygenation in some patients. It is currently not

known whether tissue scaring fully resolves or progresses to interstitial pulmonary

fibrosis. The most aggressive form of pulmonary fibrosis is idiopathic pulmonary

fibrosis (IPF). IPF is a fatal disease that progressively destroys alveolar architecture

by uncontrolled fibroblast proliferation and the deposition of collagen and extracellular

matrix (ECM) proteins. It is assumed that micro-injuries to the alveolar epithelium

may be induced by inhalation of micro-particles, pathophysiological mechanical stress

or viral infections, which can result in abnormal wound healing response. However,

the exact underlying causes and molecular mechanisms of lung fibrosis are poorly

understood due to the limited availability of clinically relevant models. Recently, the

emergence of SARS-CoV-2 with the urgent need to investigate its pathogenesis

and address drug options, has led to the broad application of in vivo and in vitro

models to study lung diseases. In particular, advanced in vitro models including

precision-cut lung slices (PCLS), lung organoids, 3D in vitro tissues and lung-on-chip

(LOC) models have been successfully employed for drug screens. In order to

gain a deeper understanding of SARS-CoV-2 infection and ultimately alveolar tissue
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regeneration, it will be crucial to optimize the available models for SARS-CoV-2 infection

in multicellular systems that recapitulate tissue regeneration and fibrotic remodeling.

Current evidence for SARS-CoV-2 mediated pulmonary fibrosis and a selection of

classical and novel lung models will be discussed in this review.

Keywords: COVID-19, interstitial pulmonary fibrosis, SARS-CoV-2, alveolar regeneration, organoids, lung-on-chip,

precision-cut lung slices, in vitro lung models

INTRODUCTION

Coronavirus disease 2019 (COVID-19) is a zoonotic disease
caused by the novel Severe Acute Respiratory Syndrome
coronavirus 2 (SARS-CoV-2). SARS-CoV-2 is the seventh
coronavirus known to infect humans. Human coronavirus
strains HKU1, OC43, NL63 and 229E cause mild symptoms
similar to the common cold, while SARS-CoV and Middle
East Respiratory Syndrome coronavirus (MERS-CoV) can result
in severe viral pneumonia with a high mortality and have
been responsible for two epidemic outbreaks in the twenty-
first century (1). Compared to SARS-CoV and MERS-CoV,
SARS-CoV-2 is more easily transmitted from human to human
which has allowed it to evolve into a worldwide pandemic
(2). SARS-CoV-2 enters the human body via the respiratory
tract and reaches its initial main target organ, the lung.
About one-fourth to one-third of hospitalized patients develop
severe complications and require treatment in the intensive
care unit for ∼10 days or longer (3, 4), which risks a global
collapse of the health care system. Countermeasures including
curfews to limit the spread of SARS-CoV-2 have caused
dramatic economic losses (5). Despite improved management
of critically ill patients (6) this situation can only be resolved
by effective treatment strategies and COVID-19 vaccines. Four
COVID-19 vaccines have already been approved in Europe
(ema.europa.eu) and various other vaccines are currently being
developed or have entered late-phase clinical trials (7). In
parallel, inhibitory compounds are tested for re-purposing (8,
9). In vitro models of the respiratory tract have significantly
contributed to screening for promising drug candidates such

Abbreviations: α-SMA, α-smooth muscle actin; ACE2, angiotensin-converting
enzyme 2; ALI, air-liquid interface; AMφ, alveolar macrophage; APN,
aminopeptidase N; ARDS, Acute Respiratory Distress Syndrome; ATI, type
I alveolar epithelial cell; ATII, type II alveolar epithelial cell; COVID-19,
coronavirus disease 2019; CT scan, computed tomography scan; DAD, diffuse
alveolar damage; DPP4, dipeptidyl peptidase 4; ECM, extracellular matrix; FITC,
fluorescein isothiocyanate; hPSC, human pluripotent stem cell; IFN, interferon; IL,
interleukin; ILD, interstitial lung disease; IPF, idiopathic pulmonary fibrosis; LOC,
lung-on-chip; MERS, Middle East Respiratory Syndrome; MERS-CoV, Middle
East Respiratory Syndrome coronavirus; MUC5B, mucin-5B; NRP1, neuropilin-1;
NRP2, neuropilin-2; PCLS, precision-cut lung slices; PCSK, proprotein convertase
subtilisin kexin; PDGF, platelet-derived growth factor; RBD, receptor-binding
domain; RTC, replication and transcription complex; S protein, spike protein;
SARS, Severe Acute Respiratory Syndrome; SARS-CoV, Severe Acute Respiratory
Syndrome coronavirus; SARS-CoV-2, Severe Acute Respiratory Syndrome
coronavirus 2; SP-A, surfactant protein A; SP-C, surfactant protein C; TEER,
transepithelial electrical resistance; TERC, telomerase RNA component; TERF-1,
telomeric repeat-binding factor 1; TERT, telomerase reverse transcriptase; TGF-β,
transforming growth factor β; TLC, total lung capacity; TMPRSS2, transmembrane
protease serine subtype 2; TNF-α, tumor necrosis factor α.

as remdesivir, camostat, imatinib, and Retro-2.1 and have
helped elucidating the molecular mechanisms of host-pathogen
interactions in more detail (10–15). Increasing knowledge about
the course of COVID-19 raised concerns regarding its long-
term consequences. Experts warn that SARS-CoV-2 might cause
long-lasting or persisting interstitial pulmonary fibrosis, an
incurable clinical condition marked by abnormal fibrogenesis
in the alveolar wall resulting in a progressive reduction of
pulmonary function and gas exchange in the lung (16). Recent
studies show that severe or critically ill COVID-19 survivors
have reduced diffusion capacity and oxygenation levels compared
to mildly or moderately sick patients 4 months after infection
(17). Whether these impairments resolve, remain or evolve into
persisting pulmonary fibrosis is currently unknown.

This review focuses on the clinical course of COVID-19 in
the lung and relates the pathology to the underlying molecular
biology. Furthermore, we will discuss interstitial pulmonary
fibrosis, with idiopathic pulmonary fibrosis (IPF) as the worst
example, and how COVID-19 may lead to pulmonary fibrosis.
Finally, we will review available in vivo and in vitromodels of lung
fibrosis and SARS-CoV-2 infection to propose the most suited
advanced in vitro models for studying COVID-19-associated
pulmonary fibrosis.

PATHOGENESIS OF COVID-19 IN THE
LUNG

Fundamental Processes of Breathing: The
Biology and Regeneration of the Lung
Epithelium
The respiratory tract is continuously exposed to inhaled particles
and pathogens. Therefore, it is lined by a highly specialized
epithelium, which can be divided into conducting airways and
alveoli based on their location and primary function. The
pseudostratified epithelium in the proximal airways harbors
secretory club and goblet cells, which produce a protective layer
of mucus toward the lumen. The terminally differentiated ciliated
cells convey the mucus layer upwards to clear trapped particles.
Basal cells are able to differentiate into secretory or ciliated cells
and are therefore considered to represent the progenitor cells
of the airway epithelium, though most cell types of the airway
epithelium are highly plastic [(18); Figure 1A]. On the distal end,
the conducting airways branch into bronchioles and ultimately
in the alveoli. These sac-shaped units represent one of the
largest body surfaces in constant contact with the environment
essential for efficient gas exchange. About 95% of the alveolar
surface is covered by highly specialized flattened type I alveolar
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epithelial (ATI) cells (19). They form an ultra-thin epithelial-
blood barrier with the pulmonary microvasculature endothelial
cells, supporting efficient oxygen and CO2 passive diffusion (20).
Together with ATI cells, type II alveolar epithelial (ATII) cells
are the main constituents of the highly differentiated alveolar
epithelium, which closely interacts with surrounding cells in
the niche including alveolar macrophages (AMφ), microvascular
cells, and fibroblasts (Figure 1B).

ATII cells are cuboidal cells often located at the edges of
the alveolar sacs and, as opposed to the flat and large ATI
cells, account for a small fraction of the alveolar surface. ATII
cells produce pulmonary surfactant, a lipid-protein complex with
exceptional surface tension lowering properties (21). By doing
so, they sustain the breathing function and protect the delicate
alveolar structure from collapsing upon exhalation (21). ATII
cells also have a role in innate immunity and take part in
surfactant recycling. But most importantly, ATII cells are capable
of self-renewal and differentiation into ATI cells, which allows
re-epithelization upon injury [reviewed in (22)].

Already in 1977,Mason andWilliams termedATII cells as “the
defender of the alveolus” for their central role in lung homeostasis
(23). However, what exactly defines an ATII cell has been a
matter of discussion for years (24). In vitro, isolated human
ATII cells behave as facultative stem cells giving rise to alveolar
organoids containing multiple cell types (25, 26). Recent studies
have suggested that different ATII subtypes may coexist within
what has been classically considered as ATII cells, including the
proposed alveolar epithelial progenitors comprising TM4SF1+

cells which are highly responsive to Wnt signaling (26).
Rising evidence supports the role of other cell types in

alveolar tissue repair together with ATII cells. A subset of
Hopx+ ATI cells has been suggested as a source of ATII
cells via transdifferentiation upon injury (27). Other studies
have proven that a rare basal-like p63+ Krt5+ epithelial cell
population migrates to sites of injury in the distal lung to re-
create the damaged barrier in the mouse [reviewed in (28)].
In humans, such a population has not been found to date, but
bronchiolization is a common histologic finding after injury. In
addition, the contribution of basaloid cells in the repair process
is supported by the finding of basaloid cells in the damaged
areas of patients suffering from IPF, an aggressive form of
progressive interstitial pulmonary fibrosis with unknown cause,
although several risk factors have been identified [reviewed in
(28)]. Recently, EpCAM+ CD73+ epithelial cells, which localize
at the basal membrane of the respiratory and alveolar epithelium,
have also been suggested as progenitors for both, pseudostratified
mucociliary and mature alveolar epithelium in the postnatal and
adult human lung (29).

Further, the contribution of stromal cells to ATII cell stemness
maintenance and tissue repair cannot be neglected. Lung
fibroblasts have been shown to support progenitor ATII cell
characteristics in vitro and in vivo in mice (25, 30, 31) and
human (25), underscoring the relevance of Wnt signals as
determinants for ATII cell fate. On the other hand, fibroblasts,
and myofibroblasts are also responsible for extracellular
matrix (ECM) deposition and wound closure upon alveolar
injury (32).

In summary, repair in the alveolar epithelium is characterized
by an acute inflammatory phase, progenitor differentiation and
migration, wound closure and finally, resolution (33). Upon
injury, ATII cells behave as facultative stem cells and activate
their regenerative response becoming hyperplastic. These ATII
cells will either self-renew, migrate to the site of injury and
differentiate into ATI cells, or undergo apoptosis. These processes
depend on the balance of different mediators and a complex cell-
cell crosstalk in which stromal cells and AMϕ are crucial players
(34). Some studies point at the pro-inflammatory and oxidative
environment as a driving force for differentiation and repair
in the mouse [reviewed in (22)], with Wnt signaling as a key
regulator for ATII cell differentiation (35). Further, the relevance
of ATII cells in the repair process is highlighted by studies
in which ATII-targeted damage or cellular intrinsic alterations,
rather genetic or due to aging, lead to aberrant tissue remodeling
(36, 37).

It is also important to consider that the lung is subject
to mechanical stress and deformation which is essential for
several key biological events such as lung development (38)
and pulmonary surfactant secretion (39–41). The correlation
between alveolar inflation to the corresponding increase in
alveolar surface area is still debatable. Nevertheless, during restful
breathing, also termed as tidal breathing (defined as 40–80%
of TLC, total lung capacity), alveolar linear strain has been
suggested to go from 4 to 10% (42–45), up to even higher than
20% during exercise or deep sighs (42, 43, 45, 46). Hence, local
mechanical tension and stiffness changes which occur along the
repair process converge with the forces supporting breathing
(38). In fact, breathing-like cyclic strain has been proven to
influence the regenerative epithelial response as shown by wound
closure experiments in vitro (47–51). Mechanical ventilation with
high tidal volumes, on the other hand, has been observed to
amplify lung damage in animal models and in ventilated patients
suffering from different respiratory pathologies (52, 53). In fact,
mechanical stress has been suggested as an important factor
for fibrogenesis (54). Considering this, protective ventilation
protocols have been adopted to prevent ventilation-associated
lung injury in COVID-19 patients (55).

Besides stretch, the alveolar niche sustains other mechanical
forces such as shear stress and surface tension. At the alveolar
epithelium, surface tension, and the so-called interfacial stress
dominate particularly at low volumes (45). These forces stem
from the continuous change in area exposed to the air, its
associated fluid oscillation and cell-induced deformation (45).
Interfacial stress alone has been observed to be deleterious
for ATII cells in vitro, however, it has been also proven to
constitute a powerful signal for pulmonary surfactant release
in addition to cyclic stretch (56, 57). Pulmonary surfactant
efficiency in lowering surface tension is tightly associated to its
lipid and protein composition, which adapts very quickly to meet
different respiratory demands (58, 59), and has been suggested
to be refined along breathing cycles in a mechanism assisted
by surfactant proteins (60–64). In the context of surfactant
exhaustion, higher surface tension may then act as a trigger
for further surfactant release to restore alveolar homeostasis.
This system fails in pathological conditions in which aberrant
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FIGURE 1 | SARS-CoV-2 infection in the respiratory tract. (A) In the pseudostratified epithelium of the airways, secretory goblet, and club cells produce mucus, which

is transported by ciliated cells to clear trapped particles and protect the lung from micro-injuries and infection. Basal cells reside at the lamina propria and comprise

progenitor cells. The composition and frequency of the individual cell types is variable among the distinct anatomical sites in the nose, trachea, bronchi, and

bronchioles. (B) The alveolar epithelium is specialized for gas exchange with flattened ATI cells forming an ultra-thin (∼2µm) epithelial-endothelial barrier allowing

oxygen and CO2 diffusion. Cuboidal ATII cells are considered as progenitor cells of ATI cells and fulfill vital functions by the production of pulmonary surfactant (PS),

which lowers surface tension and prevents alveolar collapse. Lung fibroblasts are essential to maintain the ATII stem cell niche. Resident alveolar macrophages (AMϕ)

and immune cells defend the epithelium from infection. (C) SARS-CoV-2 initially infects the airway epithelium. The virus can efficiently replicate in ciliated and secretory

cells resulting in the shedding of high viral titers and mild to moderate COVID-19 symptoms. (D) The respiratory epithelium exhibits differential susceptibility to

SARS-CoV-2 infection. In correlation with ACE2 expression, SARS-CoV-2 infection is most efficient in the upper airways, particularly in the nasal epithelium. Infectivity

gradually decreases toward the alveoli. However, when SARS-CoV-2 reaches the alveoli it can result in severe manifestation of COVID-19. (E) Upon reaching the

alveoli, SARS-CoV-2 infects alveolar epithelial cells and endothelial cells and causes viral pneumonia. Cytopathic effects of SARS-CoV-2 are evident as syncytial and

apoptotic alveolar epithelial cells resulting in the breakdown of pulmonary surfactant and barrier integrity. In some patients, alveolar damage culminates in

life-threatening microvascular activation and an imbalanced immune response. Tissue regeneration takes place already during acute COVID-19 as indicated by fibrin

deposition, ATII cell hyperplasia and alveolar wall thickening. Moreover, severely ill COVID-19 patients exhibit radiological signs of fibrosis even months after recovery

indicative for the induction of COVID-19-associated fibrosis. ACE2, angiotensin-converting enzyme 2; ATI cell, type I alveolar epithelial cell; ATII cell, type II alveolar

epithelial cell; COVID-19, coronavirus disease 2019; End. cell, endothelial cell; AMϕ, alveolar macrophage; PS, pulmonary surfactant; SARS-CoV-2, severe acute

respiratory syndrome coronavirus 2.

surfactant composition (65–67) contributes to associated higher
surface tension and repetitive tissue damage (54), thus stressing
the relevance of surfactant and ATII as a secreting cell in addition
to its role in repair.

Altogether, this evidence highlights the complexity of alveolar
epithelial repair and the central role played by ATII cells. Hence,
we speculate that targeted ATII cell injury such as that caused
by SARS-CoV-2 infection may increase alveolar susceptibility

to injury and aberrant tissue repair, with severe long-term
consequences even after disease resolution.

Molecular Mechanisms of SARS-CoV-2
Infection in the Lung
The initial step of coronavirus infection involves binding of
the viral spike (S) protein to the compatible receptor on the
surface of the target cell (68). Like the closely related SARS-CoV,
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SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) as
an essential entry receptor into human cells. In contrast to
SARS-CoV, the receptor binding domain (RBD) of SARS-CoV-
2 S protein even exhibits higher binding affinity for human ACE2
(69–72) but seems to be less exposed possibly enabling immune
evasion (70). As a consequence, ACE2 affinity of SARS-CoV and
SARS-CoV-2 full-length S protein is comparable enabling both
viruses to attach to human ACE2 but not to other coronavirus
entry receptors such as aminopeptidase N (APN) and dipeptidyl
peptidase 4 (DPP4) (11, 73, 74).

Subsequently, proteolytic cleavage of the S protein exposes
the fusion domain and enables virus entry into the host
cell (75). Multiple proteases can fulfill this function such as
transmembrane protease serine subtype 2 (TMPRSS2) and
cathepsin B/L in case of SARS-CoV (76–79) or TMPRSS2,
cathepsin L, and Furin for MERS-CoV (80, 81). Strong evidence
for SARS-CoV-2 S protein priming by TMPRSS2 and cathepsin L
has been gathered in vitro (11, 69, 82).

Therefore, cells co-expressing ACE2 and TMPRSS2 can
potentially be infected by SARS-CoV-2. Single cell RNA
sequencing data analysis has revealed ACE2 expressing cells in
multiple organs, though it is generally expressed at low levels.
This suggests that ACE2 expression is the limiting factor for
SARS-CoV-2 infection (83, 84). However, enriched expression
of ACE2 protein and co-expression with TMPRSS2 potentially
renders alveolar epithelial cells and enterocytes particularly
vulnerable to SARS-CoV-2 (83–85). Accordingly, SARS-CoV-
2 RNA is detected prominently in the respiratory tract but
occasionally also in the feces and blood of COVID-19 patients
(86–88). In the respiratory tract, SARS-CoV-2 is detected
in diagnostic samples and tissue specimens from different
anatomical sites implying that it can replicate throughout the
airway and lung epithelium (74, 89–91). Despite overall low
ACE2 expression levels in the respiratory tract, about 20% of
lung cells have been found to express ACE2 mRNA (82). The
highest levels of ACE2 are reached in the nasal epithelium
and gradually decrease from the proximal airways toward the
distal lung (82, 83, 92). Accordingly, viral yields are higher
in nasal swabs than throat swabs indicating that the nasal
epithelium is the initial site of SARS-CoV-2 infection, replication,
and shedding (74). The infection can propagate further as
ACE2 and TMPRSS2 expression is found throughout the airway
epithelium, particularly in ciliated and secretory cells (83, 92).
Correspondingly, ciliated cells and goblet cells in the trachea
and bronchi are efficiently infected by SARS-CoV-2, whereas
basal cells are permissive for SARS-CoV-2 to a lower extent
[(13, 14, 82, 93, 94); Figure 1C]. The finding that SARS-CoV-2
does not infect ciliated cells of distal lung organoids but exhibits
a strong tropism for club cells seems contradictory (95). However,
the cell tropism of SARS-CoV-2 might shift among different
anatomical sites given the highly variable infection efficiencies
reported for in vitro cultured ciliated, goblet and club cells
(14, 82, 95). Moreover, ACE2 is upregulated upon interferon
(INF) stimulation to protect the tissue during acute lung injury
(96). Despite inducing an imbalanced immune response and
delayed IFN signaling (97), we cannot rule out that SARS-CoV-2
infection itself might trigger INF-mediated upregulation of ACE2

promoting infection. Taken together, it is likely that SARS-CoV-2
initially infects and replicates in the nasal epithelium, particularly
in ciliated cells, achieves high titers in the proximal airways and
reaches the alveoli by aspiration through the airways [(74, 82, 90);
Figure 1D].

In the alveoli, SARS-CoV-2 can be detected in ATI and ATII
cells, endothelial cells and immune cells of deceased COVID-
19 patients, which is in line with experimental findings from
3D in vitro models (82, 95, 98–101). Infection of ATI cells,
endothelial cells and alveolar immune cells presumably results
in a disturbed immune response and persistent inflammation
(98–100). However, based on the analysis of single cell RNA
sequencing datasets and in vitro infectivity experiments it has
been suggested that ATII cells represent the primary target of
SARS-CoV-2 in the alveoli [(82, 83, 92, 95, 100–102); Figure 1E].
Notably, increased susceptibility of an ATII cell subpopulation
has been consistently reported by in vitro studies (99, 101). Gene
expression profiling revealed an apoptotic signature and a strong
downregulation of ATII-specific genes including surfactant
proteins in heavily infected ATII cell models (101–103). In
line with in vitro data, the induction of apoptotic pathways
paralleled by a significant downregulation of surfactant protein
transcripts is also apparent in ATII cells of COVID-19 patients
(103) suggesting that SARS-CoV-2 infection results in the loss of
ATII cell identity and function. Ultimately, this potentially leads
to reduced surfactant production and consequently, alveolar
collapse, massive tissue damage, and scaring (54). Therefore,
further investigations on this fatal course of the disease are
critical. To date, it is unclear whether these highly infected cells
secrete viral particles, what are the immunological and clinical
consequences and why a subpopulation of ATII cells seems to
be more vulnerable than others. Possibly, SARS-CoV-2 relies
on different entry mechanisms among different cell types and
subsets. For example, it has been shown that TMPRSS2 is critical
for SARS-CoV-2 entry in ATII cells but cathepsin B/L seems to
be dispensable (102). Furthermore, as opposed to SARS-CoV,
SARS-CoV-2 can exploit a wider range of host factors for cell
entry, which can act synergistically with initial ACE2 attachment
and TMPRSS2 cleavage. Detailed resolution of the sequence
and structure of SARS-CoV-2 S protein has revealed only 73%
similarity to SARS-CoV S protein RBD (104) and the presence
of a multibasic site at the S1/S2 subunit boundary of SARS-CoV-
2 S protein, which creates a novel furin cleavage site (70, 71, 105).
Accordingly, furin overexpression enhances SARS-CoV-2 uptake
(82) and has a cumulative effect with TMPRSS2 and cathepsin L
on virus entry (70). Processing of the SARS-CoV-2 S protein by
furin or other members of the proprotein convertase subtilisin
kexin (PCSK) family might be highly relevant during SARS-CoV-
2 infection of ATII cells as a recent meta-analysis of human lung
single-cell RNA sequencing datasets has demonstrated significant
co-expression of ACE2 and PCSK proteases in lung cells (85).
Importantly, S protein processing by furin generates a RRAR
motif at the S1 C-terminus which is able to bind to Nuropilin-
1 (NRP1) and Nuropilin-2 (NRP2) (106). While ACE2 is still
required for initial attachment of the virus to the cell surface,
NRP1 depletion significantly reduces SARS-CoV-2 uptake (106).
Notably, deletion of the multibasic S1/S2 site in SARS-CoV-2 S
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protein decreases the infection efficiency in human lung cells
(105) and attenuates pathogenicity in animal models (107).
Whether this is due to the loss of interaction with NRP1 and
NRP2 remains to be demonstrated. However, NRP1 and NRP2
are upregulated in the lung tissue of COVID-19 patients (108),
which might promote disease progression.

These data indicate that ACE2 expression is critical for SARS-
CoV-2 infection and mediates initial attachment (71, 105). At
the same time, activation of SARS-CoV-2 S protein by TMPRSS2,
cathepsin L, and furin allows it to interact with surface molecules
other than ACE2 (70, 106). This is likely to confer wider tissue
tropism and promotes transmissibility of SARS-CoV-2. Once
SARS-CoV-2 has entered the host cell and released its positive-
sense single-stranded RNA genome into the cytoplasm, viral non-
structural proteins are translated to generate the viral replication
and transcription complex (RTC). Furthermore, coronavirus
proteins hijack the translation machinery of the host cell and
favor translation of viral mRNA over cellular mRNA, inhibit
the innate antiviral IFN response and interfere with normal cell
function (109). Infection of alveolar cells potentially results in the
most critical disease manifestation due to abrogation of ATII cell
function and stimulation of an inflammatory response.

Acute Pathologic Manifestation of
COVID-19 in the Lungs
SARS-CoV-2 infection results in a complex symptomatology
associated with mild, moderate and severe illness or might even
take an asymptomatic course (110–113). In non-hospitalized
patients testing positive for SARS-CoV-2 infection, the most
prevalent symptoms include cough, dyspnea, loss of smell or
taste, fever and chills, myalgia, headache, body aches, sinus
congestion, sore throat, nausea, diarrhea and dizziness (110, 111).
Surprisingly, subclinical lung opacities and diffuse consolidation
have been detected on computed tomography (CT) scans in
more than half of asymptomatic COVID-19 patients (112, 114).
Moreover, histologic alterations in the alveoli including edema,
protein and fibrin exudate, ATII cell hyperplasia and fibroblast
proliferation, inflammatory clusters and multinucleated giant
cells have been reported in two pre-symptomatic cases of
COVID-19 (115). Radiologic lung abnormalities seem to resolve
in mildly to moderately symptomatic COVID-19 patients but
the regeneration process in these patients is scarcely studied
(116, 117).

In contrast, about one-third of patients—mainly elderly men
with underlying comorbidities—have a severe course of the
disease with a high case fatality rate (3, 4, 118–121). Host factors
rather than viral factors seem to be the significant determinants
for disease severity. Pre-existing comorbidities, old age, male
sex, and blood group other than O have been associated with a
higher susceptibility to SARS-CoV-2 and risk for a severe disease
course (118, 119, 122, 123). Furthermore, clinical parameters
at hospitalization are critical predictors of severe illness. These
include elevated levels of coagulation markers (e.g., D-dimers)
in the blood (124) and lymphocytopenia, which correlates with
increased interleukin (IL)-6 and IL-8 levels and a higher risk of

cytokine storm (121). Autopsies have revealed that SARS-CoV-
2 infects multiple organs including upper airways, lung, heart,
kidney, the vasculature and the brain (125) and as a consequence
can manifest extra-pulmonary [reviewed in (126)].

However, most commonly severe COVID-19 patients develop
viral pneumonia and suffer from fever, fatigue, dry cough,
myalgia and dyspnea (3, 4). In these patients, SARS-CoV-2
replicates in the upper airways and the distal lung, where it
causes life-threatening damage to the alveoli (90, 98, 125, 127,
128). Nearly all hospitalized COVID-19 patients present with
ground-glass opacities with or without consolidation on chest CT
scans that gradually worsen before death (3, 4, 119, 120, 129).
Critically ill patients usually develop acute respiratory distress
syndrome (ARDS) (3, 4). ARDS can be provoked by various
direct or indirect pulmonary insults. Infection, including viral
infection, is a major cause for ARDS, being pneumonia the most
common underlying pathology (130). ARDS is defined as the
clinical manifestation of diffuse alveolar damage (DAD) (131).
Correspondingly, typical histologic patterns of DAD including
hyaline membrane formation, fibrin exudates, syncytial alveolar
epithelial cells, diffuse ATII cell hyperplasia and the replacement
of ATI cells by cuboidal ATII-like cells are apparent in the lungs
of deceased COVID-19 patients [(100, 120, 125, 129); Figure 1E].
The recent description of two differential pathologic patterns
in the lungs of deceased COVID-19 patients suggests that
both, direct cytopathic effect of SARS-CoV-2 and a deleterious
inflammatory immune response, can cause fatal alveolar damage
(132). As a consequence, marked hypoxia develops and results
in the enlargement of the pulmonary vasculature, blood vessel
activation and coagulopathies with formation of micro-thrombi
in multiple organs (6, 98, 108, 125). About 2% of hospitalized
COVID-19 patients ultimately succumb to the disease with
respiratory or multi-organ failure as a major cause of death (127,
128, 133). However, it is currently not known whether severely
affected COVID-19 survivors will fully recover or may suffer
from complications in the resolution phase of ARDS. First results
after 4 months indicate that the diffusion capacity is reduced in
COVID-19 patients after severe or critical disease (17).

PULMONARY FIBROSIS: A LONG-TERM
COMPLICATION OF COVID-19?

Alveolar Damage as a Cause of Interstitial
Pulmonary Fibrosis
It has been reported that ARDS can lead to lasting physical
impairment after 5 years of follow up (134), including fibrotic
pulmonary changes as a consequence of abnormal wound
healing (135). Acute alveolar damage (e.g., from viral infection)
is followed by the activation of inflammatory and apoptotic
responses (136, 137). The alveolar epithelial cell damage triggers
a cascade of reactions, including the release of pro-inflammatory
cytokines, to activate local immune responses and controlled
fibroblast proliferation as well as interstitial fibrogenesis, to
initiate primary wound healing mechanisms (138, 139). These
effects will normally be reconstituted by recovery of the basal
lamina, re-epithelialization of the alveolar epithelium (140),
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and the degradation as well as clearance of ECM proteins
(141). A precise and controlled repair mechanism following
alveolar damage is crucial to terminate progression of the lung
remodeling toward pulmonary fibrosis.

However, sustained alveolar injuries together with possible
intrinsic factors, such as genetic mutations [e.g., MUC5B,
SFTPC, TERT/TERC or TERF-1; (142–145)] or an accelerated
aging phenotype (146), can impair the capability of alveolar
epithelial cells to proliferate and orderly cover the defect. This
provokes chronic alveolar damage that can eventually trigger
an uncontrolled fibrotic response (147). This impaired wound
healing can generate a disequilibrium in favor of the pro-fibrotic
factors such as tumor necrosis factor alpha (TNF-α), platelet-
derived growth factor (PDGF) or transforming growth factor
beta (TGF-β), which will mediate the development and further
progression of lung fibrosis (148). Particularly, TGF-β has an
essential role in activating fibrotic mechanisms, inducing the
perpetuation of exaggerated wound repair (149).

The aberrant wound healing response can lead to additional
loss of alveolar epithelial cells by apoptosis (150), induce lung
fibrosis by activation of a pro-fibrotic profile in macrophages
(151) and maintain the unruly activation and regulation
of fibrotic lung fibroblasts mediated by TGF-β (152).
This dysfunctional alveolar re-epithelialization favors the
uncontrolled proliferation of lung fibroblasts and secretion of
ECM proteins that consolidate the fibrotic change (153). Indeed,
viral lung infections can trigger DAD on top of interstitial lung
diseases (ILD) which is a common histological feature in some
stages of ILD progression (154, 155). Given the development
of DAD that manifests as ARDS in severely sick COVID-19
patients, it remains to be investigated whether the alveolar
wound healing response will eventually result in pulmonary
fibrosis and in its worst form IPF.

Emerging Evidence of
COVID-19-Associated Lung Fibrosis
Long-term follow-up data on recovered COVID-19 patients is
currently emerging and insights gained from earlier coronavirus
epidemics can allow to predict likely scenarios. The first
coronavirus epidemic of the twenty-first century has been caused
by SARS-CoV, the causative agent of severe acute respiratory
syndrome (SARS). SARS is an illness that shows typical infection-
related symptoms, including fever and pneumonitis, with a
recovery time in most patients after 1–2 weeks following the
infection. Up to one third of SARS patients can develop
severe pulmonary complications, requiring oxygen therapy
(156). The acute phase of SARS starts with acute lung
damage and edema, bronchiolar sloughing of ciliated epithelial
cells and the deposition of hyaline-rich alveolar membranes,
which clinically manifests with impaired oxygen exchange. A
progressive phase during the following 2–5 weeks is characterized
by fibrin deposition and infiltration of inflammatory cells and
fibroblasts. In the last stage, after 1–2 months, pulmonary fibrosis
consolidates with collagen deposition and fibroblast proliferation
in the interstitial spaces (157–159).

The extent of fibrosis can be a sign of SARS severity and illness
duration, as demonstrated in post-mortem studies (160, 161).
Radiological features of fibrosis after SARS have been observed
at 3 and 6 months after infection in around 30% of the cases,
findings that have been confirmed by another study in survivors
(162). Ground glass opacities were found 1 month after diagnosis
in 45% of SARS patients, underlining the possibility to find early
signs of fibrosis in those patients (163). Moreover, a patient’s age
can also be a critical risk factor in the fibrotic manifestation and
long-term damage as older SARS patients have an increased risk
for lung fibrosis (164).

Another coronavirus infection—the Middle East respiratory
syndrome (MERS), shows a similar clinical outcome as SARS.
However, radiological abnormalities are more common in MERS
(90–100%) than SARS (60–100%), and MERS patients have a
higher incidence of ARDS with a higher case fatality rate (∼36%).
For both diseases, risk factors like age and male sex are associated
with poorer disease outcomes (165).

Early evidence implies that, similarly to SARS and MERS,
fibrotic remodeling and scaring occurs in the lungs of severely
ill COVID-19 patients. An alarmingly large number of COVID-
19 patients reported persistent symptoms, mainly fatigue
and dyspnea, even months after first diagnosis in multiple
independent surveys (166–168). In line, radiological signs of
fibrosis become apparent as early as 3 weeks after diagnosis (169)
and persist over months (170, 171). After 3 months, impaired
diffusion capacity and persisting radiological abnormalities are
observed in many survivors, while others recover completely
(172–176). Further studies are ongoing whether radiological
and functional impairments are chronic and even progressing.
Worrisomely, lung autopsies of deceased COVID-19 patients
have revealed the aberrant localization of mucus to the
alveolar parenchyma, pathologic signs of proliferative DAD and
thickening of the alveolar wall, particularly after a long severe
phase (82, 120, 125). These findings suggest that COVID-19
induces lung abnormalities including cases with pulmonary
fibrosis. Notably, virus-induced cell fusion has been shown to
induce cellular senescence (177). Giant cells are a pronounced
feature in COVID-19 lungs which might be due to furin-
mediated cleavage of the SARS-CoV-2 S protein at the plasma
membrane of ACE2 expressing cells resulting in syncytial alveolar
epithelial cells (98). Potentially, this results in the acquisition of
a senescent alveolar epithelial cell phenotype that can provoke
inflammation and fibrosis (178–180). Moreover, intussusceptive
angiogenesis occurs to a greater extent in pulmonary COVID-19
as compared to influenza A pneumonia, suggesting activation of
tissue regeneration that follows similar patterns as in pulmonary
fibrosis (108).

The possibility to use early anti-fibrotic strategies is currently
being investigated (16). The principal feature of anti-fibrotic
treatment is preventing the worsening of the disease by slowing
down the fibrotic progression in established lung fibrosis, and
potentially influencing the cytokine storm by anti-inflammatory
effects of these drugs (181). Currently, some clinical studies are
investigating both available anti-fibrotic treatments in patients
with COVID-19 (recruiting phase): pirfenidone (NCT04282902,
NCT04607928) and nintedanib (NCT04541680, NCT04619680).
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These results will provide us with new insights into the relevance
of the fibrotic changes in COVID-19 and the effectiveness of
anti-fibrotic treatment to improve the management of those
patients in the future. In parallel, novel treatment strategies
might be discovered in vitro, particularly in light of the recent
advances in the field of ex vivo tissue cultures, lung organoids,
and bioengineered microfluidic devices to study lung fibrosis.

HOW CAN WE STUDY
COVID-19-ASSOCIATED PULMONARY
FIBROSIS?

In vivo and in vitro Models of Pulmonary
Fibrosis
Despite tremendous research efforts for pharmacological
interventions over the past decade, pulmonary fibrosis remains
one of the most challenging diseases to manage clinically.
Although a single model is unable to mirror the progressive
and irreversible nature of lung fibrosis, they provide valuable
mechanistic insights into fibrogenesis. Animal experimental
models have been widely used to understand the complex fibrotic
responses and perform early pre-clinical testing for anti-fibrotic
drugs. Among them, the bleomycin-induced pulmonary fibrosis
model has been most widely used since the 1970’s as the classical
standard and best characterized in vivo fibrosis model (182).
Contrary to human pulmonary fibrosis, bleomycin-induced
fibrosis is temporary, and its inflammatory aspect justified
criticism to accurately represent the pathophysiological process
in IPF. Aside from bleomycin, fluorescein isothiocyanate (FITC)
has also been widely used to induce experimental lung fibrosis
which results in alveolar injury and acute fibrotic reaction that
persist up to 24 weeks. Occupational exposure to environmental
risk factors has been extensively associated with pulmonary
fibrosis (183). Reports suggested that inhalation of silica and
asbestos particles in rats results in fibrotic nodule formation
which closely mimics prominent features of silicosis and
asbestosis in humans with long-term occupational exposure
(184, 185). Additionally, whole thorax irradiation in mice
has been invaluable to study early inflammatory responses in
radiation-induced lung fibrosis (186). It is well-established that
IPF includes genetic predisposition affecting genes encoding
e.g., surfactant protein-C (SP-C) (187), SP-A (188), Mucin-5B
(MUC5B) (189), telomerase reverse transcriptase (TERT),
and telomerase RNA component (TERC) (145). These known
mutations have paved the way for genetically modified animal
models of pulmonary fibrosis. Furthermore, intratracheal
delivery of pro-fibrotic cytokines like TGF-β1 (190), TNF-α
(191), and IL-1β (192) by adenovirus and lentivirus vectors have
been extensively used to recreate mild early inflammation and
rapid onset of lung fibrosis in mouse models. Despite the fact that
animal models cannot fully recapitulate the complex, progressive
and irreversible nature of lung fibrosis in humans, they remain
the first line for preclinical testing in lack of appropriate
alternatives. Nevertheless, animal models have been proven
valuable for gaining a better mechanistic understanding of

fibrogenesis, assessing lung function in the course of pulmonary
fibrosis and performing pharmacokinetic studies (Figure 2).

However, most of our understanding of lung fibrosis
stems solely from in vitro studies, typically relying on the
activation of fibroblasts with pro-fibrotic cytokines in cellular
models. Although in vitro fibrosis models represent a robust
platform to study cell-specific responses to soluble cues in a
controlled setting, cells in vivo are embedded in a complex
3D microenvironment with varied mechanical cues, cell-ECM
interactions, differential polarity, and growth factor gradients.
Given the strong involvement of fibroblasts and ECM in
the pathology of fibrotic diseases, it is particularly important
to maintain tissue architecture in human-derived models of
fibrosis. Fibrotic tissue explants from patients suffering from
a fibroproliferative skin disease, have been shown to retain
viability for several days in ex vivo tissue culture, allowing
to study molecular mechanisms of fibrosis and test novel
therapeutic strategies (193). Recently, precision-cut lung slices
(PCLS) have garnered increasing attention as a novel lung ex
vivo fibrosis model. Overcoming the classical limitation for the
study of human lung cells in 2D cell culture models, PCLS are
able to spatially retain the native lung architecture along with
fundamental ECM composition, stiffness and responsiveness
together with viable lung resident cell populations [(194);
Figure 2]. PCLS derived from healthy lung tissue resections
closely mimic fibrotic-like changes including increased ECM
deposition and alveolar remodeling when induced with a pro-
fibrotic cocktail (195). A study in 2018 has reported that
induction with TGF-β1 resulted in increased deposition of
collagen and ECM proteins in 2 mm3 sections of human lung
parenchymal tissues within 1 week in culture (196). The close
recapitulation of pathologic processes and the possibility to
culture tissue from IPF patients allows to study drug responses
ex vivo. Interestingly, nintedanib and pirfenidone exhibit distinct
anti-fibrotic potential in mouse and human PCLS underscoring
the need for human-derived models of IPF (197). Notch1
inhibition in PCLS derived from IPF patients has shown
significant improvement in surfactant protein processing along
with decreased ECM deposition and an overall reversal of
fibrosis (198). In addition, a study for inhalation-based anti-
fibrotic therapies has utilized advanced 3D printing technologies
to develop a replica for Ear-Nose-Throat which has been
connected to an ex vivo porcine respiratory tract within a sealed
chamber. To mimic fibrosis-related alterations, mechanical
properties of the lung parenchyma have been modified by
reduction of lung compliance and passive ventilation which
allowed them to analyze in vivo aerosol regional deposition
in a fibrosis-mimicking environment (199). Although a key
advantage in using human tissues is the exclusion of cross-species
heterogeneity, the significant limiting factor of ex vivo tissue
culture is the constant need for fresh tissues. Generally, they are
not readily available as the tissues are mostly obtained from “end-
stage” pulmonary fibrosis patients after lung transplantation
or healthy surrounding tissue from tumor resections used for
artificially induced early fibrotic changes ex vivo. Moreover,
the complexities associated with long-term cultivation of the
lung explants makes it difficult to standardize PCLS technique
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FIGURE 2 | Comparison of in vivo and 3D in vitro lung models for COVID-19 and fibrosis research. General aspects of experimental animal models and advanced in

vitro models including PCLS, iPSC-derived organoids, mature organoids, 3D in vitro tissues, and LOC are rated based on similarities to human physiology

(physiological biomechanics, cell heterogeneity, cell differentiation, long-term model, and 3D microenvironment), genetic manipulation (modifications), the possibility for

mechanistic investigations (pathways), and throughput capabilities (throughput). Their applicability to model the diseased state of the lung has been evaluated

separately for COVID-19 and IPF. COVID-19, coronavirus disease 2019; IPF, idiopathic pulmonary fibrosis; iPSC, induced pluripotent stem cells; LOC, lung-on-chip;

µenvironment, microenvironment; PCLS, precision-cut lung slices; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

for high-throughput testing. Nevertheless, PCLS can be useful
to investigate specific aspects of pulmonary fibrosis and viral
infection directly in human lung tissue (Figure 2).

Efforts have been undertaken to generate easily accessible,
controlled model systems that provide structural and cellular
complexity but hold the possibility to increase the throughput.
Different cell types in the lung contribute to the pathology
of fibrosis and hence the choice of the cell system is an
important consideration for in vitro studies (200). Moreover,
recent studies have focused more on using mechanically
tunable substrates over standard extremely stiff (106 kPa) cell
culture plastic dishes. Several studies have demonstrated that
increased substrate stiffness directly influences (myo)fibroblast
activation, differentiation and ECM deposition (201, 202).
Instead, seeding fetal-derived fibroblasts on hydrogel beads
to mimic the structure of alveolar sacs recreates the patchy
areas of myofibroblast proliferation, contraction, and interstitial

thickening upon TGF-β1 stimulation as it is observed in
IPF patients (203). Tests for novel IPF medication and
mechanistic studies on fibroblast invasion of IPF patients
have also been undertaken in self-assembled pneumospheres
comprising heterogeneous cell populations (204). Additionally,
biocompatible and biodegradable cross-linked polymer like
Matrigel is a widely used substrate for 3D lung cell culture and
organoid modeling for fibrosis. A recent study has analyzed
transcriptional signatures of fibrotic lung organoids in order to
identify aberrantly expressed genes (205). While multicellular
organoids closely capture the minute details of cell-cell and
cell-ECM interactions and physiological cellular organization
they lack vasculature and air-liquid interface (ALI) [(206);
Figure 2]. Recently, it has been shown that ALI promotes
differentiation of human pluripotent stem cell (hPSC)-derived
alveolar epithelial progenitor cells into ATII-like cells and
reduces their transdifferentiation into ATI cells, which occurs
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in submerged cultures (207). Stimulation with a pro-fibrotic
cocktail results in the loss of SPC+ ATII cells paralleled
by an increase in MUC5B+ goblet-like cells mimicking the
bronchialization process occurring in the alveoli of IPF patients
(207). However, thesemodels still lack biomechanical stimulation
(Figure 2).

Advanced microfluidic technologies have been able to
overcome these limitations with the development of lung-on-
chip (LOC) devices (208). Organ-on-Chip technology is a new
field emerging only recently as a system to model human tissues
for the application in research and pharmacology. Despite the
development of multiorgan systems, it remains challenging to
apply the technique for gaining insights into systemic effects
and standardize the models for pre-clinical testing. Moreover,
microfluidic systems require the optimization of many factors
such as the ECM, medium and scaffold material to support
optimal cell growth. However, the complexity of Organ-on-
Chip technology is also a chance allowing the modulation of a
variety of biological, physical, and chemical factors in a controlled
and closed system (209). A microfluidic device recreating
the alveolar epithelium in ALI and in close contact with a
microchannel, that is lined by endothelial cells and perfused
with human full blood, has been employed to study pulmonary
vascular inflammation and microthrombus formation (210).
Furthermore, tiny wounds can be induced to the alveolar
epithelium on chip either by trypsin or gastric-like content
to mimic alveolar damage taking place in IPF (211) and
wound-healing (212). Moreover, micro-tissues generated from
human lung fibroblasts have been shown to exhibit enhanced
contractility, stiffness and expression of alpha smooth muscle
actin (α-SMA), pro-collagen, and EDA fibronectin in response
to TGF-β, effects that have been reversed by treatment with
pirfenidone (213).

Due to the importance of cyclic stretch for tissue regeneration
after lung injury, Stucki et al. developed a breathing LOC
model with primary human alveolar epithelial cells and lung
endothelial cells. This system incorporates key mechanical forces
of the alveoli including 3D cyclical stretch (corresponding to
8% linear strain) and surface tension (through the exposure
to ALI) to recreate the complex alveolar microenvironment of
the air-blood barrier [(214, 215); Figure 2]. Further advances
in these models aiming at integrating pathophysiological
stretch and introducing the often-neglected pulmonary
surfactant warrant a bright future for accurate in vitro
models of the alveolus. However, the availability of optimal
biological material (e.g., high-quality tissue specimens
from the relevant anatomical site, high cell viability, and
physiological ECM composition) is often challenging and
therefore requires further methodological advances in cell
culture and tissue processing.

In summary, recent advancements in bio-engineered tissue
and cell culture highlights promising platforms for lung
fibrosis modeling and drug testing in a clinically-relevant setup
(Figure 2). Importantly, lung fibrosis models that are compatible
with SARS-CoV-2 infection models will enable investigations on
the regenerative phase of COVID-19.

Modeling SARS-CoV-2 Infection and
Pathogenesis in the Respiratory Tract
In vivo models of viral infection integrate the full complexity
of virulence factors, local and systemic immune responses and
recovery. Therefore, animal models are particularly useful to test
anti-inflammatory compounds and vaccines to combat infection
(216). However, mice, the most widely available laboratory
animals, are naturally resistant to SARS-CoV-2 infection (217,
218). The inability of SARS-CoV-2 to bind to murine ACE2 (74)
poses the need to study COVID-19 in humanized mouse models
expressing human ACE2 (217–220). SARS-CoV-2 infection in
these mouse models results in weight loss, pneumonia and
pathologic alterations in the lung tissue. However, the organ
tropism and severity of symptoms varies among the models
depending on the promoter to control human ACE2 expression.
Mouse models expressing human ACE2 under the control of
murine ACE2 develop rather mild symptoms and all animals
spontaneously recover (217, 218). In contrast, severe pneumonia
develops in mice expressing human ACE2 under the control
of HFH4 or KRT18 promoter (219, 220). However, it remains
arguable if these models correctly recapitulate SARS-CoV-2
tissue tropism given non-endogenous ACE2 expression patterns.
Alternatively, mutation of the SARS-CoV-2 S protein or serial
passaging in mice generates adapted virus to bind to murine
ACE2 and infect the murine host (221, 222). These models
might better resemble natural host-pathogen interactions in
immunocompetent mice and result in mild pneumonia, however,
it is unclear whether the mechanisms of mouse-adapted SARS-
CoV-2 pathology can be translated to human.

Other animal species are naturally susceptible to SARS-
CoV-2 (223). SARS-CoV-2 infects and replicates in ferrets
but it is restricted to the upper respiratory tract allowing
transmission studies but causing only mild symptoms (224,
225). Natural SARS-CoV-2 infection in golden hamsters and
non-human primates involves the distal lung, however, results
only in mild to modest pneumonitis and all infected animals
spontaneously recover (226–231). Altogether, animal models
recapitulate aspects of human COVID-19 such as an age-related
risk to develop more severe disease as it has been demonstrated
in mice and non-human primates (221, 222, 228, 230, 231).
However, there are important differences between laboratory
animal models and human COVID-19 pathogenesis (Figure 2).
None of the available in vivomodels captures the drastic hypoxia
and associated coagulopathy, vascular inflammation and multi-
organ failure as seen in severely ill COVID-19 patients. Mostly,
SARS-CoV-2 infection takes a milder course in experimental
animals or results in death by different pathologic mechanisms
than in humans. This is likely due to a distinct distribution
and affinity of ACE2 and TMPRSS2 for the SARS-CoV-2 S
protein and fundamental differences in the immune system (232).
Therefore, it is mandatory to complement in vivo data with
findings garnered in vitro from human-derived models.

Essential knowledge about SARS-CoV-2 entry receptors,
replication kinetics and cell-intrinsic immune response has been
gained from in vitro studies using cell lines such as ACE2
overexpressing HeLa cells, the intrinsically IFN-deficient Vero

Frontiers in Medicine | www.frontiersin.org 10 May 2021 | Volume 8 | Article 644678

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Kiener et al. Human-Based Fibrosis and COVID19 Models

E6 green monkey kidney cells or cancer cell lines (11, 74, 233).
However, the relevance of SARS-CoV-2-induced gene expression
changes in lung cancer cell lines such as A549 and Calu-
3 remains arguable since these cells have lost the expression
of Nkx-2.1, which is a master transcription factor for lung
epithelial differentiation (234). Moreover, the lack of native ACE2
expression in some widely studied cell lines (e.g., HeLa, A549)
and the absence of an intrinsic innate IFN response in Vero
E6 cells hinders the assessment of normal physiological anti-
viral responses (74, 235, 236). For this reason, the pathologic
consequences of SARS-CoV-2 infection should ideally be studied
in clinically relevant human cell systems.

Organoids generated from intestine, liver, microvasculature,
kidney and airways are susceptible to SARS-CoV-2 infection.
These studies have provided more comprehensive information
on the SARS-CoV-2 target cell types and innate immune
responses that are elicited by the virus (93, 237–240). Moreover,
they provided functional evidence for the broad tissue tropism
of SARS-CoV-2 as concluded earlier from the in silico analysis
of ACE2 expression patterns among different organs and cell
types (83). Due to the extraordinary difficulty to model the
alveoli in vitro most studies aiming to elucidate the mechanisms
of SARS-CoV-2 infection in its primary replication site have
focused on the nasal, tracheal or bronchial airway epithelium.
Bronchial organoids have been employed to identify target cell
types in the upper airways and develop drug screening protocols.
However, they do not support efficient SARS-CoV-2 infection
(15, 101). This seems to be in disagreement with the higher ACE2
expression and susceptibility to SARS-CoV-2 infection in the
upper airway epithelium as compared to alveoli (82). A possible
explanation for this discrepancymight be the enrichment of basal
progenitor cells in bronchial organoid cultures, which are not
the primary target of SARS-CoV-2. Therefore, ALI cultures are
more suitable to study SARS-CoV-2 in the upper airways. Human
bronchial epithelial cells differentiate into functional ciliated
and secretory cells in ALI cultures to form a pseudostratified
epithelium capable of mucus production and cilia movement
(241). They are efficiently infected by SARS-CoV-2 and produce
high viral titers enabling functional studies and drug screening
[(14, 82, 242); Figure 2]. In addition, a LOC model of the human
bronchial epithelium under constant flow in the blood vessel
chamber has recently been developed to study influenza A virus
and SARS-CoV-2 infection and has led to the identification of
candidate antiviral compounds (243). Hence, drug testing in a
LOC device might further refine the number of candidate drugs
(Figure 2).

In contrast, the alveoli are more challenging to reconstruct.
Freshly isolated ATII cells rapidly transdifferentiate into ATI-
like cells and are gradually lost in 2D in vitro cultures (244).
A more stable ATII cell phenotype can be achieved by deriving
ATII cells from induced hPSCs (245). These ATII cells can be
maintained as organoids for prolonged cell culture but their
main limitation is the fetal gene expression signature (10, 246).
Seeding hPSC-derived ATII cells in ALI monolayers increases the
degree of maturation, facilitates infection from the apical side
and maintains the ATII cells, most likely due to the addition of
the CHIR99021 Wnt agonist to the medium (102). SARS-CoV-2

infection elicits a rapid NF-κB, TNF, IL-6, and IL-2 signaling
driven inflammatory response in infected ATII cells but induces
only a modest and delayed IFN response (10, 102). This indicates
that hPSC-derived ATII cell models capture the intrinsic antiviral
response of ATII cells but not the full spectrum of COVID-19.
Nevertheless, hPSC-derived ATII-like ALI cultures are a useful
tool to study early events of SARS-CoV-2 infection and discover
compounds with anti-viral activity in the alveolar setting (247).
Co-culture models of hPSC-derived lung organoids and hPSC-
derived macrophages indicate that in this setting macrophages
are essential producers of IFN-γ and drive protective or
damaging immune responses (248). A major limitation of hPSC-
derived alveolar models for high-throughput drug testing is
their time- and cost-intensive derivation that involves a multi-
step differentiation protocol [(249); Figure 2]. As a consequence,
hPSC lines are usually generated from a few donors and
maintained for the derivation of ATII cells, which results in a
rather homogeneous genetic background. Therefore, they neglect
individual genetic predispositions such as polymorphisms in
IFN pathway genes or in mucus production and regeneration
which might have an impact on disease severity and the fibrotic
response after acute phase (250–253). A more heterogeneous
cellular composition has been achieved by differentiating fetal
lung-derived SOX2+SOX9+ bud tip progenitor cell organoids
in 2D ALI cultures. They comprise alveolar-like and bronchial-
like cell types and are readily infected by SARS-CoV-2 (254).
However, this model meets similar limitations as hPSC-derived
alveolar models due to the limited access to donor material and
the derivation of differentiated bronchioalveolar ALI cultures
from few organoid lines.

The patient-to-patient variability can be captured by adult
stem cell derived alveolar organoid models. Alveolar organoids
have been generated from HTII-280+-enriched ATII cells (101,
103) or mixed alveolar epithelial cells (13, 100). They maintain
an ATII cell subpopulation during prolonged culture. In the
intact organoids, ACE2 entry receptor faces the lumen while
the basolateral side is exposed to the external milieu. In order
to infect the organoids with SARS-CoV-2, the apical side has
to be exposed either by apical-out polarization in suspension
(95) or mechanical and chemical dissociation for the infection
as single cells (13, 101) or as 2D monolayers (100). In contrast
to hPSC-derived ATII cell monolayers, adult stem cell derived
alveolar organoids nearly entirely lose the ATII cell population
upon culture in 2D monolayers (100). Interestingly, it has been
shown that ATII cells from dissociated organoids preferentially
transdifferentiate into ATI cells in short-term submerged culture
resulting in an alveolar-like epithelium. In contrast, maintaining
the same cells in long-term ALI culture results in the replacement
of alveolar epithelial cells by ciliated and goblet cells to form
a pseudostratified airway-like epithelium (100). Notably, the
authors describe sustained SARS-CoV-2 infection in submerged
alveolar-like monolayers while ALI airway-like monolayers show
a slow initial infection followed by exponential viral replication
starting on day 2 post-infection. Furthermore, an innate immune
response signature that resembles the gene expression signature
in the lungs of deceased COVID-19 patients is induced in
alveolar-like epithelium cultures (100). The authors conclude that
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the proximal airway components of the model are important
for SARS-CoV-2 infectivity, while transdifferentiating alveolar
epithelial cells subsequently recapitulate the host response (100).
Multiple studies have reported the induction of an IFN response
and upregulation of inflammatory (NF-κB) pathways upon
SARS-CoV-2 infection in alveolar organoids (13, 100, 101, 103).
This characteristic allows to study IFN treatment, which has been
administered to COVID-19 patients (255), in a physiologically
relevant site. Interestingly, IFN treatment on alveosphere cultures
induces apoptotic markers, upregulates ACE2 and TMPRSS2
expression and reduces the production of surfactant protein in
ATII cells suggesting a potential positive effect on SARS-CoV-2
propagation. Nevertheless, IFN pre-treatment of alveospheres at
lower doses impairs SARS-CoV-2 infection implying a preventive
effect of IFN treatment in COVID-19 patients (103). Despite
their utility for screening anti-viral and anti-inflammatory
compounds, a major limitation of organoids is the lack of
immune cells, a vascular-epithelial compartment and the ability
to monitor epithelial barrier integrity (Figure 2).

LOC models have been applied in order to capture the
complex physical and cellular microenvironment of the alveoli.
They allow co-culture systems, temporal monitoring of trans-
epithelial electrical resistance (TEER; a measure of barrier
function) and integration of mechanical stretch or shear
stress (256). The first study on SARS-CoV-2 infection in a
bioengineered alveolus has employed an epithelial-endothelial
co-culture approach under shear stress, which resulted in
the differential expression of SARS-CoV-2 entry receptors as
compared to 2D monolayers (99). Interestingly, infection with
low SARS-CoV-2 titers induces a downregulation of NRP1
and ACE2 but an upregulation of TMPRSS2 expression in
alveolar epithelial cells illustrating how multiple factors affect
SARS-CoV-2 susceptibility and contribute to SARS-CoV-2
spread in the distal lung (99). In agreement with inefficient
SARS-CoV-2 infection kinetics in alveolar cultures (13, 82),
unproductive SARS-CoV-2 infection has also been observed
in the alveolar layer in the LOC (99). However, SARS-CoV-
2 infection elicits strikingly different responses among the cell
types in co-culture. The alveolar cell layer remains largely
intact, in line with previous findings in organoid models
(101). In contrast, vascular injury is evident by 3 days post-
infection resulting in damaged barrier function (99). This
study provides evidence that the lung microvasculature is an
essential contributor to model COVID-19 pathology in vitro,
particularly in the maintenance of a prolonged pro-inflammatory
response and IL-6 secretion (99). Disruption of the air-blood
barrier in an alveolus-on-chip SARS-CoV-2 infection model
and translocation of the virus to the vascular compartment
has recently been demonstrated by another group, though the
mechanism of vascular damage seems to be different (257). In
the future, the application of LOC co-culture models will provide
more mechanistic insights into host-pathogen interaction and
inflammation-mediated damage. Moreover, LOC devices are
superior to pure epithelial mono-cultures in predicting the
protective effect of drugs on barrier integrity and inflammation
[(99); Figure 2].

Modeling Alveolar Epithelium
Regeneration and COVID-19-Associated
Fibrotic Tissue Remodeling
Most in vitro studies on COVID-19 have focused on the acute
phase of the disease. However, uncontrolled inflammatory and
early fibrotic signatures are typically found in post-mortem lung
autopsies of COVID-19 patients after a long disease course
(132, 258). Radiologic abnormalities, including small airway
abnormalities, are also found in the lungs of recovering COVID-
19 patients but their consequences on the patient’s quality of
life are of yet unknown (170). Therefore, it will be important to
dissect the sequela of virus clearance, resolution of the immune
response and tissue regeneration in more detail. Unfortunately,
it may take years until large patient cohorts have been followed-
up for a sufficient amount of time to conclude on the clinical
course of fibrotic remodeling. Therefore, it is mandatory to
experimentally study lung fibrosis in the aftermath of COVID-
19 in dedicated SARS-CoV-2 infection models. For this purpose,
a pre-requisite is a model system of the alveoli that supports
multicellular composition including epithelial, mesenchymal and
immune cells and remains stable over an extended period of
time to monitor the acute phase of COVID-19 and subsequent
progression to fibrosis.

Animal models provide the complete tissue
microenvironment and systemic context for temporally
controlled infection. Humanized ACE2 mice develop COVID-19
and pathologic tissue remodeling has been confirmed in their
lungs ∼3 days post-infection (217, 219, 220). These studies have
been conducted in healthy young or old animals, however, other
predispositions than age have not yet been investigated in vivo in
the context of COVID-19. Multiple groups have demonstrated
that viral infection exacerbates IPF in the bleomycin mouse
model (259–261). It will be interesting to investigate COVID-
19-associated fibrosis in bleomycin-induced or genetically
predisposed (e.g., MUC5B, SP-C, and TERT) animal models.
Treatment with anti-fibrotic therapy and prolonged monitoring
will eventually identify effective candidate compounds and
unravel the mechanisms of tissue regeneration after acute lung
injury. Nevertheless, it is questionable that these findings can
directly translate to human COVID-19 due to the fundamental
differences in lung architecture, regeneration, and immune
response [(262); Figure 2]. Pre-clinical drug testing is expected
to be more accurate in macaques due to the phylogenic proximity
to humans (228, 263). However, few animal experiments are
performed in non-human primates due to logistic, financial,
and ethical concerns posing the need for reliable in vitro
infection models.

With intact alveolar structures and preserved local immune
responses, PCLS from animals have proven their utility in
the study of viral infection such as influenza A viruses (264).
Although pulmonary explants of human proximal and distal
airways are susceptible to SARS-CoV-2 infection (265), PCLS
technique has not yet been used to investigate COVID-19.
Hence, PCLS can be potentially employed to study the action
of anti-fibrotic agents within SARS-CoV-2-infected alveolar
epithelium. For instance, senolytic combination treatment
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(dasatinib and quercetin) possesses anti-fibrotic activity in
mouse PCLS (266) and might be an interesting treatment
strategy in the context of COVID-19 given the acquisition of
a senescence-like phenotype in SARS-CoV-2 infected syncytial
alveolar epithelial cells. Despite the applicability of PCLS
for the screening of anti-fibrotic agents, the utility of this
model is limited for this particular disease (267). PCLS
only permits to study the local immune response, ignoring
the important recruitment of circulating immune cells. In
addition, short term of culture limits investigations over time
(Figure 2).

Alternatively, pulmonary fibrosis has been studied in
organoid models, which can be maintained in culture for
several weeks and passages. hPSC-derived lung organoids
that contain a mix of epithelial and mesenchymal cells
have been genetically engineered to develop Hermansky-
Pudlak syndrome, a clinical condition with similarities to
IPF, and have been sequenced to discover potential new
drug targets (205). Despite accurate recapitulation of the
disease phenotype and a gene expression signature of early
fibrosis, the fibrotic organoids lack some major hallmarks of
IPF such as activation of TGF-β signaling. Transcriptomic
and histologic alterations of IPF have recently been modeled
in hPSC-derived ATII-like cell cultures maintained in ALI
(207). Given that alveolar epithelial progenitors, an essential
contributor of aberrant wound healing, are enriched in hPSC-
derived models they have been suggested as suitable model
to study pulmonary fibrosis (207). However, since fibrosis
predominantly occurs in senescent lungs, it is suboptimal
to study fibrosis in an embryonic stem cell derived model
system. Therefore, it will be interesting to study fibrotic
changes in mixed mature long-term organoid culture after
SARS-CoV-2 infection.

Potentially more physiologically relevant are ALI models, that
can mimic SARS-CoV-2 infection by inhalation and provide
a scaffold for epithelial/mesenchymal co-cultures. Yet it is not
easy to avoid transdifferentiation of ATII cells, the main alveolar
target cells of SARS-CoV-2 and drivers of fibrosis. Recently,
the EpiAlveolar 3D tissue culture system has been developed to
model micro-particle inhalation and the resulting pro-fibrotic
events in the alveolar epithelium [(268); Figure 2]. Repeated
exposure over an extended time period is possible, which implies
that these models could also be applied to study the progression
of acute COVID-19 to pulmonary fibrosis. However, it remains
to be tested how efficiently SARS-CoV-2 infects these 3D alveolar
tissue culture models and whether immune cells are required to
induce fibrosis.

A higher degree of complexity can be achieved in LOC
models. In the future, they might enable the investigation
of cellular, mechanical, and chemical processes resulting in
complex multi-factorial diseases such as pulmonary fibrosis. As
compared to conventional cell culture, LOC models support
stable cell culture systems over an extended time period,
which is particularly relevant for studying pulmonary fibrosis,
a disease of older age. However, as compared to the in vivo
situation, long-term culture of cells in microfluidic devices
remains a limiting factor to date. Nevertheless, aspects of

lung inflammatory and fibrotic processes can be studied under
nearly physiological conditions in such microfluidic devices.
Importantly, it has been shown that substrate stiffness, porosity,
and physiologic stretch has to be taken into account when
studying tissue regeneration and assessing efficacy of therapeutic
compounds (50). In addition, LOC models are well-suited
to establish co-cultures enabling to study the sequence of
molecular events in COVID-19 at the delicate air-blood barrier
in the presence of alveolar resident cell types and peripheral
immune cells (Figure 2). Taken together, advanced in vitro
models have the potential to provide highly relevant data
to discover novel effective treatment strategies for COVID-
19, identify predictive biomarkers for a severe course of
the disease and elucidate the mechanisms of lung repair in
recovering patients.

CONCLUSION

Refined treatment strategies for recently emerged SARS-CoV-2
are becoming available and have improved the management of
COVID-19 patients. Evidence has been gathered that particularly
critically ill COVID-19 patients suffer from pulmonary
dysfunction even months after diagnosis and may possibly never
fully recover. SARS-CoV-2 infection of alveolar epithelial cells
and an imbalanced inflammatory response result in DAD and
trigger a fibrotic response to regenerate the epithelial barrier
and lung function. To date, it is not clear whether fibrosis will
develop and consequently resolve or progress. IPF, the most
severe form of interstitial pulmonary fibrosis, is a fatal disease
and few treatment options exist to slow down the progression
of chronic fibrosis. It is therefore crucial, to delineate the early
mechanisms that drive fibrotic progression after virus clearance.
In vivo models capture aspects of human COVID-19 and have
been classically used to study progression of IPF. However, due
to inter-species anatomical and immunological differences, the
translation of basic and pre-clinical animal research to patient-
relevant insights often fails (182). The systemic manifestation
of COVID-19 and the complex host-pathogen interactions
highlight the importance of human-derived models to study the
underlying mechanisms of the disease. Lung organoids promote
cell-cell and cell-matrix interactions and provide a robust
SARS-CoV-2 infection model of the alveoli. Due to their capacity
to propagate and the relatively cost-efficient culture methods,
patient-derived organoids enable medium-throughput drug
screening for precision medicine in cancer and other diseases
(269, 270). We expect that personalized therapy will also improve
the management of severely ill COVID-19 patients. However,
organoids are not ideally suited to construct complex co-cultures
or study biomechanical forces, which might be a pre-requisite
to gain more insights into COVID-19-associated pulmonary
fibrosis. In this regard, PCLS, 3D in vitro tissue culture, and
LOC are complementary models to lung organoids providing
a higher degree of microenvironmental cues. These models
have been used successfully to study IPF and are expectedly
permissive for SARS-CoV-2 infection. Moreover, LOC holds the
unique opportunity to study SARS-CoV-2 mediated alveolar
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injury at ALI and under stretch. It is well-known that stretch can
significantly alter epithelial barrier permeability (215), ATII cell
function and tissue regeneration (41, 271, 272). However, studies
about the impact of stretch on the acute and recovery phase of
COVID-19 are still lacking. The combinational application of
advanced in vitromodels is expected to generate meaningful data
on the molecular processes taking place in the lungs of COVID-
19 patients and providing insights into disease course before
patient data from large cohorts become available. Hopefully, this
knowledge will help to improve patient care and prevent fibrosis
at an early stage of progression.
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