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A new infectious disease, named COVID-19, caused by the coronavirus associated

to severe acute respiratory syndrome (SARS-CoV-2) has become pandemic in 2020.

The three most common pre-existing comorbidities associated with COVID-19-related

death are elderly, diabetic, and hypertensive people. A common factor among these

risk groups for the outcome of death in patients infected with SARS-CoV-2 is dysbiosis,

with an increase in the proportion of bacteria with a pro-inflammatory profile. Due to

this dysbiosis, elderly, diabetic, and hypertensive people present a higher propensity to

mount an inflammatory environment in the gut with poor immune editing, culminating in

a weakness of the intestinal permeability barrier and high bacterial product translocation

to the bloodstream. This scenario culminates in a low-grade, persistent, and systemic

inflammation. In this context, we propose here that high circulating levels of bacterial

products, like lipopolysaccharide (LPS), can potentiate the SARS-CoV-2-induced

cytokines, including IL-6, being crucial for development of the cytokine storm in the

severe form of the disease. A better understanding on the possible correlation between

gut dysbiosis and poor outcomes observed in elderly, diabetic, and hypertensive people

can be useful for the development of new therapeutic strategies based on modulation of

the gut microbiota.
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INTRODUCTION

In early December 2019, a new infectious disease, caused by the coronavirus associated to severe
acute respiratory syndrome (SARS-CoV-2), emerged in Wuhan, China (1). The disease caused
by this infection, COVID-19, spread very rapidly in many other countries reaching pandemic
proportions (2, 3). By 24 May 2021, there were 166,814,851 individuals diagnosed with COVID-19,
including 3,458,905 fatal cases, as shown in theWHOdata center (4). In severe COVID-19 patients,
93% of deaths result from respiratory failure caused by acute respiratory distress syndrome (ARDS).
Besides, the storm of cytokines and symptoms of sepsis, with failure of some vital organs, including
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heart and kidney, derived by the primary viral infection and/or
secondary infections were observed in 70% of fatal cases (5). No
specific effective therapeutics are so far available for COVID-19
and the management of the disease includes physical distancing,
mask wearing, supportive medical care, and vaccines (4). Herein,
we propose a role of gut dysbiosis in the worse prognosis
of COVID-19 in elderly people and in patients with Diabetes
mellitus (DM) or hypertension.

COVID-19 AND GUT MICROBIOTA

The human microbiota is made up of microorganisms, including
bacteria, fungi, archaea, viruses, and protozoa, that colonize
particular locations of the human body such as skin, as
well as respiratory and gastrointestinal tracts (6, 7). The gut
microbiota refers specifically to a complex bacterial community
situated in the gastrointestinal tract (8). Although approximately
40% of patients infected with SARS-CoV-2 showed a high
concentration of viral genetic material in the anal swab, and
various patients reported nausea, vomiting, and diarrhea (9,
10) little has been so far discussed on the role of the gut
in the pathophysiology of COVID-19, especially envisioning
microbiota as being responsible for the greatest risk factor to
develop the severe form of the disease.

It is well known that the membrane angiotensin I converting
enzyme 2 (ACE2) is the pathway of entry into the target cells (11).
Human mature enterocytes located in the small intestine express
membrane ACE2, and SARS-CoV-2 is able to infect those cells in
a process facilitated by TMPRSS2 and TMPRSS4 proteases (12).
The infection of enterocytes with SARS-CoV-2 may promote a
significant reduction of enteric ACE2 integrity/functionality. The
decrease of ACE2 expression leads to an upregulation of other
renin-angiotensin system components, including angiotensin
(Ang) II (13). Remarkably, increased Ang II levels can modify
gut microbial composition and metabolomics in a sex-specific
manner (14). In addition, the SARS-CoV-2 infection-induced
reduction of ACE2 function may also culminate in gut dysbiosis
through a decrease in the mTOR-mediated synthesis of AMPs
independently of RAS (15).

The possibility that SARS-CoV-2 infection of enterocytes
modify gut microbiota is supported by the fact that some
patients with COVID-19 present intestinal dysbiosis (16, 17).
There is evidence that hospitalized COVID-19 patients exhibit
a significant reduction in gut microbiome diversity with

Abbreviations: ACE2, angiotensin I converting enzyme 2; ALI, acute lung

injury; AMP, anti-microbial peptides; ARDS, acute respiratory distress syndrome;

BP, blood pressure; CD3, cluster of differentiation 3; COV, coronavirus;

DAMP, danger-associated molecular pattern; DM, diabetes mellitus; ENS, enteric

nervous system; GF, germ-free; HMGB1, high-mobility group box 1; IFN-γ;

interferon gamma γ; IgA, immunoglobulin A; IL-10, interleukin 10; IL-17,

interleukin 17; IL-1β, interleukin 1β; IL-6, interleukin 6; IL-7, interleukin 7; IL-8,

interleukin 8; LADA, Latent Autoimmune Diabetes in Adults; Lcp2, lymphocyte

cytosolic protein 2; LPS, lipopolysaccharide; mRNA, messenger ribonucleic

acid; OxPAPC, oxidized 1-palmitoyl-2-arachidonoyl-phosphatidylcholine; PBMC,

peripheral blood mononuclear cells; SARS, severe acute respiratory syndrome;

SCFA, short-chain fatty acids; SHR, hypertensive rats; TGF-β1, Transforming

growth factor beta 1; Th17, T helper 17; TLR4, toll-like receptor 4; TMA,

Trimethylamine; TNF, Tumor necrosis factor; WKY, Wistar Kyoto; WT, wild type.

depletion of beneficial bacterial symbionts and enrichment of
opportunistic pathogens, including Actinomyces, Rothia, and
Streptococcus (17, 18). Patients infected with SARS-CoV-2 also
showed a decrease in the relative abundance of Faecalibacterium
prausnitzii and Bifidobacterium bifidum, which are bacteria
responsible for the production of butyrate (17, 19). Butyrate
is a short-chain fatty acid (SCFA) that influences both the
proliferation and differentiation of epithelial intestinal cells,
by enhancing the renewal and integrity of the epithelial
barrier function (20). Moreover, patients undergoing allogeneic
hematopoietic cell transplantation showing greater abundance of
butyrate-producing bacteria have five-fold protection against the
development of viral lower respiratory tract infection (21).

Interestingly, there are several pathologies in which the gut
microbiota is modified and in some of them a direct relationship
has been found with the severity of COVID-19, including
elderly, diabetes, hypertension, obesity, periodontitis, and kidney
diseases, as summarized in Table 1. Among these conditions,
aging, diabetes, and hypertension stand out, since they are the
main cause of COVID-19-related death (95–99). Yet, before
getting into this point, it seemed worthwhile to discuss basic
aspects of the gutmicrobiota, as well as the dysbiosis seen in aging
and disease, particularly diabetes and hypertension.

AGING AND GUT MICROBIOTA

Aging is usually accompanied by a progressive decline of
physiological functions determined by (epi) genetic, stochastic,
and environmental processes (100). The elderly population has
an increasing tendency to multimorbidity, fragility and disability.
One of the biological systems most compromised by senility
is the gastrointestinal tract (101). Along with aging, there is a
degeneration of the enteric nervous system (ENS), alteration of
intestinal motility, and changes in the intestinal mucous barrier,
decreasing the defense function and favoring the development of
gastrointestinal disorders (101, 102).

A mutual characteristic of aging in tissues and aging-related
diseases is the inflammaging, which is the low-grade, persistent
and systemic inflammation, even in the absence of infection,
culminating in tissue degeneration and chronic diseases (101,
103). In addition, other hallmarks of immunosenescence are
represented by a decrease in the capacity to respond to new
antigens and the accumulation of memory T cells (103, 104).
In aging, the gut dysbiosis leads, at least partly, to immune
dysfunction, culminating in a more inflammatory environment
with poor immune editing (29, 105). It is important to know
that although the gut microbiota does not age its profile changes
during aging. Furthermore, the maintenance of a “youthful”
or “healthy” gut microbiota architecture throughout aging may
postpone or limit immunosenescence (22).

During aging, the gut microbiota is characterized by an
increase in the expression of proteolytic genes and a decrease
in saccharolytic ones leading to the growth of pathogens, which
in turn intensify inflammation (29). The most striking change in
the microbiota of elderly individuals is the change in the relative
proportions of Firmicutes and Bacteroidetes; the elderly having
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TABLE 1 | Summary of the alterations in the gut microbiota, gut immune cells, blood and gut cytokine profiles in main groups at risk for COVID-19.

Condition Species Gut microbiota Gut imune cells Gut cytokines Blood cytokines Ref

Aging Murine model ↑ Prevotella sp.

↓ Lachnospiraceae

↓ Akkermansia sp.

↓ Lactobacillus sp.

↓ Th1

↑ Th17

↑ Treg

↑ IL-4

↓ IL-10

↓TGF-β

↑ IL-1β

↓ IL-2

↑ IL-6

↑ IL-8

↑ IL-13

↑ IL-17

↑ TNF

(22–28)

Human ↑ Clostridium difficile

↑ Enterobacter spp.

↑ Enterobacteriaceae.

↑ Eubacterium sp.

↑ Staphylococcus spp

↑Streptococcus spp.

↓ Akkermansia sp.

↓ Bifidobacterium sp.

↓ Faecalibacterium sp.

↓ Lactobacillus spp

↓ Th17 ↑ IL-6 ↑ IL-1β

↓ IL-2

↓ IL-4

↑ IL-6

↑ IL10

↑ IL-17

↑ IL-18

↑ TGF-β

↑ TNFα

(23, 29–43)

Diabetes Murine model ↓ Faecalibacterium sp.

↓ Akkermansia muciniphila

↓ Th2

↑ Th17

↓ Treg

↑ IL-10

↓ IL-18

↑ IL-17

↑ IL-23

↑ IL-1β

↑ IL-6

(44–50)

Human ↑ Bacteroides

↑ Clostridium sp.

↓ Akkermansia muciniphila

↓ Eubacterium rectale

↓ Faecalibacterium sp.

↓ Roseburia sp.

- - ↑ IL-10

↑ IL-17

↓ IL-18

↑ IL-23

(51–58)

Hypertension Murine model ↑ Prevotella

↑ Streptococcus spp.

↓ Lactobacillus spp

↓ Bifidobacterium sp.

↓ Roseburia

↑ Th17 ↑ IL-1β

↓ IL-6

↓ IL-7

↓TGF-β1

↑ TNF-α

↑ IL-1β

↑ IL-6

↑ IL8

↑ IL-17

↑ TNF-α

(59–67)

Human ↑ Klebsiella,

↑ Desulfovibrio

↑ Prevotella

↓ Blautia,

↓ Butyrivibrio

↓ Clostridium

↓ Enterococcus

↓ Faecalibacterium

↓ Oscillbacter

↓ Roseburia

↓Bifidobacterium

↓Lactobacillus

- - ↑ IL-6

↑ TNF

(59, 60, 66, 68)

Obesity Murine model ↑ Mollicutes

↓ Akkermansia muciniphila

↓ Bacteroides

↓ Bacteroides

thetaiotaomicron

↓ Bifidobacterium

↓ Enterobacteriale

↓ Lactobacillus

↓ Prevotella

↑ Th1

↑ Th17

↓ Treg

↑ IL-1β

↓ IL-10

↓ IL-17

↑ IL-18

↓ IL-22

↑ TNFα

↑ IL-1β

↑ IL-6

↑ TNF α

(69–72)

Human ↑ Clostridium sp.

↑ Eubacterium

↓ Bifidobacteria

↓ Faecalibacterium sp.

↓ Bacteroides

↓ Lactobacillus sp.

↓ Akkermansia muciniphila

↑ Th1

↓ Treg

- ↑ IL-1

↑ IL-5

↑ IL-6

↑ IL-10

↑ IL-12

↑ IL-13

↑ IL-23

↑ IL-36

(69, 72–77)

↑ IFN-γ

↑ TNF-α

(Continued)
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TABLE 1 | Continued

Condition Species Gut microbiota Gut imune cells Gut cytokines Blood cytokines Ref

Periodontitis Murine model ↑ Bacteroidetes

↑ Prevotella

↓ Lactobacillus spp

↑ IL-1β

↑ Th17

↑ IL-1β

↑ IL-6

↑ IL-12b

↑ IL-17c

↑ TNFα

↑ TGF-β

↑ IL-1β

↑ IL-6

↑ TNFα

(78–82)

Human ↑ Enterobacteriaceae

↑Eubacteriaceae

↓ Faecalibacterium sp.

↑ Th17 ↑ IL-17

↑ IFNγ

↑ IL-1

↑ IL-6

↑ IL-17

↑ IL-22

↑ INFγ

↑ TNFα

(81, 83, 84)

Kidney Disease Murine model ↑ Bifidobacterium

↓ Lactobacillaceae

↓ Prevotellaceae

- ↑ IL-1β

↑ IL-6

↑ IL-12b

↑ IL-17a

↑ TNFα

↑ IFNγ

↑ IL-1β

↑ IL-5

↑ IL-6

↑ IL-10

↑ IL-12

↑ IFNγ

↑ TNFα

(85–89)

Human ↑ Clostridium

↑ Enterobacteriaceae

↑ Streptococcaceae

↑ Streptococcus

↓ Roseburia

↓ Faecalibacterium sp.

↓ Lactobacillus

↓ Prevotellaceae

- - ↑ IL-1β

↑ IL-6

↑ TNFα

(90–94)

a higher proportion of Bacteroidetes, while in young adults
the Firmicutes prevail (30). Moreover, the production of anti-
inflammatory factors by the microbiota of elderly individuals is
reduced, including butyrate (29). All these alterations observed
in the gut microbiota during aging enhance a more pro-
inflammatory environment, contributing to inflammaging.

Aging-associated gut dysbiosis induces a weakening of the
intestinal barrier (102). Therefore, it is possible to observe
high levels of bacterial products in the bloodstream such
as LPS (31, 103), which could lead to an increase in the
production of pro-inflammatory mediators. Indeed, elderly
people have a rise in the amount of circulating cytokines
as well as a decrease in the lymphocyte response, natural
killer cells, and phagocytic activity (32, 103). Furthermore,
aging animals have increased inflammatory cytokines in the
plasma and an augmentation in the intestinal permeability
compared to young animals (33). This pro-inflammatory status
seems to be related causally to the microbiota profile, since
aged GF animals do not present inflammaging status. In
addition, when both aged and young GF animals received
the microbiota from aging wild type (WT) animals, they
exhibited an increase in the circulating contents of inflammatory
cytokines and intestinal permeability. Aging animals also
showed an increase in the LPS-induced inflammatory cell
infiltration and IL-6 levels compared to young animals,
indicating the development of ARDS that is one of the most
prevalent morbidities associated with aging. Nevertheless, old
GF mice presented less LPS-evoked inflammatory infiltrates

in the lungs compared to WT animals (33). Therefore, the
microbiota of aging animals is important to the development
of inflammaging.

DIABETES AND GUT MICROBIOTA

Diabetes Mellitus is a group of metabolic diseases characterized
by hyperglycemia. Usually, DM is classified as type 1 and
type 2 and related to low production and failure of insulin
action, respectively (106). Nevertheless, this simple subdivision
is not accurate, because it does not take into account the
intermediate forms of DM with overlapping features. The
“double diabetes” or type 1.5 diabetes is a disease with metabolic
characteristics of type 2 DM with autoantibodies for β-cells
typical of type 1 DM (107). Another intermediate form of
DM is the Latent Autoimmune Diabetes in Adults (LADA),
which shares autoimmune destruction of β-cells and insulin
resistance, although to a lesser extent than type 1 DM (108).
The hyperglycemia noted in diabetic patients is accompanied
by the presence of cytokines such as IL-1β, IL-6, and TNF-α,
characterizing a low-grade inflammation status (109).

A common change in all types of DM patients is the
dysbiosis (110, 111). Although there is a controversy about
which bacterial phyla is altered in the gut microbiota of
diabetic patients, it is a consensus that the relationship between
Firmicutes and Bacteroidetes is unbalanced in these patients
(51, 112, 113). Besides, diabetic animals treated with probiotics
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containing the Lactobacillus rhamnosus NCDC17 improved the
parameters regarding oral glucose tolerance test and led to
an increase in plasma insulin, together with decreased the
inflammatory cytokines IL-6 and TNF in the epididymal fat
(114). Therefore, the absence or excessive proliferation of some
bacteria could be one of the mechanisms of intestinal barrier
dysfunction observed in diabetic models, leading to increased
permeability of bacterial content to the bloodstream, as LPS
(110). Replacement with Faecalibacterium sp. in diabetic animals
improved the intestinal barrier integrity and circulating LPS
levels (115).

Interestingly, the gut microbiota of non-obese diabetic
mice changed before the onset of diabetes (52). Alterations
observed included reduction of bacteria abundance and
diversity, and one of the most affected groups was the butyrate-
producing bacteria (53). Butyrate regulates the permeability
of the intestinal barrier by inducing mucin production and
decreasing the transit of bacteria, oxidative stress, as well
as local and systemic inflammation (54). Accordingly, the
increased permeability of the intestinal barrier observed in
diabetic patients can be attributed, at least partly, to the
reduction of butyrate-producing bacteria (55). Thus, it is
plausible to think that butyrate replacement in diabetic patients,
through direct administration or ingestion of prebiotics, may
reduce intestinal permeability and low-grade inflammation
triggered by gut microbiota products translocated into
the bloodstream.

HYPERTENSION AND GUT MICROBIOTA

Hypertension is a progressive cardiovascular syndrome
whose early markers are usually present even before the
sustained increase of blood pressure (BP). The progression
of hypertension may be represented as stages 1, 2, and 3.
In stage 1, patients present occasional or intermittent BP
elevations, early cardiovascular disease, and no target organ
disease. In stage 2, patients exhibit sustained BP elevations
or progressive cardiovascular disease and early signs of target
organ disease. In stage 3, the patients show marked and
sustained BP elevations or advanced cardiovascular disease
and overtly present target organ disease (116). Unfortunately,
despite advances in awareness about lifestyle improvements,
new therapies, and intensive medical interventions, around
a third of hypertensive patients do not obtain control
of BP when prescribed three or more antihypertensive
drugs, presenting the so-called “treatment-resistant”
hypertension (59).

Although the etiology of hypertension seems to depend on
both genetic and environmental factors, the exact cause remains
unknown. Several pieces of evidence suggest that hypertension
can result from intestinal dysbiosis. For instance, treatment
with antibiotics produces an increase in BP, indicating the
participation of gut microbiota in the control of BP (60).
Furthermore, GF mice showed lower BP as compared to
conventional ones and present attenuation of BP increase in
response to infused angiotensin II (61). Also, metabolites of

gut microbiota are involved in the control of BP, including
trimethylamine N-oxide, hydrogen sulfate, and SCFAs (117).

Causative evidence for the role of gut dysbiosis in the genesis
of hypertension came since transfection of dysbiotic fecal samples
from hypertensive patients to GF mice raised BP in the recipients
(22). A study carried out in pre-hypertensive and hypertensive
patients detected a lower richness and diversity of the intestinal
microbiota as compared to healthy individuals. Hypertensive
patients presented an increase of gram-negative groups and an
elevation of the ratio between Firmicutes and Bacteroidetes (22,
34, 35).

Gut microbiota and their metabolites reduce the epithelium
barrier integrity during hypertension, and this is linked to the
downregulation of tight junction protein expression (118, 119).
Hypertensive rats also presented a higher intestinal permeability
to trimethylamine (TMA), a microbiota metabolite precursor of
trimethylamine N-oxide, which is a marker of cardiovascular
mortality. Furthermore, spontaneously hypertensive rats (SHR)
showed suppression of components of T cell receptor signaling
cascade in the colonic epithelium compared to Wistar Kyoto
(WKY) normotensive rats, including glycoprotein CD3 gamma
chain and lymphocyte cytosolic protein 2 (Lcp2). SHR animals
also presented a decrease in the expression of IL-6, IL-7, and
TGF-β1 in the colonic epithelium, related to marked lower
production of alkaline phosphatase in the intestinal epithelial
cells (120). Together, these alterations in the colonic epithelium
of SHRs characterize changes in the gut immune response and
epithelial layer in hypertension.

It is well known that one of the major triggers of hypertension
is the imbalanced diet with high salt content (121, 122). Such
high salt environment induces Th17 cells (62, 123), which are
pro-inflammatory; being also involved with the development
of hypertension (63, 68). Mice and humans exposed to a
high salt challenge showed depletion of Lactobacillus spp. in
the gut microbiome along with the rise of Th17 cells and
BP (35), indicating an association of Th17 cells produced by
gut microbiota and the generation of hypertension. Of note,
an increase in pro-inflammatory cytokines was also reported
in hypertensive rats (64). In particular, IL-6 is a central
cytokine in the regulation of BP, since it is responsive to
angiotensin II to raise BP regardless of baseline values (65).
Furthermore, a study carried out in hypertensive patients found
an increase in pro-inflammatory cytokines in peripheral blood
samples associated with changes in the profile of intestinal
microbiota (124).

CAN GUT MICROBIOTA DYSBIOSIS BE
IMPORTANT TO SARS-CoV-2-INDUCED
IMMUNE HYPERRESPONSIVENESS AND
SARS DEVELOPMENT IN ELDERLY,
DIABETIC, AND HYPERTENSIVE
INDIVIDUALS?

The main groups at risk for the COVID-19-related death are
aging, DM, and hypertension. These conditions have a key
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point in common, which is dysbiosis that results in high
intestinal permeability, translocation of bacterial contents to
the bloodstream, and the development of basal inflammation.
Therefore, a central question arises from this observation: can
dysbiosis and the consequent pro-inflammatory status be critical
for development of COVID-19 severity in aging, DM, and
hypertensive individuals, similar to SARS and hyper-immune
response also referred as a cytokine storm? Likely yes is
the answer.

Some TLR4-activated danger-associated molecular pattern
(DAMP) signals, including oxidized 1-palmitoyl-2-arachidonoyl-
phosphatidylcholine (OxPAPC) and high-mobility group box 1
(HMGB1), are increased in the acute lung injury (ALI) caused
by respiratory viruses such as the influenza virus (125, 126).
It is important to note that influenza-triggered ALI seems
to occur secondary to the cytokine storm induced by the
activation of TLR4 by host-derived DAMPs such as OxPAPC and
HMGB1 (125, 127). Notably, TLR4−/− mice have been protected
against influenza A virus-provoked lethality, and the therapeutic
treatment with TLR4 antagonists, Eritoran and FP7, inhibited
influenza virus-induced cytokine production, ALI, and mortality
in wild-type mice (127–129).

Interestingly, low doses of LPS exacerbate the TLR3
activation-induced inflammatory response in human monocytes
in vitro (130). Furthermore, macrophages infected with Influenza

A and stimulated with low concentrations of LPS showed
increased levels of cytokines compared to macrophages that
were infected only with the virus. The authors proposed that
LPS enhances the release of bioactive cytokines by infected
macrophages, which can lead to a decompensated increase in
inflammatory metabolites (131, 132). These data reinforce the
idea that weakness of intestinal permeability and consequent
translocation of LPS in the elderly, diabetic and hypertensive
individuals can be relevant to the severity of COVID-19 in
these populations.

In a clinical setting involving 48 subjects, the expression of
TLR4 and its downstream signaling molecules as well as S100A9
(TLR4 ligand) were significantly upregulated in PBMCs from
severe COVID-19 patients as compared to those from healthy
controls. Furthermore, S100A9 amplified the recombinant S2
protein of SARS-CoV-2-induced IL-1β mRNA expression in
PBMCs in vitro (133), suggesting that activation of TLR4 by LPS
from the gut microbiota of elderly, diabetic, and hypertensive
individuals may be related to the severity of COVID-19. In
keeping with these results, respiratory syncytial virus infection
induced an increase of TLR4 expression in the airway epithelial
cells in vitro, and activation of these cells with LPS potentiated
the release of IL-6 and IL-8 induced by the virus (134).

Since severe COVID-19 patients show high expression of
TLR4 in PBMCs (133), we can speculate that the activation of

FIGURE 1 | Gut-immune interactions in elderly, diabetic, and hypertensive individuals. These conditions are the three most COVID-19-related death risk factors, and

show a decrease in the diversity of the gut microbiota, leading to dysbiosis and weakness of the intestinal barrier permeability. In addition, people belonging to risk

groups for COVID-19-related death show hyperimmune activation in the intestine, increasing Th17+ T cells and IL-17 production. These individuals also exhibit a rise

in the circulating levels of bacterial endotoxins such as LPS, as well as pro-inflammatory cytokines, as IL-1β, IL-6, and TNF. Furthermore, the elderly, diabetic, and

hypertensive individuals show an increase in the expression of TLR4 in peripheral blood mononuclear cells (PBMCs). IL-17, interleukin-17; IL-1 β, interleukin-1β; IL-6,

interleukin-6; LPS, lipopolysaccharide; Th17, T helper 17; TLR4, Toll-like receptor 4; TNF, Tumor necrosis factor.
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this receptor by LPS derived from the gut microbiota of elderly,
diabetic, and hypertensive individuals would also potentiate the
production of IL-6 induced by SARS-CoV-2. In this respect, it
should be pointed out that, among all increased cytokines, the
rise of IL-6 circulating levels predicted mechanical ventilation,
intensive care unit admission, shock, and death in severe patients
with COVID-19 (18, 135, 136). Furthermore, a follow-up with
21 individuals with several or critical COVID-19 revealed that a
single dose of tocilizumab, an anti-IL-6 receptor drug, recovered
90% of patients (137).

CONCLUSION

In conclusion, we postulate that the gut dysbiosis may be
responsible for COVID-19-related death in elderly individuals
as well as diabetic and hypertensive patients, since these
subjects show a change in the profile of gut microbiota
followed by low-grade inflammation, especially with high
circulating levels of IL-6. The possibility does exist that
augmentation of pro-inflammatory bacteria in the gut may alter
the intestinal immune repertoire with consequent weakness
of epithelium-intestinal permeability and increased LPS
translocation into the bloodstream. We believe that the
hyperactivation of TLR4 induced by gut microbiota products,
translocated into the circulation, strongly contributes to
the cytokine storm, worsening the prognosis of COVID-
19 in the elderly, diabetic and hypertensive individuals
(Figure 1). In this respect, new therapeutic strategies based
on prebiotics or bacterial metabolites, as butyrate, appear as
potentially practical approaches for adjuvant treatment of
these patients.
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