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Infections of the lower respiratory tract, such as pneumonia, are one of the leading causes

of death worldwide. Streptococcus pneumoniae might colonize the upper respiratory

tract and is the main aetiological agent of community-acquired pneumonia (CAP). In the

last decades, several factors related to the host, the microorganism and the antibiotic

therapy have been investigated to identify risk factors associated with the development

of invasive pneumococcal disease (IPD). Nevertheless, these factors themselves do not

explain the risk of developing disease or its severity. Recently, some studies have focused

on the importance of nasopharyngeal (NP) microbiome and its relation to respiratory

health. This review presents existing evidence of the potential role of NP microbiome in

the development of IPD.

Keywords: microbiota, nasopharynx, Streptococcus pneumoniae, pneumococcal infections, invasive

pneumococcal disease

INTRODUCTION

Lower respiratory infections, considering also pneumonia, represent the third cause of death
worldwide, with a median of 4.2 million deaths (7.1% of total deaths) per year (1). Combination
of pneumonia and Influenza ranked 8th among leading causes of mortality in developed
countries. Also, they are the main cause of death due to infection (2). Streptococcus pneumoniae
(S.pneumoniae) is the most common pathogen implicated in community-acquired pneumonia
(CAP) and accounts for two-thirds of the mortality in hospitalized patients (3).

Invasive pneumococcal disease (IPD) refers to an infection confirmed by the isolation of
S.pneumoniae from a normally sterile site (pneumonia, parapneumonic empyema, meningitis,
bacteraemia/sepsis, peritonitis and arthritis) (4). Its incidence, despite its remarkable reduction
since the introduction of pneumococcal conjugated vaccine (PCV), is still 10–20/100,000/year in
developed countries and could be even higher in developing countries (5–11).

To date, the risk of developing pneumococcal pneumonia and also IPD has been associated with
the interplay between host susceptibility and pathogen virulence.

Many factors have been described regarding host susceptibility for the development and
prognosis of pneumococcal pneumonia, as age, comorbidities and previous vaccination status (12–
15). Severity and mortality in pneumococcal pneumonia are also related to strain characteristics,
coinfection and antibiotic treatment (16, 17).
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However, these elements do not fully explain by themselves
the potential risk for infection and its severity. Despite recent
advances in this field, it is still not known why some individuals
present asymptomatic NP colonization; others develop localized
infection and others, IPD.

The aim of this review was to present the current evidence
for the role of different factors –including the potential role of
NP microbiome- involved in the dissemination of S.pneumoniae
from the nasopharynx to other human body sites and its
subsequent clinical manifestations.

METHODS

A literature search of PubMed and WOS databases conducted
between January 2000 and February 2021 using the parameters
[microbiome (MeSH Terms)] OR [infection, streptococcus
pneumoniae (MeSH Terms)] OR [pneumonia (all fields)]
generated >180,000 abstracts.

Titles and abstracts were assessed, as a rule of thumb, and
clinically relevant articles were reviewed. References of the
selected articles were also reviewed and those which could fit the
topic were read and evaluated as well.

HOST CHARACTERISTICS

Baseline Characteristics and Clinical
Features
S.pneumoniae is a large contributor to mortality worldwide (12,
13, 18). It is the most common documented etiology of severe
bacterial respiratory tract infection in children, but also in the
adulthood. The spectrum of disease ranges from colonization
(especially among children under 5 years of age) to mucosal
disease (otitis media, sinusitis, pneumonia), and to invasive
infections (bacteremia, meningitis, endocarditis, others) (18).

Increasing age, male gender, toxic habits (as smoking and
alcohol abuse), liver or renal disease, solid organ tumors,
immunosuppression (HIV infection, asplenia) and higher
Charlson Comorbidity Index have been identified as independent
risk factors for high mortality among patients with community-
acquired, bacteraemic pneumococcal pneumonia.

Among all the host factors previously described, age has been
identified as the strongest predictor of death, even in patients
without significant comorbidity (13, 19, 20).

Vaccination
S.pneumoniae infection is one of the most vaccine-preventable
diseases. In the 1980s and 1990s, the 23-valent-polysaccharide
vaccine (PPSV23) was the only direct prevention measure
available (12). Polysaccharide antigens produce the activation
of mature B cells. However, protein-polysaccharide conjugate
pneumococcal vaccines (PCV) have a T-cell-immune response
and are effective in immunosuppressed patients (21). In 2000 the
7-valent vaccine (PVC7) -against seven serotypes- was licensed
for children in the USA. After that, the increment in relevance
of non-vaccine serotypes, conducted to the development of new
vaccines: PCV10 (PCV7 plus 1, 5 and 7F), and PCV13 (PCV10

plus 3, 6A and 19A) (22). At present, there are two new conjugate
vaccines in development (PCV15 and 20vPnC) (23).

Many investigators have focused on the subsequent impact of
young children vaccination in the incidence of IPD in other age
groups. Although there are some reports of this incidence being
increased (24, 25), there is solid evidence of a sustained decrease
in IPD incidence in vaccinated children and adults, -including
the immunosuppressed population- supporting the use of PVCs
(12, 22, 26–29).

Genetic Polymorphisms
The innate immune system represents the first non-specific
step in host defense. The recognition of pathogens by the host
immune system is a necessary requisite for the initiation of a
response (15). A bunch of different receptors are placed on the
cell surface of the epithelial barrier and on hematopoietic cells.
These receptors recognize diverse pathogen antigens. After these
pattern recognition, a very complex net of intracellular signaling
pathways is triggered in order to develop a response of the host
against the pathogen (30).

In the 1980s, genetics was found to be a major determinant
of susceptibility to infectious diseases. Extreme-phenotype
studies in patients with recurrent IPD were successful in the
identification of factors associated with increased susceptibility
(31). Different genetic variants in the proteins involved in the
signaling pathways have been identified in the last 20 years as
elements that either increase the risk or confer protection against
pneumococcal pneumonia. A recent meta-analysis showed that
variants in CD14 and MBL2 genes were associated with
susceptibility to pneumococcal disease. Several other host genetic
polymorphisms have been identified that potentially influence
susceptibility and outcome of pneumococcal disease, although
most of these findings have not been confirmed in independent
studies (32).

Thus, all these findings support the hypothesis that genetic
variants may explain, at least partially, the host susceptibility to
pneumococcal pneumonia and IPD.

BACTERIAL AND TREATMENT FACTORS

The outcome of IPD can be affected by host factors, such as age
(the very young and the very old), underlying conditions, low
socioeconomic status and quality of life; but also by bacterial
factors such as the serotype (16).

Serotype, Invasiveness, and Severity
At least 100 serotypes of S.pneumoniae has been identified, based
on antigenic differences in their capsular polysaccharides (18).

Main serotypes found in NP carriage and invasive disease
are quite similar worldwide (33, 34). Likewise, the frequency
by which a certain serotype causes invasive disease per carriage
episode is a stable property along the time. There is an inverse
relationship between frequency of carriage and invasiveness:
serotypes which are less commonly carried causemore frequently
invasive disease whilst the serotypes most prevalent in carriage
are less invasive (35). Also, it has been described that serotypes
which have less risk of causing invasive disease are associated
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with more severe disease and mortality, even in healthy
individuals (36–38).

According to the studies of Brueggemann et al. serotypes 1, 3,
4, 5, 7F, 8, 9A, 9V, 12F, 14, 18C, and 19A are considered highly-
invasive serotypes while the remaining serotypes were considered
non-highly-invasive or opportunistic (39).

A meta-analysis of IPD outcome by serotype in 2011 was
consistent with these findings: there is a relationship between
IPD and pneumococcal serotype. The risk for IPD has a direct
relation with the serotype prevalence, and is inversely correlated
with invasiveness. Besides, the findings of this study suggested a
potential mechanism for the epidemiologic relationships between
serotypes. The most prevalent among carriage isolates are the
more heavily encapsulated, which rarely cause bacteraemic
invasive disease, but can cause more severe disease when they do
invade (16).

Impact of Initial Antimicrobial Treatment
The effect of S.pneumoniae resistance to antimicrobials and
subsequent discordant antimicrobial therapy (DAT) has been
largely investigated with controversial results. While some
studies observed that patients who received DAT did not have
a higher mortality rate (40), others concluded that discordant
antibiotic prescribed at admission was strongly related with
higher mortality (41).

More recently, in a study conducted in Spain to assess
the relationship between empirical antibiotic treatment
and mortality in CAP due to S.pneumoniae, the authors
evaluated some clinically relevant situations. Among the
subgroup of bacteraemic patients, the choice of empirical
antibiotic combination other than monotherapy with β-lactam
or macrolide combination of β-lactam and macrolide or
levofloxacin alone or in combination was associated with higher
mortality (17).

Regarding beta-lactam therapy, pharmacokinetic and
pharmacodynamic studies suggest that there is no association
between mortality and penicillin MIC≥2 mg/mL in patients that
receive penicillin monotherapy at a dosis of ≥10 MU per day
(usually ≥12 MU per day) (42).

NASOPHARYNGEAL MICROBIOME AND
RESPIRATORY DISEASE

The human body is considered to be a super-organism which is
composed of more microbial cells than body cells (43). The term
microbiome was suggested by Joshua Lederberg and refers to the
collective genomes of our endogenous microbes or microbiota.
This human microbiota plays essential roles in human body
functions, as the maintenance of the integrity of the epithelium
(44), the modulation of the immune response (45, 46), and the
“colonization resistance” to avoid the invasion of pathobionts,
microorganisms which can live as commensal symbionts but,
under not yet completely characterized circumstances (related to
host genetics, microbial context, etc.) could act as pathogens and
cause invasive disease (47–52). Research on this topic has largely
focused on the gut microbiota; however, recent studies provide

growing evidence of the importance of respiratory ecosystems on
human health.

Classically, the lung has been considered sterile. More
recently, the use of molecular typing [especially quantitative
PCR for 16S ribosomal RNA (rRNA)] has allowed identification
of pathobionts in culture-negative respiratory specimens (53,
54). These techniques have permitted the identification of
five phyla in the lungs of healthy individuals: Actinobacteria,
Proteobacteria, Bacteroidetes and Firmicutes (55), including low
levels of oral bacteria, like those of the genera Prevotella and
Veionella (56, 57). The composition of the lower respiratory tract
(LRT) microbiota seems to depend on the upper respiratory
tract (URT) microbiota composition, due to aspiration of
oropharyngeal secretions, micro aspiration (i.e., while sleeping)
or direct contact by continuous mucosa (48, 58, 59). Some studies
report that there are indistinguishable microbiota patterns along
the respiratory tract in healthy individuals, with decreasing
biomass content from upper to lower respiratory tract (56,
60). One study found high viral and bacterial microbiota
concordance between nasopharyngeal and endotracheal samples
during the course of childhood LRTIs, suggesting that upper
respiratory tract (URT) samples could be a valid proxy for lung
microbiota during disease states (61). These findings have now
changed the assumption that the lower airways are normally
sterile (62).

Lung colonization by microbiota starts after birth and
therefore remains unaltered during the whole lifetime (63–65).
Gut and lung microbiota are actually connected in the gut-lung
immunity axis. The metabolites produced by the gut microbiome
(short-chain fatty acids) can reach other organs and have some
influence in the respiratory diseases (66, 67). Recently, it has
been shown the role of the gut-lung immunity axis in the
pneumococcal pneumonia, by whom the integrity of the gut
microbiota plays a main role in the host defense (68).

The colonization of the URT is the essential first step
for a respiratory infection, either of the URT, LRT or a
disseminated infection (33). Between the different species of the
microbiota, there can exist positive interactions (as mutualism
or commensalism) or negative interactions (antagonism) (48).
Thus, some members of the microbiome have potential
advantageous effects on ecosystem equilibrium, health and
functionality (69). Examples of these members in the URT
microbiota are Dolosigranulum spp. and Corynebacterium
spp., as they have been related to respiratory health and
negatively associated to disease caused by pathobionts, such as
S.pneumoniae (48, 70, 71). The impediment for the pathogens
to find necessary resources because the available nutrients
might be used by a diverse local microbiome is one of
the mechanisms described behind colonization resistance (48).
Certain microorganisms have clearly been identified as having
the ability to exclude pathogens from the NP ecosystem (72). In
the case of S.pneumoniae, for instance, the release of free fatty
acids -which come from the skin surface tiacylglycerols- by the
Corynebacterium species C.accolens, has been described as one
of the mechanisms which could inhibit pneumococcal growth
(71). Furthermore, colonization resistance may be enhanced by
interactions with the host immune system (48).
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The URT is considered to be a major reservoir for potential
pathogens, including S. pneumoniae, from where it could expand
and arrive to the lungs and potentially cause infection (33). Thus,
the study of themicrobiome in the respiratory tract will shed light
in the understanding of susceptibility to pulmonary infections,
pneumococcal pneumonia or even IPD.

Main advances on this field have been achieved on pediatric
population and adult population with chronic respiratory
diseases, as chronic obstructive pulmonary disease (COPD).
A relation of recent studies addressing the relationship
between respiratory microbiome and infection is showed in
Table 1. In samples from the respiratory tract of children,
it has been described a high inter-individual variability in
bacterial composition (81). Despite this variability, the bacterial
composition has been proposed to be within discrete categories
where some bacterial taxa dominate the community. In infants
between 1 and 3 months of age, the hypopharynx was found
to have five “pneumotypes” which follow concrete trajectories
during the child’s development (82). Distinct microbiota profiles
have been detected in young children (under 2 years old). Early-
life profiles are associated with microbiota stability and change
patterns of change during the two first years of life. During the
first 2 years, stable microbiota profiles were characterized by an
early colonization of Moraxella, and Dolosigranulum combined
with Corynebacterium, whereas instability was associated with
profiles dominated byHaemophilus and Streptococcus. Moreover,
infant feeding and frequency of respiratory infections in the
parents were associated with the patterns of change. A history of
breastfeeding and a reduced number of consecutive respiratory
infections were associated with stable microbiota profiles (63).

Studies of the early URT microbiota in children have
connected the early microbiota to the development of
disease later in life and to the impact of important drivers.
Accelerated microbiota maturation (enriched of Neisseria spp.
and (facultative) anaerobes, mainly oral species including
Prevotella) is associated with microbiota instability and
increasing number of respiratory tract infections (RTIs) over
the first year of life. These changed dynamics could be observed
within the first month of age and, as stated previously, might
be connected to important drivers: a healthy microbiota
development and stability might be linked to vaginal delivery
and breastfeeding, although this connection is controversial
(83, 84).

In 2020 Chapman et al. conducted a large, retrospective
study in children in order to address the reasons why some
infants are more susceptible to respiratory infections than
others (79). In this study, the cohort was divided into two
groups: “infections and allergy prone group (IAP)” and “non-
infection and allergy prone group (NIAP).” Males and daycare
attendance were independently identified as risk factors for
IAP. In terms of microbiome characteristics, colonization of NP
in an early-age (between 6 and 36 months) with any of the
three pathobionts most frequently associated with respiratory
infections (S.pneumoniae, H.influenzae and M.catarrhalis) was
associated with the IAP group.

More concretely, regarding the potential relationship between
pneumococcal infection and microbiome, a case-control study

was conducted in Spain to compare the nasopharyngeal
microbiota of children with IPD (cases) and healthy children
(controls) -representative of a healthy nasopharyngeal niche.
In this study, bacterial richness and diversity were significantly
higher in the groups of children who developed IPD. Three
clusters corresponding to three different nasopharyngeal-
types (nasopharyngeal types A, B or C, respectively) were
observed. These patterns were significantly associated with
the classification of the patients into cases and controls.
The most frequently detected pattern in children with IPD
(observed in 50.0% of the cases) was nasopharyngeal-type
B, mostly represented by the genera Streptococcus (36.9%),
Staphylococcus (21.3%), Veillonella (9.8%) along with a diversity
of anaerobic genera (Prevotella and Porphyromonas). The other
two nasopharyngeal types [type C, composed of Haemophilus
(52.1%), Moraxella (31.4%) and Streptococcus (11.4%)] and
type A [composed mainly of the genera Dolosigranulum
(44.3%), Moraxella (29.3%) and Haemophilus (10.5%)] were
detected in 32.1 and 17.9% of children with IPD, respectively.
Conversely, the nasopharyngeal-type A was the most frequently
related with healthy controls, leading to the hypothesis—and
according to previous studies (63)—that Dolosigranulum sp.
could confer resistance against pneumococcal infection (70).
A clear imbalance was observed with a high frequency of
Veillonella and other oral microorganisms which were be
relatively infrequent in controls. These results were surprising
given that higher bacterial diversity has been associated with
health, and lower bacterial diversity has been associated with
disease (85).

In adults, a recent study was designed to evaluate the
characteristics of the NP microbiota in the pneumococcal
acquisition (86). At baseline, samples from the NP of the
healthy volunteers enrolled, showed mainly species from four
genera: Corynebacterium, Dolosigranulum, Staphylococcus and
Streptococcus. From these frequently found bacteria, the NP
microbiome could be divided into five different profiles
(A-E). Profiles B-E were dominated by Staphylococcus sp.,
Streptococcus and Corynebacterium sp. or Corynebacterium sp.
and Dolosigranulum sp. combined, whilst profile A showed
more diversity. The latter profile was more frequently associated
with S.pneumoniae carriage (86). In other study, where
bronchoalveolar lavage samples were analyzed, two pneumotypes
in asymptomatic adults were found: one of them, enriched with
supraglottic-characteristic bacteria Prevotella and Veillonella was
associated with higher levels of inflammatory markers (57).

A large revision on the role of microbiome in the innate
immune response related to chronic lung diseases (CLD) was
published in 2020 (87). COPD is a progressive inflammatory
disorder characterized by persistent airflow limitation,
obstructive bronchiolitis and parenchymal destruction (88) with
a high disease burden and related mortality rates. An specific
pattern of microbiota has been identified in COPD patients,
in comparison with healthy controls (87). Proteobacteria were
more frequent in COPD than Bacteroidetes (and Prevotella spp.
was specially reduced) (89). COPD mortality is higher during
periods of acute exacerbations (AECOPD). During AECOPD,
patients show a temporally dynamic sputum microbiome
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TABLE 1 | Studies of respiratory microbiota related to lower respiratory tract infections.

Reference Population,

number of

patients

Methods Main findings

Zhou et al. (73) Adults, 101 Observational, prospective • Streptococcus, Staphylococcus, Pseudomonas, and

Acinetobacter were identified as the most important species in

hospital-acquired pneumonia

Bousbia et al. (74) Adults, 210 Observational, prospective,

case-control

• Pseudomonas aeruginosa and Streptococcus sp. were as

common in pneumonia patients as in controls

• Different microbiota patterns were presented in different forms

of pneumonia

Iwai et al. (75) Adults

(HIV-infected),

15

Observational, prospective,

case-control

• HIV-patients had increased abundance of species including

several pathogenic microorganisms compared to controls

Chaban et al. (76) Adults, 65 Observational,

cross-section

• Respiratory microbiota composition of H1N1 patients relied on

11 different patterns dominated by one or two microorganisms

Leung et al. (77) Adults, 22 Observational, prospective,

longitudinal

• H1N1 infection could provide with previously unrecognized

pathogens which could travel to the LRT and cause infection in

weakened patients

Biesbroek et al. (63) Children, 60 Observational, prospective,

longitudinal

• Distinct patterns of NP microbiota in healthy children from infancy

were associated with stable composition and less susceptibility

for further respiratory infections

de Steenhuijsen Piters et al. (78) Adults

(elderly), 191

Observational, prospective,

longitudinal with two

cohorts

• Pneumonia in either young and elder adults is related with URT

microbiome dysbiosis

• Dysbiosis was characterized by bacterial overgrowth of

S.pneumoniae, Rothia ad Lactobacillus and absence of

anaerobic bacteria

Man et al. (61) Children, 29 Matched case-control study • Presence and severity of LRTI was associated with the URT

microbiota composition

• S.pneumoniae and Haemophilus were associated with disease

Camelo-Castillo et al. (70) Children, 56 Observational, prospective,

longitudinal

• Three nasopharyngeal microbiota patterns significantly

associated with case and healthy controls

• The dominated by Streptococcus sp. type was more frequent

in cases; the type mainly composed by Dolosigranulum sp. was

more frequent in controls.

Chapman et al. (79) Children, 358 Retrospective • NP colonization ofMoraxella at early infancy was associated with

less microbiota diversity and co-colonization with S.pneumoniae

and H.influenzae

• Colonization with Moraxella supposed an increased risk for

respiratory illnesses

Rueca et al.(80) Adults, 31 Observational,

cross-section, case-control

• Patients with SARS-CoV-2 infection had a complete depletion of

Bifidobacterium and Clostridium

• In the case group, Salmonella, Scardovia, Serratia and

Pectobacteriaceae were present

Abbreviations: LRT: lower respiratory tract, NP: nasopharyngeal.

URT: upper respiratory tract, LRTI: lower respiratory tract infections.

(90). In addition, the sputum microbiome profile at first day
of exacerbation is related to 1-year mortality. The absence
of Veillonella increases mortality risk by 13-fold whereas the
presence of Staphylococcus increases the risk by 7-fold. When
these two factors were combined in the same individual, 1-year
mortality risk in COPD increased by 85-fold (91). Thus, reduced
diversity of microbiome in sputum of AECOPD patients
confers a poor prognosis, which is consistent with the previous
association of higher bacterial diversity and health (90, 91).

Asthma has largely been studied on its relationship
with microbiome. Several studies have identified, on one

hand, the respiratory microbiota pattern related to asthma
(high abundance of Haemophilus influenzae, Streptococcus
pneumoniae, Staphylococcus aureus, and Moraxella catarrhalis,
which can potentially play a pathogenic role) (87, 92) and on
the other, that these species have a role on the inflammatory
response which could determine the outcomes in asthma (93).

Apart from CLD, a limited number of studies have
investigated the possible influence of the URT microbiome
on the development of LRTIs in adult patients. In general,
published studies t include moderate sample sizes without a
healthy control group (73, 74), or specific risk groups like
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HIV (human immunodeficiency virus)-infected patients (75),
or patients infected with the pandemic H1N1 influenza virus
(76, 77).

In the last year, the spreading of SARS-CoV-2 a novel beta-
coronavirus, has provoked a world pandemic. COVID-19, the
disease caused by this new virus, ranges from an asymptomatic
estate to a severe pneumonia associated to a potentially lethal
adult respiratory distress syndrome (SDRA) (94). In the search
of answer to the question of why this respiratory virus could
affect humans in such a different way, the role of respiratory
microbiota has been put on the spot. A very recent review about
the role of respiratory microbiota in COVID-19 patients (95)
concluded, based on previous evidence, that the dysbiosis in
the microbiota in COVID-19 patients would potentially lead
to infection or progression of the disease. However, studies on
the characteristics of microbiome in COVID-19 patients are still
scarce and conducted in a small number of patients to make them
suitable for extrapolating conclusions (80, 96).

Although it seems reasonable that the respiratory microbiome
composition may play a role in the development of IPD, there
is, to our knowledge, one single study that has investigated
this association in elderly and young adults (78). In this
study by de Steenhuijsen et al. the differences in microbiota
profiles between patients with pneumonia and their healthy
controls were identified as an independent factor. In the
elderly, pneumonia was associated with Rothia, Lactobacillus and
Streptococcus (pseudo) pneumoniae whilst healthy adults showed
greater diversity and higher richness of especially three different
patterns of microbiome (Prevotella melaninogenica, Veillonella
and Leptotrichia) in the oropharynx samples (78).

THERAPEUTIC OPTIONS IN RESPIRATORY
INFECTIONS

One of the main applications of the knowledge of microbiota
composition are the potential therapeutic options. The
modification of microbiota profiles to a protective pattern
which could lead to a less degree of tissue inflammation, damage
and therefore disease, is an attractive approach for this novel
research (97).

A previous systematic review evaluated 23 trials in children to
evaluate the efficacy of probiotics for prevention and treatment
of recurrent respiratory infections (RRI) (98). After meta-
analysis and considering the available evidence, probiotics
were postulated as a possible alternative therapeutic option
for RRI in children. However, the probiotic strain, dosage
and administration forms were very heterogeneous among the
different studies analyzed.

Human-associated microorganisms are able to produce
secondary or specialized metabolites (natural products) which
could mediate in the interactions between host and microbes
and between microbes themselves (99). These natural products
released by non-pathogenic species could be a novel source
of antimicrobials, due to their antimicrobial activity against
pathogen species (99, 100). More recently, Manti et al. conducted
a prospective study in order to prove the a priori protective

role of Streptococcus oralis and Streptococcus salivarius using
them as a therapeutic option (101). Ninety-one children
between 1 and 12 years old were prospectively included in
a single-open study, in which a nasal spray composed of
Streptococcus oralis 89a and Streptococcus salivarius 24SMBc was
administered. After probiotic treatment, clinical improvement
was reported, even in children with previous history of atopy
or allergies. However, results were only applicable for the
initial 3-months, due to a lack of follow-up period in the
study protocol.

Phage therapy has arisen as a promising therapeutic tool in
the era of antimicrobial resistance (102). Phage lysins, which
are encoded by phages, are cell wall hydrolases that selectively
act against different peptidoglycan bonds. These proteins can
attack especially Gram-positive bacteria by splitting the bacterial
cell wall (103). Some lysins have demonstrated activity against
S.pneumoniae (104). In a recent research, a new phage lysine,
23TH_48 has been postulated as a potential therapeutic weapon
for pneumococcal infections, combined with other lysins or
antibiotics. This sinergyc combinations could be used to broaden
the spectrum of action and improving their antimicrobial
activity (103).

DISCUSSION

Recent advances in molecular typing techniques have identified
not only that the lungs are not sterile –as was classically believed-
but also that the respiratory tract is colonized by microbial
species, which change between healthy individuals and those
affected with respiratory diseases (53–57). Microbial populations
play an important role in health. Along the human airways,
structures above the vocal cords are exposed to high bacterial
burden producing contamination of lower airway secretions
from the URT (57).

We have reviewed the most important factors known to be
associated with pneumococcal disease and we have focused on
the available evidence of the role of respiratory microbiome in
the development of respiratory infections in children and adults.
It has not been established how these previously identified factors
might impact in respiratory microbiota development and thereby
in susceptibility to LRTIs. Despite the many comorbidities and
conditions that have been identified as risk factors for the
development of IPD, only the extremes of age (<5 years and
>60 years old) have been strongly consistently found to be a
major risk for IPD (13, 19, 20). Lung colonization is believed to
start early after birth, with different profiles related with different
factors, such as infant feeding. Stable patterns were associated
with less risk of respiratory infections whilst changing patterns
were associated with increased incidence of respiratory infections
(63). The presence of these changing microbiota patterns–with
Haemophilus and Streptococcus dominant profiles- in children
under 2 years of age could explain the higher incidence of IPD
in this population. On the other hand, changes on respiratory
microbiota through age in the adults were also associated with
a higher risk for LRTI. The absence of anaerobic species in
the very old –a phenomenon linked to increasing age- could
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be associated with a high susceptibility for pneumonia at the
extreme of life (78).

Vaccination against pneumococcal has changed the
epidemiology of the pneumococcal infections and, despite
controversial results of previous studies, there has been a
decrease in IPD incidence in the vaccinated population, even
in the immunosuppressed (12, 22, 26–29). Pneumococcal
vaccination has had also an impact in NP microbiota
characteristics. In spite of a lack of evidence for a different
composition between vaccinated and non-vaccinated children,
a higher abundance was identified in patients after PCV 10
vaccine. This complexity could explain that, after vaccination,
individuals are less prone to suffer acute respiratory tract
infections (105).

Several host genetic polymorphisms which control the
pathways of the immune system to combat bacterial infection
have been identified as a risk factors for protection or
susceptibility to pneumococcal pneumonia (32). Considering
that some factors -as, for example, CXCL16- are regulated
by microbiota through modulation of the quantity of
iNKT cells in the gut and lung, leading to a higher tissue
inflammatory response (46), these genetic variations could
lead to a different expression of signaling proteins which
could be, in turn, modified by the different microbiota
patterns conferring more risk or protection against
pneumococcal pneumonia.

Studies in recent years have focused on characterization of the
respiratory microbiota, and concluded that the LRT microbiota
composition comes from the URT (48, 53–59). Due to its role
in the regulation of the immune response and inflammation
(45, 46), the respiratory microbiome has been associated to
the development and exacerbations of chronic lung diseases,
as asthma and COPD (87–93). However, the most relevant
findings in this review have been the implication of respiratory
microbiome in pneumonia. Thus, colonization of the NP with
either S.pneumoniae, H.influenzae or M.catarrhalis in children
was associated with a tendency for respiratory infections and
allergy in the pediatric period. Moreover and related to the
scope of this review, in the study conducted by Camelo-Castillo
et al. different microbiota patterns on the NP of children,
were associated to IPD or asymptomatic colonization in this
population (70).

Conversely, in the adult less is known on the impact
of microbiome development of LRT infections, including
pneumonia and more specifically, pneumococcal pneumonia
and IPD. De Sreenhuijsen et al. found -in contrast with the
previous studies in children- that anaerobic species were highly
represented in old patients with pneumonia, who also had a less
diverse and rich oropharyngeal microbiota profile (78).

The identification of microbiota profiles associated to IPD or
asymptomatic colonization may be of clinical value as disease
biomarkers. According to recent encouraging data about the
potential role of probiotics in the treatment and prevention
of respiratory infections (mainly in pediatric population) (97,
98, 101), the characterization of beneficial bacteria in adults
-preventing or protecting against pneumococcal infection-

would allow integrating those microorganisms in a probiotic

preparation for the treatment or prophylaxis of pneumococcal
infections and IPD.

The main limitation of our study is that we have tried
to conduct an unbiased, accurate review of the most relevant
literature regarding the evidence on the role of the respiratory
microbiota in the development of pneumococcal pneumonia
and especially, IPD. However, some relevant publications could
have gone unnoticed by our research system and therefore not
included in the current literature review.

Finally, considering that the microbial ecosystem of adults is
relatively stable in the absence of gross perturbations, the role
of microbiome in IPD in children might be likely reproducible
in adults.

Data regarding the potential relationship between NP
microbiome and the risk of developing IPD in adults, viral
coinfection and severity of disease are scarce, and specific
research in this area is needed. Although NP microbiome in
patients with IPD has not been properly characterized yet,
there seem to be discordant results between pediatric and adult
populations. New, longitudinal studies, with larger number of
participants and a homogeneous system to collect samples should
help to elucidate the potential role of the previously observed
microbial species in adults and their relationship with increasing
or reducing risk for the development of respiratory infections,
especially IPD.
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