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Biomaterials intentionally designed to support the expansion, differentiation, and three-

dimensional (3D) culture of induced-pluripotent stem cells (iPSCs) may pave the way to

cell-based therapies for chronic respiratory diseases. These conditions are endured by

millions of people worldwide and represent a significant cause of morbidity and mortality.

Currently, there are no effective treatments for the majority of advanced lung diseases and

lung transplantation remains the only hope for many chronically ill patients. Key opinion

leaders speculate that the novel coronavirus, COVID-19, may lead to long-term lung

damage, further exacerbating the need for regenerative therapies. New strategies for

regenerative cell-based therapies harness the differentiation capability of human iPSCs

for studying pulmonary disease pathogenesis and treatment. Excitingly, biomaterials are

a cell culture platform that can be precisely designed to direct stem cell differentiation.

Here, we present a closer look at the state-of-the-art of iPSC differentiation for pulmonary

engineering, offer evidence supporting the power of biomaterials to improve stem

cell differentiation, and discuss our perspective on the potential for tissue-informed

biomaterials to transform pulmonary regenerative medicine.

Keywords: disease modeling, regenerative medicine, pulmonary, hydrogel, tissue-informed engineering,

biomaterials

INTRODUCTION

Chronic respiratory diseases are the third leading cause of global morbidity and mortality,
impacting an astonishing 7.4% of the world’s population (1). Despite progress in therapeutic
development for these conditions, current treatments merely control symptoms and exacerbations.
The urgency for new treatment options cannot be underestimated as escalating urban
environmental risk factors and tobacco use, have caused a substantial increase in the exacerbation
and mortality rates of chronic lower respiratory diseases (2). This growth is exemplified by the
39.8% increase chronic respiratory disease cases since 1990, which includes a 3.9% global increase
in chronic obstructive pulmonary disease (COPD) and a 3.6% increase in asthma (2). Increased air
pollution exposure also heightens the risk for exacerbations in COPD and idiopathic pulmonary
fibrosis (IPF) (3, 4). Furthermore, researchers have projected that survivors of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the recent global pandemic,
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will have an increased prevalence of chronic respiratory
conditions due to severe lung damage caused by acute respiratory
distress syndrome (ARDS) (5). Collectively, airway damage
and scarring of gas-exchange surfaces in the lungs will
require innovative therapeutic strategies for airway regeneration.
Nevertheless, progression of new therapeutic approaches for
these diseases is hindered by a lack of reproducible in vitro
models that closely reflect in vivo physiology.

Respiratory diseases present with significant heterogeneity
among patients, creating considerable variability in disease onset,
severity, and progression (6). Patient-specific regenerative cell-
based therapies provide an attractive avenue to study pulmonary
disease pathology and evaluate effective treatment regimes.
However, progress is currently limited by materials that are not
conducive to optimization through controlled modification. To
support the complex cell culture processes required to build
these models, we present here the perspective that precisely
engineered biomaterials will increase the reproducibility
and efficiency of patient-derived induced pluripotent stem
cells (iPSCs) differentiation, facilitating the fabrication of
three-dimensional (3D), patient-specific models of pulmonary
regeneration and disease. Figure 1 depicts a long-term vision
for how tissue-informed biomaterials can improve pulmonary
regenerative medicine and discovery of new therapeutic
targets. First, patient-specific cells can be isolated, expanded,
reprogrammed into pluripotent stem cells, and differentiated
into mature lung cells using engineered biomaterial cell culture
platforms. Biomaterial microenvironments can be tailored
to differentiate cells to either healthy lung cells/tissues for
transplantation, or diseased lung phenotypes for modeling and
evaluating the impact of treatments on chronic respiratory
conditions. We predict that this versatility will enable
researchers to tissue-informed biomaterials and patient-
derived cells to address the unique challenges of each individual
respiratory disease.

CURRENT STRATEGIES FOR MODELING
HUMAN LUNG DEVELOPMENT AND
REGENERATION

Animal Models for Studying Respiratory
Disease
Animal models are widely used to study lung development
and disease pathology. Murine models, for example, have
been fundamental in examining physiological processes such
as branching morphogenesis, which develops lung architecture
and tubular structures (7). Nevertheless, there are discrepancies
between rodent and human lung development, physiology,
and pathophysiology which have led to numerous successful
preclinical animal therapeutic successes that later fail in human
clinical trials (8). Murine models, although capable of developing
some lung disease phenotypes, such as goblet cell hyperplasia
and airway mucus obstruction in COPD, do not develop
spontaneous bacterial infections or have equivalent levels of
disease severity (9). One example of the limitations of rodent
models are those created to study cystic fibrosis (CF), a

respiratory disease caused by mutations within the cystic fibrosis
transmembrane conductance regulator (CFTR) gene, resulting
in the inability to effectively transport chloride across the
cell membrane and the accumulation of thick mucus that
obstructs airways. In these models, mice generally present a less-
severe lung phenotype due to activity of alternative chloride
channels that can mitigate the burden of mutated CFTR (10).
A transition to large-animal model systems, specifically ferrets
and pigs, has improved recapitulation of human lung disease
(11, 12). Pigs and ferrets more closely resemble human lung
anatomy and morphology, with airways that exhibit similar
bacteria and immune cell infiltration (13, 14). Moreover, they
are capable of developing spontaneous lung disease and similar
lung pathologies such as airway obstruction, inflammation, and
mucus buildup to humans (12, 14). While these models have
been beneficial in studying disease onset and pathogenesis, they
are costly and not ideal for high-throughput therapeutic studies
or screening.

Patient-Derived Cells for Studying
Respiratory Disease
Patient-derived primary lung epithelial cells have been used
as an in vitro alternative to animal models due to their
ability to replicate in vivo cell morphology, physiology, and
functionality (15, 16). Significant advances have been made
in the development of procedures for procuring lung tissue
explants and bronchoscopy samples, isolating human airway
epithelial cells (HAECs), and optimizing media and culture
conditions for their expansion. The cell types that comprise
the airway epithelium are summarized in Table 1. Protocols,
such as those developed by (32), support the growth and
mucociliary differentiation of HAECs at the air-liquid interface
(ALI) (33). Similar methods have grown patient primary
epithelial cells for therapeutic testing. For example, Neuberger
et al., isolated human bronchial epithelial cells (HBECs)
from CF patients to perform preclinical tests for CFTR
modulators (15). Nevertheless, there are many challenges to
working with primary HAECs, including limited access to
patient samples, particularly those with rare diseases and
genotypes. Furthermore, in vitro expansion of primary cells
is limited due to decreased proliferation over time, changes
in morphology, and loss of multipotency of the predominant
airway epithelium progenitor cell, the basal cell, which has the
capacity to regenerate the airway epithelium of the trachea to the
bronchioles (34, 35).

The invention of iPSCs in 2007 created an alternative
approach to obtaining patient-specific cells capable of self-
renewal, large-scale expansion, and multilineage differentiation
(36–38). Investigation of effective methods to differentiate
human iPSCs into mature airway epithelium has been crucial
to developing functional cells for effective disease modeling
and therapeutic screening. iPSCs have been directed to
mimic embryonic lung development and differentiate into
functional airway epithelium (17, 18, 27, 39, 40) through
sequential addition of factors that regulate activin/nodal,
bone morphogenic protein (BMP), fibroblast growth factor
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FIGURE 1 | Engineering tissue-informed biomaterials to advance pulmonary regenerative medicine and model respiratory disease. This schematic illustrates the

potential for tissue-informed biomaterials to advance pulmonary regenerative medicine through two complementary pathways: (1) by using tissue-informed biomaterial

cell culture platforms to differentiate patient-specific stem cells into healthy, implantable lung cells and tissue (left); and (2) engineering biomaterial-based platforms to

induce differentiation of these same patient-specific stem cells into diseased phenotypes for disease modeling and evaluation of precision medical treatments (right).

(FGF), transforming growth factor-beta (TGFβ), wingless
(Wnt) and sonic hedgehog (Shh) signaling (Table 1). These
strategic methods of differentiation to lung cell lineages have
primarily focused on two-dimensional (2D) monolayer cultures
and have varying levels of efficiency based on induction
of NK2 homeobox 1 (NKX2.1) expressing primordial lung
progenitor cells. Currently, 2D systems are not capable of
proper spatial tissue organization and epithelial-mesenchymal
associations (41).

Cell culture substrates with physiological mechanical
properties and 3D architecture may improve differentiation
efficiency and the formation of mature cells from stem or
progenitor cells that are more similar to their primary cell
counterparts in gene expression and DNA methylation profiles,
with studies having largely focused on natural materials, such
as basement membrane extracts (41), decellularized precision-
cut lung slices (42), and hydrogels derived from extracellular
matrix (ECM) (43) to differentiate human lung progenitor cells
and evaluate the resulting cellular structure and function. A
summary of lung ECM components, cellular binding regions,

and common strategies for incorporating these biochemical cues
into biomaterials can be found in Table 2.

An investigation by Young et al. compared the epithelial
barrier function of human basal epithelial stem cells cultured
on combinations of a variety of proteins, including collagen
I, fibronectin, laminin, and decellularized extracellular matrix
(dECM). The combination that produced the highest barrier
function as measured by trans-epithelial electrical resistance
(TEER) was dECM supplemented with laminin (58). In another
study by Greaney et al. human basal progenitor cells were seeded
and epithelial differentiation was compared on various platforms
including sections of decellularized lung tissue from trachea
and distal lung, Matrigel, and traditional ALI culture (59). The
study found that cells seeded on sections of decellularized lung
tissue sections exhibited regionally specific indicators of epithelial
regeneration such as detection of relevant airway epithelial
cell markers cytokeratin 5 (KRT5, basal cells), mucin 5AC
(MUC5AC, goblet cells), and acetylated alpha tubulin (ATUB,
ciliated cells) on decellularized tracheal sections using single
cell RNA sequencing (scRNA-seq). These 3D culture systems
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TABLE 1 | Summary of human airway structure, cellular composition, cellular characteristics, differentiation potential, and derivation from embryonic stem cells (ESC) and

induced pluripotent stem cells (iPSC).

Human

airway

structure

Cell type Function Differentiation

potential

Isolation/markers Putative

derivation from

ESC/iPSC

References

Upper airway Basal Airway

progenitors/junctional

adhesion/inflammatory

response

Airway epithelium Bronchial

brushing, pronase

digestion/TRP63,

KRT5, NGFR+,

Pdpn

Yes (17–22)

Club Progenitor cells/

secrete

surfactants

Ciliated, goblet,

AT1, and AT2

Basal cell

differentiation/Scgb1a1

Yes (17, 22–25)

goblet Mucus production

and secretion

None Basal cell

differentiation/MUC5AC

Yes (17, 22, 26)

Ciliated Mucociliary

clearance

None Basal cell

differentiation/FOXJ1,

acetylated tubulin

Yes (17, 22, 27, 28)

Lower airway AT1 Gas exchange/ion

and fluid transport

None Elastase digestion,

magnetic sorting,

FACS/RTI- 40

Yes (17, 29)

AT2 Alveolar stem

cells/secrete

pulmonary

surfactant/ ion

transport

AT1 Elastase digestion,

magnetic sorting,

FACS/RTII- 70

Yes (17, 29–31)

outperformed 2D culture on basement membrane extracts
(Matrigel) and traditional ALI culture. Another recent study
investigated seeding of primary human epithelial progenitor
cells into hybrid bioinks composed of alginate reinforced with
dECM. This hybrid approach allowed for the creation of bioinks
with higher viscosities at low shear rates when compared to
normal alginate. Epithelial progenitor cells were seeded into
this hybrid bioink and 3D printed as a hollow tube and
then subjected to ALI differentiation for 28 days. The study
found that the hybrid bioink allowed for the differentiation of
progenitor cells into ATUB-expressing ciliated cells and that
the constructs remained stable and patent for the full 28 days
(60). In contrast, culturing human lung organoids (HLOs)
derived from pluripotent stem cells within Matrigel enabled cells
to spontaneously form physiologically elaborate 3D structures
in vitro. These cultures were composed of both epithelial
and mesenchymal lineages that corresponded to the cellular
composition and structural attributes of the human fetal lung.
The approach by Dye et al. produced 3D structures resembling
bronchi and bronchioles using HLOs derived from human
pluripotent stem cells. However, in a comparable study carried
out by Goetzke et al., significant differences in the epigenetic
regulation of the cells were observed in iPSCs differentiated on
2D fibrin-based hydrogels compared to 3D culture in the same
material. In fact, iPSCs differentiated into induced mesenchymal
stem cells (iMSCs) in the 2D condition and were a closer match
to primary MSC than the 3D differentiated cells. The cells
differentiated in 3D had a notable upregulation of genes related
to the cardiovascular system and neurogenesis (61). These results
indicate that even though 3D systems are more physiologically

relevant and represent an increased complexity compared to 2D
systems, these platforms still need further optimization to be
more physiologically precise.

Limitations of Current Substrates for iPSC
Differentiation
Currently, iPSC differentiation protocols rely extensively on
natural, xenogenic materials such as Geltrex and Matrigel,
which are basement membrane extracts rich in laminin-111,
collagen IV, entactin, and perlecan (55). These extracts act
as a substrate for cellular adhesion and present biological
moieties that influence cell growth and differentiation at
an epigenetic level (62). Unfortunately, these materials also
exhibit major translational limitations. Geltrex and Matrigel
are both derived from murine tumor tissue, resulting in
a high potential for immunogenicity and poorly defined
composition with reports of batch-to-batch variability from
the manufacturers (63). This heterogeneity contributes to
lower differentiation efficiency and limits scalability in future
drug development work. Most importantly, these materials
lack the capacity for tunability, or customization, required to
optimize the substrates for reproducible and efficient iPSC to
lung progenitor cell differentiation (64). Synthetic biomaterials
designed using tissue-informed engineering strategies can
overcome the limitations of traditional materials such as
Matrigel and increase the efficiency of differentiating iPSCs
into mature cells for further study (30, 65). Specifically, the
following section highlights the implementation of tissue-
informed hydrogels to support iPSC differentiation protocols for
pulmonary regenerative medicine.
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TABLE 2 | Introduction to common ECM components found in the lung, cell binding sites, and common practices for incorporation into biomaterials.

ECM macromolecule Cell binding site Representative peptide

sequence or component

for incorporation into

biomaterials

Function in lungs References

Collagens

Col I and III

Col IV

α1β1, α2β1, α3β1

α1β1, α2β1

gly-phe-hyp-gly-glu-arg

(GFOGER)

glu-phe-tyr-phe-asp-leu-

arg-leu-lys-gly-asp-

lys (EFYFDLRLKGDK)

Central airways,

Alveolar ducts, and

Interstitium of the

parenchyma

Basement membrane

(44–48)

Elastic fibers

Elastin, Fibrillin-1, Fibrillin-2,

and Fibulin-5

Elastin microfibril

interface-located

proteins (EMILINs)

αVβ3

αVβ3, α5β1

val-ala-pro-gly (VAPG)

arg-gly-asp (RGD)

Interstitium of the

parenchyma

(44, 45, 49–52)

Laminins α3β1, α5β1, α6β4 tyr-lle-gly-ser-arg (YIGSR)

lle-lys-val-ala-val (IKVAV)

Basement membrane (47, 53, 54)

Fibronectin αVβ3, α5β1 arg-gly-asp (RGD) Basement membrane (45, 47, 52–56)

Glycosaminoglycans (GAGs)

Heparin/Heparan Sulfate

Hyaluronic Acid

Chondroitin Sulfate

Dermatan Sulfate

Keratan Sulfate

Non-integrin

binding

GAGs can be incorporated

into hybrid-hydrogels or

used as coatings

Interstitium of the

parenchyma

(44, 56, 57)

OPPORTUNITIES FOR TISSUE-INFORMED
BIOMATERIALS TO ADVANCE
PULMONARY REGENERATIVE MEDICINE

Tissue-informed engineering strategies are a bottom-up
approach to engineering materials meant to elicit specific cellular
responses (66). First, key facets of tissues are characterized,
including the extracellular matrix structure, mechanics, and
composition. Next, the intrinsic and extrinsic properties
of biomaterials are specifically engineered to replicate the
tissues that support cellular expansion, differentiation, and
maintenance within a 3D tissue-like architecture. Hydrogels,
such as poly(ethylene glycol) PEG, have emerged as a promising
candidate for the tissue-informed engineering process. Hydrogels
are a single molecule network composed of cross-linked polymer
chains. This cross-linking confers an advantage to hydrogels:
the ability to swell in water without dissolving allows these
materials to closely mimic the mechanical properties and water
content of human tissue. Hydrogels have intrinsic and extrinsic
properties that can be engineered and optimized using an
iterative design process to achieve cellular responses appropriate
for each application (67, 68). Intrinsic properties include stiffness
(elastic modulus), degradability, and viscoelasticity. Extrinsic
properties include dimensionality, topography, and presentation
of biomolecules (69).

Tuning the intrinsic and extrinsic properties of these materials
takes various forms, ranging from optimizing a static 2D
hydrogel cell culture substrate to designing a stimuli-responsive,
3D material system that can be altered by user-controlled inputs

or endogenous signals from embedded cells (70, 71). The elastic
modulus (E) or stiffness of the hydrogel microenvironment is one
physical (intrinsic) property that has been modified by exploiting
user-controlled stimuli including light, temperature, or even
ultrasound (71). A photodegradable PEG-based crosslinker
developed by the Anseth research group, for instance, facilitated
dynamic hydrogel softening from E > 30 kPa to E < 3 kPa upon
exposure to ultraviolet (UV) light (72, 73). This material was used
to study gastrointestinal crypt formation by iPSCs embedded in
3D PEG hydrogels compared to 3D Matrigel constructs. The
study found that crypt formation, size, and number per colony

were functions of matrix softening. It also showed that colony
survival was dependent on elastic modulus, with the greatest

survival occurring in matrices with a modulus of 1.3 kPa (74).

Similarly, one extrinsic property to leverage when designing
synthetic materials is the incorporation and release of biological

molecules with spatial and temporal control. These moieties
include but are not limited to growth factors (75), peptides (76),

protein fragments (77), and small molecules (78). For example,

Ovadia et al. fabricated PEG-norbornene hydrogel matrices
crosslinked with a cell-degradable peptide that presented pendant
peptides inspired by proteins and integrins found in Matrigel
to cells grown within these constructs. This research found that
certain peptide combinations, specifically YIGSR (mimicking
laminin) and PHSRNG10RGDS (replicating fibronectin-binding
sites) enhanced viability of iPSCs and allowed for differentiation
into neural progenitor cells (NPCs) when cultured in 3D over
1 week (79). Another study by Lam et al. used a design of
experiments approach to optimize peptide concentrations in
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engineered biomaterials to maximize the differentiation of iPSCs
to NPCs (67). These examples highlight significant progress
in the differentiation of iPSCs using biomaterials for non-
pulmonary engineering applications.

Tuning the intrinsic and extrinsic properties of biomaterials
using a tissue-informed approach has the potential to pave the
way for a transformation in pulmonary regenerative medicine.
Although there are currently fewer examples, engineered
biomaterials have been incorporated into pulmonary medical
research platforms for tissue regeneration and disease modeling.
Bailey et al. systematically evaluated PEG-based hydrogels
for supporting extended ex vivo culture of precision-cut lung
slices, specifically the maintenance of alveolar epithelial type
II (ATII) cells, a progenitor cell capable of differentiation into
alveolar epithelial type I (ATI) cells, the cells lining the gas
exchange surfaces of the lung. This research demonstrated
that incorporation of two short peptide sequences that bind
β1-class integrins (0.2mM YIGSR and 0.1mM RGDS) supported
production of surfactant protein c, that is, maintained the
functionality of ATII cells within PLCS for up to 21 days, in
contrast to unembedded controls that only survive ∼7 days in
culture (53). In a recent example of pulmonary disease modeling,
a dynamically responsive PEG-α-methacrylate (PEGαMA)
hybrid-hydrogel containing proteins from decellularized lung
extracellular matrix was stiffened in situ using light to increase
the elastic modulus of the material from healthy (E = 3.6 ± 0.24
kPa) to fibrotic ranges (E = 13.4 ± 0.82 kPa). These stiffened
hydrogels induced a significant increase in the expression of
myofibroblast transgenes within primary murine fibroblasts
(80). Likewise, Lewis et al. exploited photodegradable PEG-
based hydrogel microspheres to template lung epithelial cells
within a biomaterial platform to create open cyst-like structures
(81). These 3D model systems were used to demonstrate that
fibroblasts in the surrounding hydrogel matrix responded to
changes in epithelial cell activity by increasing proliferation
and migration when co-cultured with a human tumor-derived
epithelial cell line (A549) (82).

It is exciting to imagine a future where tissue-informed
biomaterials can incorporate and release biomolecules to
sequentially guide stem cell differentiation pathways such as
integrin-binding peptides, cytokines, or small molecules (79,
83). This tunability of intrinsic material properties could enable
more efficient patient stem cell differentiation toward mature
lung tissue. During the progression of many chronic respiratory
diseases, considerable changes to the mechanical properties
of the lung tissue have been characterized (66). In fibrotic
diseases such as idiopathic pulmonary fibrosis and pulmonary
arterial hypertension, an aberrant healing response and excess
collagen deposition lead to increases in lung stiffness from
1–5 kPa (healthy) to over 10 kPa (fibrotic) (84, 85), while
COPD results in an overall decrease in tissue organization and
stiffness (85). Biomaterials mimicking these dynamic changes
in extracellular matrix mechanics could be readily designed to
provide sophisticated in vitro models of patient-specific disease

and treatment (80, 86). Currently, the strength of tissue-informed
biomaterials has not been harnessed in pulmonary medicine,
but the opportunities are substantial and should continue to be
investigated in the future.

OUTLOOK

The number of persons affected by chronic respiratory disease
worldwide has grown significantly in the last three decades.
The COVID-19 pandemic has provided clinical data showing
pulmonary fibrosis in those that survive the infection (5, 87).
It is hypothesized that this fibrotic response will not regress,
leading to a latent burgeoning of chronic respiratory disease
in the future. To improve quality of life in patients with
chronic diseases, we must understand the disease so that
we may engineer the proper treatments. As of now, lung
transplantation is the only effective treatment for patients
with severe chronic respiratory disease, and the current need
far outweighs the available supply. We envision that the
solution sits at the intersection of patient-derived stem cells
and tissue-informed biomaterials. By engineering biomaterials
that can mimic human tissue, we can guide patient stem cells
in differentiation toward regeneration of healthy lung tissue
or disease models for studying precision medical treatments.
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