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The coronaviruses that cause notable diseases, namely, severe acute respiratory

syndrome (SARS), middle east respiratory syndrome (MERS) and coronavirus

disease 2019 (COVID-19), exhibit remarkable similarities in genomic components

and pathogenetic mechanisms. Although coronaviruses have widely been studied as

respiratory tract pathogens, their effects on the hepatobiliary system have seldom

been reported. Overall, the manifestations of liver injury caused by coronaviruses

typically involve decreased albumin and elevated aminotransferase and bilirubin levels.

Several pathophysiological hypotheses have been proposed, including direct damage,

immune-mediated injury, ischemia and hypoxia, thrombosis and drug hepatotoxicity.

The interaction between pre-existing liver disease and coronavirus infection has been

illustrated, whereby coronaviruses influence the occurrence, severity, prognosis and

treatment of liver diseases. Drugs and vaccines used for treating and preventing

coronavirus infection also have hepatotoxicity. Currently, the establishment of optimized

therapy for coronavirus infection and liver disease comorbidity is of significance,

warranting further safety tests, animal trials and clinical trials.

Keywords: coronavirus, COVID-19, liver injury, liver diseases, drug hepatotoxicity

INTRODUCTION

Coronavirus (CoV) is a family of viruses that display crown-like structures under electron
microscopy, with an outer envelope and positive-stranded RNA as the genomic material (1). These
viruses are found widely in many species, including humans, mice, pigs and other animals (2, 3). To
date, 7 types of coronaviruses have been shown to cause disease in humans, of which 4 species (alpha
CoVs: HCoV-NL63, HCoV-229E; beta CoVs: HCoV-OC43, HCoV-HKU1) can cause self-limiting
respiratory symptoms in immunocompromised people, infants and older individuals (4). Another
three species (SARS-CoV,MERS-CoV, and SARS-CoV-2) are highly pathogenic to humans, causing
respiratory diseases, and the infection may lead to acute respiratory distress syndrome (ARDS),
multiple organ failure (MOF) and even death in severe cases (5, 6). As coronaviruses have been
widely studied as human respiratory pathogens, their involvement in the hepatobiliary systems
needs further investigation.

The occurrence of recent coronavirus outbreaks has revealed that these viruses can mutate to
become pathogenic in both humans and animals (7). As virus variations are inevitable and a part
of the evolutionary process, outbreaks of coronaviruses will continue to emerge (8). SARS-CoV
was the first causative agent of human pathogenic coronavirus outbreak globally, occurring in
Guangdong Province of China in 2002–2003 (9), and it can cause severe respiratory syndrome with
mortality rate of 9% (7). During this outbreak,∼8,098 human cases of SARS were reported, and 774
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of these patients died of the infection (10). The next coronavirus
outbreak that followed the SARS-CoV outbreak was the MERS-
CoV outbreak (11). Occurring in 2012, this outbreak involved
severe infections in the respiratory tract of infected individuals
in Saudi Arabia and other Middle East countries (12). The initial
mortality rate of MERS-CoV was ∼50%, but the outbreak was
over by 2013, with only a few sporadic cases since (13). Based on
the latest update from the WHO, the total number of reported
cases of MERS-CoV worldwide was 2,519,866 of the patients
died, resulting in a mortality rate of 34.4% (14). The most recent
coronavirus outbreak occurred in Wuhan, China, which was
also known as the 2019-nCoV outbreak; the virus was recently
renamed SARS-CoV-2, and the disease is referred to as COVID-
19 (15). The first case of SARS-CoV-2 infection was reported in
Wuhan, China, on 31 December 2019 with symptoms of atypical
pneumonia (16). This case was later proven to be caused by
a novel coronavirus, SARS-CoV-2. According to the WHO, as
of 10 AM CET 2nd July 2021, 187,882,032 cases of COVID-19
have been reported, with 4,046,592 deaths, worldwide (17). There
were 34,766,404 confirmed cases of SARS-CoV-2 infections in
the USA, including 623,039 deaths. In terms of death related to
COVID-19, after the USA, the greatest number of deaths due
to COVID-19 has been reported in Brazil (534,233), followed by
India (408,764).

Despite remarkably high genetic similarity between SARS-
CoV and SARS-CoV-2 with regard to gene sequence, the speed
at which SARS-CoV-2 spreads is much faster than that of SARS-
CoV (18). This may be explained by differences in the structure
of spike proteins (S proteins) among coronaviruses (19). The
S protein is a 150-kDa protein that is highly N-glycosylated
and plays roles in interaction with the endoplasmic reticulum
(ER) and receptor attachment (20, 21). Usually, the S protein
is cleaved into two functional domains (S1 and S2) by a host
protease (furin-like protease) (22, 23). The presence of this
special protease cleavage site activates S protein the priming and
might improve the efficiency of SARS-CoV-2 transmission (24).
The S protein also serves as a ligand on the coronavirus surface,
which binds to angiotensin-converting enzyme 2 (ACE-2) (25).
SARS-CoV and SARS-CoV-2 use the ACE2 receptor of the host
cell, whereas MERS-CoV binds to dipeptidyl-peptidase 4 (DPP4)
(26–29). After attaching to the cell membrane, the viral genome

Abbreviations: SARS-CoV, severe acute respiratory syndrome coronavirus;
MERS-CoV, Middle East respiratory syndrome coronavirus; COVID-19,
coronavirus disease 2019; SARS-CoV-2, severe acute respiratory syndrome
coronavirus 2; ACE2, angiotensin-converting enzyme 2; ARDS, acute respiratory
distress syndrome; MOF, multiple organ failure; S proteins, spike proteins; ER,
endoplasmic reticulum; Dpp-4, dipeptidyl-peptidase 4; ICU, intensive care unit;
CCU, critical care unit; ALT, glutamic-pyruvic transaminase; AST, glutamic-
oxalacetic transaminease; GGT, gamma-glutamyl transferase; ALP, alkaline
phosphatase; Ang II, angiotensin II; hDpp-4, human DPP-4; hrsACE2, human
recombinant soluble ACE2; TNF, tumor necrosis factor; IL-6, interleukin-6; SIRS,
systemic inflammatory reaction syndrome; HIRI, Hepatic ischemia–reperfusion
injury (HIRI); ROC, reactive oxygen species (ROS); ALD, alcoholic liver disease;
NAFLD, non-alcoholic fatty liver disease; ASCO, American Society of Clinical
Oncology; ESMO, the European Society for Medical Oncology; ILCA, the
International Liver Cancer Association; EASL, the European Association for
the Study of the Liver; ASSLD, the American Association for the Study of Liver
Diseases; IFNs, Interferons.

enters the cytoplasm and is translated to produce new virions,
which can further lead to infection and respiratory disease (30,
31). This mechanism has become the most likely reason for
multiple organ dysfunction in patients with coronavirus infection
(31, 32).

Liver Injury in Patients With Coronavirus
Infection
Manifestations of Coronavirus-Related Liver Injury
Coronavirus infections are distinguished by continuous fever,
cough, fatigue, dyspnea, arthralgias and decreased white blood
cells in the serum (13, 33, 34). The severity of coronavirus
infection is evaluated by the degree of respiratory symptoms and
intensive care unit (ICU) admission (35, 36). It is notable that
coronaviruses can influence not only the respiratory system but
also the digestive, cardiac and endocrine systems (37, 38). Indeed,
one study found that diarrhea occurred in 3.8% of COVID-
19 patients and that 43.4% of patients had different degrees of
liver function abnormality (39). Moreover, the incidence of liver
injury in severe COVID-19 cases (74.4%) was higher than that of
patients with mild disease (43.0%) (40). In cases of death due to
COVID-19, the incidence of liver injury is 58% (40). According
to the autopsy report of SARS patients, many virus particles were
observed in the lung and the parenchymal areas and vascular
endothelium of other organs, such as the liver (41, 42). The
genome of SARS-CoV was also detected in liver tissue by RT-
PCR (43). Among the three notable coronaviruses, acute liver
injury has been mostly reported in MERS-CoV infection (44),
and according to a study from Saad et al., 31.4% of patients
have liver dysfunction during MERS-CoV infection (45). The
commonmanifestations of liver injury caused by infections of the
three coronaviruses are summarized in Table 1.

The latest studies on SARS-CoV-2 have indicated that the
incidence of liver injury in patients with COVID-19 ranges
from 14.8 to 53%, manifesting as abnormal glutamic-pyruvic
transaminase (ALT), glutamic-oxalacetic transaminase (AST)
and bilirubin levels (33, 53, 56). Moreover, compared with mild
COVID-19 cases, severe cases show higher levels of plasma ALT
and AST (57). The risk of being transferred to the ICU and
critical care unit (CCU) is statistically correlated with elevated
AST and bilirubin levels, and mortality correlates positively with
elevated AST levels (58). Injury to bile duct cells and abnormal
gamma-glutamyl transferase (GGT) and alkaline phosphatase
(ALP) levels have also been found in COVID-19 patients (57, 59,
60). This is a transient reaction, and therefore, the ALT levels
of most patients usually return to normal after recovery (61).
Patients with persistent high ALT level were in severe condition
or has basic liver diseases, being found to have higher rates
of 30-day mortality and longer hospitalization (62). Albumin
is decreased in severe cases (∼26.3–30.9 g/L) and correlates
with disease severity and mortality (36, 57, 63). Low levels
of prealbumin in severe SARS-CoV-2 patients have also been
reported, suggesting that hepatic synthesis is suppressed in these
patients (53). Similarly, liver injury in SARS andMERS patients is
characterized by mild increases in ALT, AST and bilirubin at the
early stage of the disease (35, 44, 50, 51, 64–67). Moreover, great
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TABLE 1 | The manifestations of coronavirus-induced liver injury.

SARS-CoV-2 SARS-CoV MERS-CoV

Pathological

changes

Mild lobular infiltration by small

lymphocytes, centrilobular sinusoidal

dilation and patchy necrosis

Accumulation of cells in mitosis, ballooning

of hepatocytes and mild lobular

lymphocytic infiltration.

Moderate portal tract infection, lobular

lymphocytic inflammation and hydropic

degeneration of hepatic parenchymal cell

ref: Tian et al. (46) ref: Chau et al. (47) ref: Ng et al. (48)

ALT Elevated (affected proportion:

13.3–28.0%)

Elevated (affected proportion:

52.5–87.0%)

Elevated (affected proportion:

11.0–56.3%)

ref: Guan et al. (33), Chen et al. (49) ref: Jiang et al. (50), Liu et al. (51) ref: Arabi et al. (52)

AST Elevated (affected proportion:

22.0–58.0%)

Elevated (affected proportion:

37.1–86.9%)

Elevated (affected proportion:

15.0–86.8%)

ref: Guan et al. (33), Chen et al. (49) ref: Jiang et al. (50), Liu et al. (51) ref: Arabi et al. (52)

TB Elevated (affected proportion:

10.5–18.0%)

Elevated (affected proportion: 30.0%) Not available

ref: Guan et al. (33), Chen et al. (49) ref: Jiang et al. (50)

Albumin Decreased (affected proportion: 36.8%) Decreased (affected proportion:

40.4–72.0%)

Not available

ref: Zhang et al. (53) ref: Jiang et al. (50)

Comorbidity with

liver disease

The proportion of severe cases in patients

with HBV comorbidity is higher than that of

patients without HBV infection. (32.9 vs.

15.3%)

Chronic hepatitis B was not associated

with worse clinical outcomes.

Not available

ref: Wu. et al. (54) ref: Huang et al. (55)

ALT, glutamic-pyruvic transaminase; AST, glutamic-oxalacetic transaminease; TB, total bilirubin.

elevation of liver enzymes is an independent factor correlating
with a poor prognosis of patients with SARS (68). Although age
and pre-existing diseases have been proven to have a significant
negative influence on the prognosis of SARS patients, patient age
was not significantly different between those with high or low
peak ALT levels (69, 70). In a cohort of severe MERS patients,
50% exhibited elevated aminotransferase levels during their time
in the ICU (52, 71, 72). Saad et al. illustrated that decreased
albumin level is a predictive factor of the severity of MERS (73).

Regarding pathological changes, liver biopsies of SARS
patients revealed dramatic increases in eosinophilic bodies
and balloon-like hepatocytes, indicating that coronavirus might
cause necrosis of hepatocytes (47). Some studies showed that
protein 7a, a special protein of SARS-CoV, can also induce
necrosis of cell lines belonging to various organs (74, 75).
Mild microvascular steatosis and moderate lobular and portal
inflammation have been found in the livers of patients with
SARS-CoV-2 infection (46). Similar to the observations for
SARS and COVID-19 patients, the pathological changes in
MERS patients include moderate portal tract infection, lobular
lymphocytic inflammation, and hydropic degeneration of hepatic
parenchymal cells (48, 76). The definitive mechanism by which
liver injury develops in patients with coronavirus infection is
unclear, and several pathophysiological theories may explain this
phenomenon (Figure 1, Table 2).

Pathogenic Mechanisms of Coronavirus-Related

Liver Injury

ACE2/DPP4-Mediated Damage to Hepatocytes
RAS proteins are encoded by Ras sarcoma oncogenes and belong
to a group of small GDP/GTP-binding guanine triphosphatases,

which play an essential role in cellular biological behaviors
such as proliferation, migration, adhesion, and differentiation
(83). Abnormal signaling of RAS occurs in numerous human
diseases (84). ACE2 plays an important role in the RAS signaling
pathway by upregulating angiotensin II (Ang II), which promotes
atherosclerosis, inflammation, and migration of endothelial cells
(85). ACE2 is widely present in humans, including in alveolar
epithelium, intestinal epithelium and arterial smoothmuscle cells
(86). Furthermore, it has been confirmed that ACE2 receptors
are over-expressed in gastrointestinal epithelium enabling viruses
to invade bile duct cells and suppress liver function (40, 86).
Herath et al. reported both liver tissue and bile duct epithelium
express ACE2 (87). However, the ACE2 expression level in
bile duct epithelium was significantly higher than that in liver
tissue (88). As bile duct cells play essential roles in hepatic
regeneration and the immune activities, upregulation of ACE2
expression in hepatocytes can lead to compensatory proliferation
originating from bile duct cells, resulting in liver injury (88, 89).
Although SARS-CoV and SARS-CoV-2 can cause liver function
abnormality through binding to the ACE2 receptors of bile duct
cells, viral inclusions were not observed in the liver biopsies
of COVID-19 patients (46). These results indicate that liver
injury in patients with coronavirus infection may be the result
of bile duct epithelium damage rather than hepatocyte changes
(90). Numerous literature have reported liver cirrhosis can also
dramatically upregulate ACE2 expression in hepatocytes (91–93).
In the normal human liver, ACE2 stains weakly and is limited
to the bile duct cells, vascular endothelial cells, and perivenular
hepatocytes (86, 87). In the cirrhotic liver, ACE2 staining can be
observed in the majority of hepatocytes in the cirrhotic nodules,
bile duct and vascular endothelium (88). High expression of
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FIGURE 1 | Liver injury caused by coronavirus infection. After entry into the human body through the respiratory tract, coronaviruses can lead to liver injury via several

approaches, including ACE2/DPP4-mediated hepatocyte injury, immune-mediated liver injury, ischemia and hypoxia, thrombosis, and drug hepatotoxicity. The

manifestations of liver injury involve abnormalities in liver function test and pathological examination.

ACE2 helps more coronaviruses invade hepatocytes and leads to
greater virulence of coronaviruses in the liver (87, 94, 95). Thus,
patients with both liver cirrhosis and coronavirus infection may
have greater extents of liver dysfunction and even higher risks of
liver failure compared with normal people (96, 97).

Dipeptidyl peptidase 4 (DPP-4) cleaves a large number of
chemokine and peptide hormones involved in the regulation
of the immune system (98). DPP-4 is upregulated in the liver,
indicating that the liver might be a target organ of MERS-
CoV (99, 100). A scientific team built a transgenic murine
model which expressed codon-optimized human DPP-4 (hDPP-
4) and observed that MERS-CoV can invade into the hepatocytes
through DPP-4 and cause hepatocytes injury (101). The hDPP-
4 transgenic mouse exhibited mild hepatic injury on the 5th day
after MERS-CoV infection, and the pathological manifestations
were scattered necrosis of hepatocytes in sinuses and infiltration
of numerous macrophages and Kupffer cells (102, 103). On the
9th day, although hepatocytes necrosis was less, fatty changes in
hepatocytes were also found (104).

Immune-Mediated Injury
When coronaviruses invade the human body, they activate the
immune system, triggering a series of immune activities to

eliminate the virus (105–107). The liver plays an essential role
in immune activities and contains numerous immune cells that
participate in the immune response (108–110). The hepatic
acute-phase response (involving cytokines released from immune
cells) is a defense reaction to fight against the pathogen and
protect vital liver functions (111, 112). T cells play important
roles in the anti-coronavirus immune responses, and the balance
between the anti-coronavirus response and immune tolerance
is maintained by the differentiation of CD4+ and CD8+ T
cells (113). During the process of SARS-CoV-2 infection, 80%
of immune cells that infiltrate into the liver are CD8+ T cell,
and these cells could survive in the inflamed tissue (114). The
decrease in the infiltration of CD4+ T cell can lead to depressed
B cell activation, along with reduced level of SARS-CoV-2-
specific neutralizing antibody and pro-inflammatory cytokine
(such as IL-1, IL-6, and TNF-α), so as to affect the clearance
of SARS-CoV-2 from the liver (115). Compared with SARS-
CoV-2, CD4+ T cell is more susceptible than CD8+ cell
during the processes of MERS-CoV and SARS-CoV infections.
Liver cells in patients with severe coronavirus infection show
various inflammatory changes, such as swelling and steatosis
in hepatocytes, proliferation in liver sinus cells, hyperplasia in
Kupffer cells and infiltration in immune cells (40, 46, 116).
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TABLE 2 | The mechanisms of coronavirus-induced liver injury.

Pathogenic

mechanism

Coronavirus type References Highlights

ACE2/DPP4-

mediated direct

injury of hepatocytes

SARS-CoV Li et al. (27) ACE2 was shown to be the functional receptor of SARS-CoV.

ACE2 will likely contribute to the development of antivirals and

vaccines.

SARS-CoV-2 Bourgonje et al. (28) ACE2 has been established as the functional host receptor for

SARS-CoV-2.

ACE2 expression and activity are related to COVID-19 severity.

ACE2 inhibitor is a selection of potential treatment modalities for

COVID-19.

MERS-CoV Wang et al. (29) The receptor-binding subdomain is critical for viral binding to

DPP4 and entry into the target cell.

Immune-mediated

injury

SARS-CoV Duan et al. (68) IL-1, IL-6, and IL-10 in the serum of SARS patients with abnormal

liver function were higher than those in patients with normal liver

function.

MERS-CoV Mahallawi et al. (77) IFN-γ, TNF-α, IL-15, and IL-17 were significantly increased in

those infected by MERS-CoV.

SARS-CoV-2 Huang et al. (38) TNF-α, IFN-γ, IL-6, IL-8, IL-4, and IL-10 were dramatically

elevated in COVID-19 patients.

Thrombosis SARS-CoV,

SARS-CoV-2, and

MERS-CoV

Giannis et al. (78) There was a great proportion of patients with hypercoagulable

states after coronavirus infection.

SARS-CoV-2 Llitjos et al. (79) Elevated D-dimer level and thrombocytopenia were observed in

some COVID-19 patients.

Drug hepatotoxicity SARS-CoV,

SARS-CoV-2,

MERS-CoV

Sheahan et al. (80) The anti-corona acitivities of remdesivir has been reported.

Redesivir can cause elevation in aminotransferases.

SARS-CoV Cao et al. (81) Lopinavir/Ritonavir can cause elevation in serum amylase and liver

enzymes.

SARS-CoV-2 Fan et al. (39) A significantly higher proportion of patients with abnormal liver

function had received lopinavir/ritonavir after admission.

SARS-CoV-2 Xu et al. (82) Tocilizumabcan cause mild elevation in serum aminotransferase,

jaundice and occasional reactivation of hepatitis B.

ACE2, angiotensin-converting enzyme 2; DPP-4, dipeptidyl-peptidase 4.

Cytokines can also induce ischemia and hypoxia, which lead to
hepatocyte injury and necrosis (117).

Abnormal serum levels of cytokines and chemokines (such
as tumor necrosis factor (TNF), interleukin-6 (IL-6), and IL-18)
have been detected at the early stage of coronavirus infection
(111, 118). Duan et al. found that the concentrations of IL-
1, IL-6, and IL-10 in the blood of SARS patients with hepatic
dysfunction were higher than those in patients with normal
hepatic function, demonstrating the relevance between hepatic
injury and the cytokine storms caused by SARS (68). The levels
of IL-2-receptor and IL-6 in the serum of patients with SARS-
CoV-2 infection were also be found to be elevated and relate to
the disease severity (119). Moreover, cytokines secreted by Th1
and Th2 cells (involving TNF-α, IFN-γ, IL-6, IL-8, IL-4, and
IL-10), are dramatically elevated in patients with SARS-CoV-2
infection [38]. During the acute phase of MERS-CoV infection,
the levels of IFN-γ, TNF-α, IL-15, and IL-17 in the serum of
patients were dramatically elevated (77). These results suggest
that the systemic inflammatory reaction syndrome (SIRS) and
cytokine storms caused by coronavirus infection may be critical
mechanisms of liver injury (68, 120, 121). Nonetheless, there is

a lack of research on the relationship between pro-inflammatory
cytokine activity and liver injury.

Ischemia and Hypoxia
Patients with SARS-CoV-2 infection exhibit different extents of
hypoxemia, with more than 40% of patients receiving oxygen
treatment (117). Hypoxic liver injury can be marked by increased
transaminases in the serum due to dysregulation of the oxygen
supply (122). Complications of COVID-19, including ARDS,
SIRS and MOF, can lead to hypoxemia, ischemia and shock (123,
124), and microthrombi can disrupt perfusion within the liver.
Hepatic sinus endothelial cells also play roles in the occurrence
of this phenomenon, as they can respond to inflammatory signals
(such as endotoxins with endothelium dysfunction, characterized
by reduced vasodilatory responds to acetylcholine and reduced
nitric oxide synthase phosphorylation). Hepatic ischemia–
reperfusion injury (HIRI) is another familiar pathological
process, whose mechanism is closely correlated with reactive
oxygen species (ROS), neutrophils, Kupffer cells, and overloaded
calcium. HIRI can lead to inflammation and cell injury
by activating Kupffer cells, neutrophils, and platelets. Under
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the circumstance of ischemia and hypoxia, the cell survival
signaling pathway in hepatocytes can be inhibited by glycogen
consumption and adenosine triphosphate depletion, resulting
in necrosis of these cells (125). Moreover, for patients who
develop ARDS, hypoxia can cause oxidative stress responses that
facilitate a persistent elevation of ROS (126). ROS and their per-
oxidized forms can arouse regulation of redox reactions and
promote the secretion of pro-inflammatory substances to cause
hepatic injury (127, 128). These pathophysiological changes may
accentuate liver ischemia and hypoxia, influencing the secretion
of hepatotoxic substances and so as to affect hepatic function
(125, 129).

Thrombosis
SARS-CoV, MERS-CoV, and SARS-CoV-2 have been reported
to lead to hypercoagulable states in patients, thus increasing
the chance of thrombosis (78). Previous studies on COVID-19
have shown that 36.2% of patients developed thrombocytopenia,
46.4% of patients had increased D-dimer levels during infection,
and the rates were higher in severe than in mild cases (79). It has
recently been reported that microvascular thrombosis can lead
to end-stage organ injury and can potentially influence hepatic
function (130, 131). In the past, elevated levels of serum ALP
was considered as a prognostic factor for ischemic stroke and
a risk factor for hemorrhagic transformation (132). COVID-19
patients who experienced thrombotic events had dramatically
high levels of ALP, though ALP levels were normal or only mildly
increased in patients without thrombotic events (133). Recent
data suggest that COVID-19 patients have a greater chance of
developing disseminated intravascular coagulation (134, 135).
Elevated D-dimer levels, the level of degradation products of
fibrin, and prolonged prothrombin time have also been shown
to be correlated with worse prognosis of patients with SARS-
CoV-2 (136). The results of autopsies fromWuhan have revealed
lymphocytes and monocytes infiltration in the portal area, with
thrombosis and congestion in the sinuses (116). The liver
was found to have hepatocyte degeneration along with lobular
necrosis and neutrophil infiltration (46, 116). These findings
suggest that hypercoagulable states in patients with COVID-19
are a potential reason for liver injury.

Drug Hepatotoxicity
Drug hepatotoxicity is the third leading cause of liver injury
after viral hepatitis and alcoholic/non-alcoholic fatty liver disease
(137). Based on many clinical studies and animal experiments,
several types of drugs have been proven to cause liver injury,
including antibiotics, anti-tumor drugs, saikosaponins, anti-
tuberculosis drugs, and anti-malarial drugs (138–140). Until
now, there are no effective therapeutic treatments for patients
with SARS (141, 142). Drugs that were mostly chosen for
SARS patients were ribavirin and corticosteroids (143). Ribavirin
was used because it had a broad spectrum of activity against
RNA viruses, and steroids were chosen because of their anti-
inflammatory functions (144, 145). Nevertheless, ribavirin is
correlated with obvious hepatotoxicity, including hemolysis,
resulting from discontinuation of its use (143). Most patients
with SARS-CoV-2 infection have fever and take antipyretic drugs

that contain acetaminophen (38, 146). Acetaminophen is known
to lead to liver injury, and acetaminophen overdose can induce
serious liver injury or even liver failure (147). COVID-19 patients
have been treated with lopinavir, abidor, ritonavir, and other
antiviral drugs (146). Furthermore, some scientists proposed that
HIV protease inhibitorsmight efficiently inhibit the replication of
SARS-CoV-2 (148, 149). However, Shen et al. proved the chance
of having liver injury was increased in patients who received
both hormone therapy and HIV protease inhibitors (150, 151).
Intravenous methylprednisolone was also reported to correlate
with acute liver injury, but evidence on the correlation between
oral methylprednisolone and liver injury is insufficient (152). We
have summarized the effects of several anti-corona drugs on liver
function in Table 3. Some clinical trials on anti-SARS-CoV-2
drugs are still ongoing (Table 4).

EFFECTS OF CORONAVIRUS INFECTION
ON PRE-EXISTING LIVER DISEASE

Chronic liver disease is one of the biggest disease burdens,
accounting for about 1 million deaths per year worldwide (156–
158). As a result, the influence of coronaviruses on various pre-
existing liver diseases needs to be further explored; evidence
of active viral replication and persistent liver injury after
coronavirus infection also calls for further investigation (159).
For patients with pre-existing liver diseases, the addition of
coronavirus-directed or immune-response-directed liver injury
may lead to further hepatic dysfunction, especially for patients
with advanced liver diseases. As an example, experience
obtained from the SARS pandemic in 2003 showed that
comorbidity with hepatitis B can cause more severe liver injury
(160). However, if the liver injury caused by COVID-19 is
immune-response-directed, the immunocompromised condition
of cirrhosis patients and cancer patients may be more beneficial
than detrimental (161). Moreover, patients with liver cirrhosis
or liver cancer are usually in an immunocompromised state
and may be more susceptible to SARS-CoV-2 infection (162,
163). Clinical practice guidance regarding liver disease has
been given to healthcare professionals by relevant societies
worldwide, including the American Society of Clinical Oncology
(ASCO), the European Society for Medical Oncology (ESMO),
the International Liver Cancer Association (ILCA), the European
Association for the Study of the Liver (EASL), and the American
Association for the Study of Liver Diseases (AASLD) (164–169).
Here, we summarize the effect of coronavirus infections on the
occurrence, development and treatment of four types of liver
diseases: viral hepatitis, liver cirrhosis, hepatocellular carcinoma
and liver transplantation.

Effect of Coronaviruses on HBV and HCV
Hepatitis
HBV and HCV are chronic infections that occur frequently
worldwide, with 2 billion people infected and 350 million having
chronic infection (170, 171). One study indicated that 3.6 and
0.6% of patients with COVID-19 had a history of hepatitis B
and hepatitis C, respectively (172). In a study about hepatic
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TABLE 3 | Drug-induced abnormal liver function in patients with coronaviruses infection.

Drugs for

coronaviruses

infection

Number of

cases

Proportion of

liver injury

ALT AST ALP Total bilirubin γ-glutamyltransferase References

Remdesivir 387 34.0% (130/387) 20.4% (79/387) 20.4% (79/387) Not available 1% (4/387) Not available (153)

Lopinavir/ritonavir 148 37.2% (55/148) 18.2% (27/148) 21.6% (32/148) 4.1% (6/148) 6.1% (9/148) 17.6% (26/148) (39)

Interferon 31 38.7% (12/31) 38.7% (12/31) 29.0% (9/31) 32.3% (10/31) 16.1% (5/31) Not available (154)

Baricitinib 12 58.3% (7/12) 58.3% (7/12) 50.0% (6/12) Not available Not available Not available (155)

Tocilizumab 20 5.0% (1/20) 5.0% (1/20) 5.0% (1/20) Not available Not available Not available (82)

ALT, glutamic-pyruvic transaminase; AST, glutamic-oxalacetic transaminease; ALP, alkaline phosphatase.

TABLE 4 | The efficacy and current status of COVID drugs.

Drugs Mechanisms Efficacy Clinical trials

Remdesivir Inhibiting viral replication by interfering

RNA polymerases

To be tested in clinical trials NCT04292899

NCT04257656

NCT04292730

Lopinavir/Ritonavir Inhibiting viral replication by interfering

protease

Inconsistent results in completed clinical

trials

NCT04343768

ChiCTR2000029308

Interferons Directly inhibit viral replication and

transmission and support immune

responses to clear viruses.

To be tested in clinical trials NCT04389645

NCT04276688

Baricitinib JAK inhibitors Proven efficacy (baricitinib plus remdesivir) NCT04401579

Tocilizumab Humanized mAb targeting IL-6 Do not improve survival NCT04372186

rhACE2 Completely bind to viral S-protein To be tested in clinical trials Not available

biochemical parameters in 324 cases in Shanghai, the percentage
of COVID-19 patients with HBsAg positivity was 6.5% (173).
Thus, the influence of coronavirus infection on the course of
HBV and HCV has attracted widespread attention (174, 175).
SARS patients with HBV and/or HCV infection had a higher
risk to get liver injury and severe hepatitis because hepatitis virus
replication was promoted during SARS-CoV coinfection (55, 67).
However, considering coinfection of SARS-CoV, no significant
differences in various adverse clinical outcomes between chronic
hepatitis B patients and HBsAg-negative patients were detected
(176). SARS patients with acute hepatitis and/or decompensated
liver cirrhosis have a greater chance to be dead (47). A research
team reported that 23/1099 SARS-CoV-2 patients in Wuhan
were coinfected by HBV, representing 2.4% of mild cases and
0.6% of severe cases (174). COVID-19 patients also had a higher
mortality rate than that of HBV-negative patients (32.9 vs. 15.3%)
(54). Liu et al. found that the median time of virus clearance
(21 days, 95% CI: 19–29) in COVID-19 patients with HBV
infection was longer than that in patients without HBV infection
(14 days, 95%, CI: 13–21) (177). These results indicate that
coronavirus infection and viral hepatitis interact; thus, exploring
the underlying mechanism will be meaningful for optimizing
treatment guidance for COVID-19.

The presence of coronavirus infection and complications
should be factors considered when doctors develop tailored
treatment plans for patients with HBV and/or HCV infection
(178). According to the AASLD guidance, we should initiate
anti-HBV/HCV therapy in patients under three states: 1) newly

diagnosed cases of HBV/HCV; 2) patients without SARS-CoV-2
infections; 3) if resources (involving drug treatments, personnel
for approval of therapy, blood testing, follow-up facilities through
telemedicine or face-to-face) have not been deployed for SARS-
CoV-2 infection (168). HBV reactivations after using tocilizumab
or prednisone have been reported in patients with HBV infection;
therefore, these two drugs should not be used to avoid HBV
reactivation (179). Additionally, according to guidance from
AASLD, long-term HBV therapy can be employed for patients
with newly diagnosedHBVhepatitis and continued if the patients
receive the therapy plan, regardless of whether the patients
are infected by SARS-CoV-2 (168). Therefore, therapy guidance
for COVID-19 patients with advanced liver disease needs to
be established to minimize the risk of liver injury or even
liver failure, as both the advantages and disadvantages of an
intervention are vital during the treatment of COVID-19.

For hepatitis B patients who are undergoing antiviral
treatment and high-dose hormone therapy, discontinuation of
anti-HBV therapy might cause reactivation and replication of
HBV during SARS-CoV-2 infection (180). Indeed, studies have
pointed out that treating HBV/HCV patients with lopinavir
and ritonavir can increase the incidence of liver injury (181–
183). A clinical study showed that long-term application of
ribavirin can lead to serious drug hepatotoxicity in HCV patients,
which may be due to metabolic reactions in the body (184). In
addition, patients with HBsAg positivity and hepatitis B core
antibody positivity treated with corticosteroids showed a higher
risk of HBV reactivation, and the incidence of HBV reactivation
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correlates with the dosage of corticosteroid treatment (177, 180).
Therefore, the clinical status of chronic HBV infection should be
systematically evaluated in the setting of corticosteroid use, and
nucleotide analog treatment should be taken into consideration
to reduce the risk of HBV reactivation or hepatitis flare.

Effect of Coronaviruses on Liver Cirrhosis
It is known that liver cirrhosis is one of the leading causes of death
and illness globally; thus, exploring how coronavirus infection
influences the course of liver cirrhosis is of great importance
(162, 185). For patients with liver cirrhosis and coronavirus
infection, the severity of COVID-19 and the incidence of
severe complications increase, resulting in a higher liver-related
mortality rate compared to patients with COVID-19 alone (49).
A clinical study demonstrated that SARS-CoV-2 infection can
lead to rapid deterioration in patients with relatively stable
liver cirrhosis: 25 COVID-19 patients with Child-Pugh A
presented rapid deterioration in hepatic function, and the Child-
Pugh scores of over 30% of them increased to B or C after
COVID-19 diagnosis (96). The last hospital admission or follow-
up visit before COVID-19 diagnosis provides evidence for the
importance of SARS-CoV-2 infection in deteriorating hepatic
function, which can usually be seen in patients with liver cirrhosis
of any etiology (186). However, more evidence is needed to
completely clarify the effect of elevated ALT on the disease course
of patients with liver cirrhosis and COVID-19 and to further
explain the pathogenic mechanism by which coronavirus induces
hepatocyte injury (57). The potential cytopathic effect has been
demonstrated, as numerous ACE2 receptors might help SARS-
CoV-2 enter host liver cells (32). Alternatively, the liver might
be indirectly involved in acute inflammatory activity after SARS-
CoV-2 infection, as it becomes infiltrated with a large number of
macrophages, potential cytokine producers (107).

To date, drugs that have been widely used for COVID-19
treatment included chloroquine, lopinavir/ritonavir, ribavirin,
favipiravir, remdesivir, and tocilizumab et al. (146, 187). As the
majority of these drugs are metabolized in the liver, abnormal
hepatic function might increase the risk of drug hepatotoxicity
in COVID-19 patients (188). It is worth noting patients with pre-
existing liver diseases, especially liver cirrhosis with Child-Pugh
B/C, have a greater chance of experiencing adverse reactions to
the above drugs (189). As a result, close and frequent monitoring
of hepatic bio-parameters in patients can help in the notification
of liver injury and reduce the risk of adverse effects and optimize
drug dosages (137). It is recognized that endoscopic variceal
screening in healthy individuals should be restricted to people
with high risk for variceal bleeding, as well as those with histories
of variceal bleeding or portal hypertension (190); otherwise, non-
invasive examinations for the diagnosis should be performed
(191). To decrease the risk of spreading infection, endoscopy
examination in COVID-19 patients need to be restricted to
critical situations such as gastrointestinal bleeding.

Effect of Coronaviruses on Liver Cancers
Patients with liver cancers also have a high risk of coronavirus
infection, especially if they receive chemotherapy or
immunotherapy in the hospital (192). The incidence of

COVID-19 in cancer patients at a hospital in Wuhan was
0.79% (12/1,524), higher than that of the whole community
during the same period (193). Owing to the serous spread of the
COVID-19 pandemic, <50% of them were being continuously
treated for their cancer (194). Furthermore, cancer patients have
poorer prognosis than patients with COVID-19 alone, with the
mortality rate ranging from 5 to 20% (195).

Patients with liver cancer should accept special treatments
and take interventions to prevent severe complications of
COVID-19 (196). In patient-saturated hospitals, the shortage
of clinical and medical resources has largely impeded normal
radiological examination, pathological diagnosis and anticancer
treatment for patients with liver cancer (197). EASL, ESMO,
and ILCA have provided specific guidance for the surveillance,
examination and treatment of liver cancer patients with SARS-
CoV-2 infection (165, 167, 169, 198). According to the Society of
Surgical Oncology, all patients with aggressive liver, pancreatic
or gall bladder cancers should undergo surgery (199). For
patients who need surgery as well as systemic chemotherapy,
neoadjuvant chemotherapy should be considered to delay
the surgery.

Screening for esophageal varices and liver cancers is now
delayed for all but high-risk patients (186). AASLD guidance
suggests that it is appropriate to delay liver cancer surveillance for
2 months after evaluation of the advantages and disadvantages of
initiating liver cancer surveillance in COVID-19 patients. Some
retrospective studies have indicated that semiannual surveillance
can increase the possibility of early detection and improve
patients’ survival compared with annual surveillance (200).
Therefore, delaying screening for over 1 year may lead to
progression of liver cancer, resulting in the miss of the best time
for operating and even liver failure or death. Delaying HCC
surveillance over short periods of time is likely acceptable as the
annual HCC incidence is 2–3%, meaning that 98% of people will
not develop HCC in a surveillance interval (201). These changes
in treatments have potentially increased the risk for variceal
bleeding and distant metastasis of liver cancer. Additionally,
living donor liver transplantation and locoregional therapy for
liver cancers have been delayed in many institutions, possibly
increasing both the progression and mortality of liver cancer
(168). Selective strategies included using serum biomarkers,
increasing outpatient interventions (such as albumin infusions),
and integrated telehealth are being strongly recommended by
many institutions (202).

Effect of Coronaviruses on Liver
Transplantation
After liver transplantation, patients have a greater chance to be
infected and/or get severe course of COVID-19 because of their
immunosuppressed state (203). These patients are being treated
with immunosuppressive drugs and are considered to have
greater chances of contracting SARS-CoV-2 infection, resulting
in serious complications (1.4% death, 5.0% admitted to the ICU
and 15.7% severe disease) (204). Gwilym et al. performed a
study involving 151 liver transplant recipients, and reported that
previous liver transplantation does not correlate independently
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with the mortality of COVID-19 patients (205). In contrast, age
and clinical comorbidities were independently correlated with
COVID-19-related death in other studies (121, 206). In living
donor liver transplantation, ACE2 is a substitute marker for
liver regeneration and is upregulated in liver tissue and serum
(207). Therefore, during the early postsurgical stage, both liver
transplant recipients and donors are more likely to develop
SARS-CoV-2 infection because of their elevated ACE2 expression
(208). Undiscovered SARS-CoV-2 infection of recipients can
increase the risk of developing serious immunosuppression and
postsurgical infection, which might cause multiple system organ
injury or failure (186). Additionally, a donor with undiscovered
SARS-CoV-2 infection may transfer the virus to recipients.

It is reported that using immunosuppressive medicines
can modulate the inflammatory activity against SARS-CoV-2
infection (206), and the potential adverse effects need to be
considered for liver transplant recipients as well (209). The
application of early treatment may also serve as an essential
step for the prevention of severe pneumonia in liver transplant
recipients (210–212). It is recommended that patients with
pre-existing liver disease rapidly receive antiviral treatment
(207). According to EASL-ESCMID, special drugs recommended
for the treatment of COVID-19 after liver transplantation
include remdesivir, chloroquine/hydroxychloroquine with or
without azithromycin, lopinavir/ritonavir, tocilizumab et al. (213,
214). Strict screening criteria for organ recipients and donors
with coronavirus infection needs to be set to avoid further
transmission (215).

Effect of Coronaviruses on Alcoholic Liver
Disease and Non-alcoholic Fatty Liver
Disease
Patients with alcohol use disorder (AUD) or alcohol liver disease
(ALD) are special components of the population with liver
diseases (216). The COVID-19 pandemic has resulted in a social
environment that leads people to drink at home. Selling of alcohol
has increased by 55% in the week ending March 21 compared
with the same time last year (217). A Chinese initial report has
showed an over 2-fold increase in harmful drinking during the
COVID-19 pandemic (218). Same effect was also seen in the
USA, in which AUD and ALD is responsible for the highest
hospitalization-cost among all chronic liver diseases. ALD
patients usually have underlying medical conditions which can
lead to higher risks of severe SARS-CoV-2 infection, including
obesity with metabolic syndromes, chronic kidney diseases, and
corticosteroid treatment for alcoholic hepatitis (219). Actually,
patients with severe alcoholic hepatitis should not be treated with
standard corticosteroid, especially in localities that are mostly
affected by COVID-19 pandemic.

NAFLD is a chronic dysmetabolic disease which has become
the most common liver disease in the world, with a prevalence
rate of 30% in the western world (220). In addition, NAFLD
is not isolated, it is often related to a series of risk factors,
metabolic syndromes, and other diseases. The risk of severe
SARS-CoV-2 infection also increases by the comorbidity of
NAFLD (221). According to a report on 202 COVID-19 patients

and their NAFLD status, COVID-19 progression was associated
with male sex, age >60, higher BMI, and NAFLD (222). This
study also indicated that NAFLD is an independent risk factor
for COVID-19 progression (OR 6.4; 95% CI 1.5–31.2). NAFLD
is also related to higher risk of abnormal hepatic function
and longer clearance time of viruses. In another research, the
moderate or high Fibrosis 4 (FIB-4) score can significantly and
independently increase the risk of severe COVID-19 progression
(223). Therefore, patients with NAFLD show a distinct risk as
their metabolic dysfunction and underlying hepatic disorder.

EFFECTS OF ANTI-CORONAVIRUS
TREATMENTS ON THE LIVER

Remdesivir
Remdesivir is an antiviral drug which is undergoing clinical
trials for treating SARS-CoV-2 infection (224, 225). It was first
used for treating Ebola virus infection with clinical experiments
still on (226, 227). Results from ongoing experiments in vitro
and in vivo demonstrated the activity of remdesivir against
Paramyxoviruses, Filoviruses, and Coronaviruses (80). One study
reported adverse events in three patients after using remdesivir,
including nausea, vomiting, gastroparesis, and rectal bleeding
(153). They also presented increased ALT and AST levels at 1–
5 days after receiving the drug (228). However, it remains unclear
whether this biochemical change was due to remdesivir or the
virus because a large percentage of severely COVID-19 cases
develop hepatic dysfunction. At present, there are insufficient
data to give a definite adverse effect profile for remdesivir.
Conclusive evidence of its effectiveness and adverse effects and
calls for further clinical trials (229).

Lopinavir/Ritonavir
Lopinavir and ritonavir, inhibitors of the HIV protease, are
two HIV-1 drugs approved by the FDA (230, 231). Recently
studies found that the antiprotease activity of these two drugs
seem to be effective to against the SARS-CoV-2 (232). The
adverse effects observed in ICU patients involved pancreatitis,
hepatitis, liver decompensation, prolonged PR intervals and
congenital QTc prolongation (233). Previous studies found
that the serum amylase and hepatic enzymes were elevated in
SARS patients using lopinavir/ritonavir (81). A recent study
indicated that CYP3A4 metabolic pathways played essential roles
in ritonavir-mediated hepatotoxicity (234). CYP3A participates
in the generation of electrophilic content and oxygen free
radicals, which covalently bind to macromolecular substances
within hepatocytes, causing membrane lipid peroxidation and
destruction of membrane integrity (210). Lopainavir/Ritonavir
can also act on Ca2+-ATPase on the cell membrane, disrupt
the balance between internal and external Ca2+ concentrations
and dysregulate the biofunction of key organelles (including
mitochondria and ER), resulting in injury or even necrosis of
hepatocytes (233). Furthermore, overdose of lopinavir/ritonavir
can stimulate ER stress pathways in the liver, inducing liver
necrosis and inhibiting hepatocyte proliferation (233), and it
also initiates inflammatory responses and worsens liver injury by
aggravating oxidative stress (235). Several clinical experiments
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proved that the combined use of lopinavir/ritonavir with other
drugs is effective in patients with COVID-19 (183, 232, 236).
However, a study reported that the usage of lopinavir/ritonavir
combined with arbidol cannot efficiently promote clearance of
SARS-CoV-2 in patients (237). Administration of lopinavir and
ritonavir seems to only be beneficial for patients who are at the
early-stage of SARS-CoV and MERS-CoV infection (182, 238).
Fan et al. found that a high percentage of patients exhibited
abnormal levels of hepatic enzymes (57.8%) after receiving
lopinavir/ritonavir compared with patients with normal liver
function (31.3%) (39).

Interferons
Interferon (IFN) is a type of endogenous signaling molecules
secreted by host cells during the immune response to
pathogen (239). Increased IFN levels activate the immune
system to clear pathogens and suppress pathogen replication
(106). There are two subclasses of IFNs which participate
in the immune responses: IFN-a and IFN-b. IFN-a initiates
effective host-mediated immune activity, which has shown
value in the treatment of viral infections (including HBV
and HCV) and cancers (240). IFN-b was originally used to
treat the autoimmune multiple sclerosis (241). Non-specific
immune-mediated reactions may be promising for other
viral diseases, including SARS-CoV-2 (107, 111). Nevertheless,
patients receiving IFN can also generate neutralizing antibody
which decreases the efficiency of viral elimination (242). The
adverse effects included leukopenia, lymphopenia, autoimmune
hepatitis, and thyroid disease (154, 243).

Baricitinib
Baricitinib is a JAK-STAT inhibitor for the treatment of
rheumatoid arthritis patients who should not take more than
one TNF antagonist (244, 245). Barcitinib was proven to affect
the hyperinflammatory status which happened during SARS-
CoV-2 infection and might avoid endocytosis and viral infection
by depressing AAK1 activity (246, 247). Scientists should pay
attention to the increasing number of reports on infections
and thrombosis after using JAK inhibitors for the treatment of
COVID-19 (248, 249). We should also evaluate adverse hepatic
effects, particularly liver injury, cholestasis and hepatitis, which
unexpectedly developed in a non-negligible number of cases
(155). To our knowledge, this is the first strong evidence for a
potential correlation between baricitinib and drug-induced liver
injury, which is a rare and unpredictable adverse effect requiring
case-by-case evaluation to exclude other possible reasons for the
injury, including the application of drugs with recognized effects
of drug-induced liver injury (250, 251).

Tocilizumab
Tocilizumab is a monoclonal antibody against IL-6 receptors,
which is originally used for treating rheumatoid arthritis (252,
253). As study from a medical institution in Wuhan reported
that 20 severe COVID-19 cases all exhibited rapid decrease in
fever after adding tocilizumab to lopinavir, methylprednisolone,
and oxygen therapy, increased the oxygenation efficacy to 5%
and the hospital discharge rate to 95% (254). Further studies are

undergoing for evaluating the efficacy of combining tocilizumab
with other antivirals drugs (82, 255). Tocilizumab can lead
to moderate elevation in serum aminotransferase, which is
usually short-lived and asymptomatic, but it is also correlated
with jaundice and occasional reactivation of HBV (256, 257).
Tocilizumab need to be withheld when the serum neutrophil
is lower than 1,000 cells/mm2, platelet is lower than 100,000
cells/mm2, and/or hepatic enzymes are higher than three times
of the upper normal limit (258).

EFFECTS OF CORONAVIRUS VACCINES
ON THE LIVER

Vaccines against SARS-CoV-2 will be vital for avoiding the
spread of the virus and alleviating social panic, but multiple
aspects should be considered to prevent an activated innate
inflammatory response, increased incidence of autoimmune
diseases, and vaccine-induced liver injury (259). In general, the
development of vaccinations is costly, and it usually takes long
time to finish strict animal and clinical trials before approval
for public applications (260). However, under the situation
of the COVID-19 outbreak, the medical community is facing
tremendous pressure to rapidly develop effective vaccines (261).
In past pandemics such as those involving Ebola, H1N1, SARS,
and MERS, vaccine development was unable to be completed
owing to the end of the pandemic and the reallocation of scientific
funds (262–265). Since July 2nd, 2020, there has been 158 vaccine
candidates for COVID-19, 135 of which are in the preclinical or
the developing stage. Until now, mRNA-1273 (266), Ad5-nCoV
(267), INO-4800 (268), LV-SMENP-DC (269), Pathogen-specific
aAPC (270), and ChAdOx1 (271) have entered the phase II/III
clinical trials (Table 5).

Under a pandemic situation, vaccines with the greatest
potential to treat COVID-19 are protein sub-unit vaccines,
viral vectored vaccines, and RNA- or DNA-based vaccines
(272, 273). Plasmid DNA and mRNA vaccines have attracted
scientists’ attention and effort as they might be applicated to
prophylaxis and therapy for personalized treatment and social
health solutions (274). These two vaccines can be rapidly and
directly produced from the sequence of the targeted protein by
general manufacturing methods, either human or virus in origin
(275). For vaccinations, constructing a genetic sequence for the
antigen rather than deactivating the pathogen or constructing
a recombined protein is simpler and quicker and reduces the
potential risks of working with live pathogens (276).

These vaccines do not require culture in the lab; they
reduce the risk of exposure to live viruses and encode targeted
antigens without generating other toxins, but this does not
mean that they do not have risks (277, 278). The pitfall
of possibly effective adjuvant inflammation is the potential
hepatotoxicity of RNA- or DNA-based vaccines (276). As
mentioned above, antivirals and anticancer drugs that contain
engineered nucleoside analogs can be toxic (138–140), and such
toxicity cannot be predicted by preclinical trials and safety tests
due to species difference between human and animal (260).
The clinical adverse effects include myopathy, acute pancreatitis,
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TABLE 5 | The efficacy and current status of COVID vaccines.

Vaccine Platform Efficacy Safety Stage of development

BNT162b2

BioNTech/Fosun

Pharma/Pfizer

3 LNP-formulation

encapsulated mRNA

95% Contraindicated if there is a

history of severe or immediate

allergy to any component of

the vaccine

FDA EUA

mRNA-1273

Moderna/NIAID

Prefusion stabilized S protein

mRNA encapsulated in LNP

94.1% Contraindicated if there is a

history of severe or immediate

allergy to any component of

the vaccine

FDA EUA

AZD1222

ChAdOx1nCoV-

19/University of

Oxford/AstraZeneca

Chimpanzee adenovirus

vector displaying Spike

protein on its surface

70.4% Cases of transverse myelitis

have been reported

Phase 3 clinical trial

ISRCTN89951424

NCT04516746

NCT04540393

CTRI/2020/08/027170

Ad5-nCoV CanSino

Biological Inc

Adenovirus serotype 5

expressing Spike protein

96% Defective vector replication Phase 3 clinical trial

NCT04526990

NCT04540419

Ad26 CoV S1

Janssen

Pharmaceutical

Adenovirus serotype 26

expressing Spike protein

72% Low Seroprevalence of

antibodies

Phase 3 clinical trial

NCT04505722

NCT04614948

NCX-CoV2373

Novavax

Full length recombinant

SARS-CoV-2 glycoprotein

nanoparticles adjuvanted with

Matrix M

89.3% Adjuvant of M-matrix may be

allergenic

Phase 3 clinical trial

NCT04533399

CoronaVac Sinovac Formalin inactivating whole

virus particles + alum

adjuvant

50.4% Inactivated SARS CoV-2 with

alum hydeoxide adjuvant

Phase 3 clinical trial

NCT04456595

NCT04582344

NCT04617483

BBIBP-CorV

Sinopharm Wuhan

Institute of Biological

Products/Beijing

Institute of Biological

Products

Inactivated SARS-CoV-2 100% Inactivated whole virion

SARS-CoV-2

Phase 3 clinical trial

NCT04612972

lipodystrophy, hepatic steatosis, and neural injury (273, 274).
Vaccine hepatotoxicity was found in preclinical studies with a
potential mRNA target obtained from lipid nanoparticles for
Crigler-Najjar syndrome, being chosen because only a small dose
of protein is required (279). The expression of the mRNA is
believed to play a potential role in hepatotoxicity, and repeat
dosages were applied (280). In a clinical trial for the mRNA
rabies vaccine, self-limited adverse effects reflected by innate
immune activities were discovered, even though the authors
stated that the vaccine was generally safe (278). However,
adverse events to this extent are not observed when using
DNA vaccines (272, 275). The double-stranded structure of
the DNA plasmid is regarded as a substance that stimulates
the immune system through non-TLR pathways (274). Indeed,
plasmid DNA also acts on the TBK1-Sting pathways (275),
leading to the secretion of IFN-1, which serves as an adjuvant for
the initiation of inflammatory responses against antigens (281).
It should also be noted that for monoclonal antibodies, repeat
administration of mRNA would likely be required, which may
increase the efficacy as well as the risk of toxicity (276). Thus,
finding the balance of inflammation and deleterious toxicity
by controlling adjuvant activities of mRNA remains a work
in progress.

Chronic liver disease (CLD) is a contraindication to multiple
COVID-19 vaccines, such as: Pfizer Biontech vaccine (Bnt 162B2)
(282), Moderna vaccine (mRNA-1273) (283), Chadox1 nCoV-
19 vaccine (AZD1222) (284), etc. As a result, there is little
data on COVID-19 vaccination in patients with CLD. Given
the reduced immunogenicity of non-coronavirus vaccines in
patients with CLD, it is unclear whether the COVID-19 vaccine
will produce an adequate and durable immune response to the
virus as in healthy people (285). The role of increased liver
disease severity in determining the immune response to COVID-
19 vaccine is unclear. Although no significant hepatotoxicity
was reported in the trials conducted, the number of registered
patients with liver disease was too small to draw definitive
conclusions about the safety of the vaccine in this population.
Many clinical trials in patients with liver disease are currently
under way worldwide. In view of CLD patients at higher risk of
COVID-19-related death, EASL and AASLD recommended that
priority for COVID-19 vaccination should be given to patients
with advanced liver disease and those who have undergone
liver transplantation for more than 3 months (286, 287).
Patients with chronic liver disease who are taking antivirals or
immunosuppressive drugs should not stop taking drugs before
and after vaccination.
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DISCUSSION

The recent COVID-19 pandemic has become a threat to global
health, and the virus is still evolving. Lessons from previous
outbreaks of coronaviruses and influenza epidemics suggest that
viral infections can lead to severe respiratory syndromes and
corresponding complications (such as abnormal liver function,
cardiac insufficiency and renal failure) as a result of the
combination of systemic and partial inflammatory responses. As
the most important metabolic organ in the human body, the liver
is dramatically affected by coronavirus infection. On the other
hand, pre-existing liver diseases also influence the severity and
motility of patients with coronavirus infection.

SARS-CoV, MERS-CoV, and SARS-CoV-2 are three
coronaviruses with remarkable genetic similarity and can
all cause acute respiratory inflammation in humans. Compared
with MERS-CoV, SARS-CoV, and SARS-CoV-2 share greater
similarity, as both attach to host cells using the ACE2 receptor;
in contrast, MERS-CoV binds to DPP4 of the host cells.
Nonetheless, the manifestations of liver injury are rather the
same among them, characterized by decreased albumin and
elevation in ALT, AST, liver enzymes and bilirubin. Increases
in GGT and ALP are also observed in COVID-19 patients,
suggesting injury of bile duct cells in the liver. Thus, liver
injury might also be the result of bile duct cell injury, as liver
biopsies obtained from a few COVID-19 patients did not
show viral inclusions but rather microvesicular steatosis. The
pathological changes that occur are also similar among the
three coronaviruses, commonly manifesting as microvascular
steatosis and moderate lobular and portal inflammation. Based
on previous studies, the frequency and extent of liver injury in
severe cases with coronavirus infection were remarkably higher
than those in mild cases. As a result, we conclude that these
three coronaviruses can cause liver injury that results in similar
manifestations and that the degree of liver injury correlates
positively with the severity of infection.

Although numerous clinical studies have indicated a
strong correlation between liver injury and coronaviruses, the
mechanism by which coronaviruses damage hepatocytes and
affect hepatic function is still unclear. Several pathophysiological
theories have been proposed. First, ACE2-mediated hepatocyte
damage is known to be the most direct effect of SARS-CoV-2
infection on the liver. Upregulation of ACE2 in hepatocytes
facilitates the invasion of SARS-CoV-2 and causes greater
virus virulence in the liver. Considering the important role
of ACE2 in coronavirus infection, hrsACE2 may become a
promising therapy for patients with SARS-CoV or SARS-CoV-2
infection. Second, immune activity is largely enhanced during
coronavirus infection. Once infected with coronaviruses, a large
number of cytokines (IL-6, IL8, IFN-γ, and TNF-α, etc.) are
secreted by immune cells and released into the blood, inducing
inflammation in various tissues or even ARDS, SIRS and MOF.
This suggests that immunotherapy is essential for patients
with coronavirus infection, and accordingly, interferon-α and
corticosteroids are widely used owing to their anti-inflammatory
function. However, as immune dysfunction leads to serious
consequences, close monitoring of serum cytokines is necessary

during immunotherapy. Third, hypoxia can cause persistent
elevation in reactive oxygen species, which can promote the
secretion of various pro-inflammatory substances that induce
liver injury. Therefore, monitoring hypercoagulable states in
patients, including thrombocytopenia and increased D-dimer
and ALP levels, will be meaningful for preventing thrombosis
and further ischemia and hypoxia. To summarize, all of these
factors can affect hepatic function and cause liver damage during
the course of coronavirus infection. As liver injury is due to
multiple factors, more attention should be paid to the pathogenic
mechanisms involved, not only in laboratory experiments but
also in clinical monitoring and follow-up visits.

The acquisition and clearance of coronavirus infection is
largely dependent on the health condition of the patient as
well as and any pre-existing diseases. Hepatitis B and C, liver
cirrhosis, liver cancer, and immunosuppressive drugs after liver
transplantation generally lead to an immunocompromised state.
As the numbers of infected individuals and clinical studies of
SARS-CoV-2 are much greater than those of SARS-CoV or
MERS-CoV, the correlation between pre-existing liver disease
and COVID-19 is clearer and more convincing than that for
SARS or MERS. Due to delayed SARS-CoV-2 clearance in
those with HBV infection, the severity and mortality rate is
higher in patients with HBV infection than in those with
HBV negativity. For those who have already developed liver
cirrhosis, the Child-Pugh scores are likely to increase because of
liver injury caused by COVID-19. Moreover, complications of
COVID-19 occur earlier and to a larger extent in patients with
systemic immunocompromised status. COVID-19 also largely
influences the treatment of liver diseases. For hepatitis B/C
patients undergoing anti-HBV treatment, discontinuation of
high-dose corticosteroid therapy might cause reactivation of
HBV during SARS-CoV-2 infection. Furthermore, lopinavir and
ritonavir have been proven to increase the chance of developing
liver injury in patients with HBV or HCV infection. To prevent
the risk of virus transmission, certain examinations such as
endoscopy and vascular radiography are being restricted to only
severe emergencies (for example, internal bleeding). Although
many widely recognized institutions (including ASCO, ESMO,
ILCA, EASL, and AASLD) have provided guidance for liver
disease treatment in the presence of SARS-CoV-2 infection, more
optimized treatments need to be explored to accomplish the
lowest risk of disease deterioration and complications.

At present, drugs that are used for treating coronavirus
infection include remdesivir, lopinavir/ritonavir, interferon-
a, baricitinib, tocilizumab, ACE2 inhibitors, and hrsACE2.
Unfortunately, no drug has been proven to be absolute effective
for coronavirus therapy. In fact, there are still no excellent drugs
for therapy of SARS and MERS, which emerged many years
ago. The difficulty in finding optimized drugs for coronavirus
infection is mainly due to severe adverse effects. Remdesivir,
lopinavir, and ritonavir have all been reported to increase the
probability of liver injury, and the extent of liver injury is closely
related to the dose of these drugs. IFNs have the potential
to initiate a non-specific immune response, causing hepatocyte
damage and autoimmune hepatitis and increasing the risk of
developing severe complications such as ARDS and SIRS. As
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a JAK inhibitor, baricitinib can increase the risk of thrombosis
and further lead to liver injury. Tocilizumab can also reactivate
HBV in SARS-CoV-2 coinfection, which will delay the recovery
of both viral hepatitis and COVID-19. ACE inhibitors and
hrsACE2 might impede invasion of coronaviruses and also
attachment to host cells in various tissues (such as the lung, liver,
gastrointestinal tract and kidney), preventing organ damage.
Overall, vaccines against coronaviruses will be vital in preventing
their outbreaks, but multiple factors need to be considered to
avoid an activated innate inflammatory response, an increased
incidence of autoimmune diseases, and vaccine-induced liver
injury. Although vaccines with the greatest potential are RNA-
or DNA-based vaccines, their positive and adverse effects are
seldomly detected due to species differences between humans
and lab animals. Therefore, the development of vaccinations
usually takes a long time to carry out strict animal and clinical
trials before being approved for public applications, which is a
challenging task for both society and scientists.

Here, we discussed the potential effects of three coronaviruses
and their related treatments on the liver, yet there remains a
huge lack of clinical and laboratory experiments to provide strong
evidence. The reasons can be summarized as follows:

1) The clinical data of patients have not been fully explored.
As the main manifestations of coronavirus infections are
respiratory inflammation and damage, most studies have
focused on impacts on the lung. However, coronavirus
infections can also cause severe complications in other organs,
such as the kidney and liver. Therefore, close monitoring
of hepatic biochemical parameters is essential to reduce the
deterioration of liver disease and death from liver failure.
In general, other known factors with hepatotoxicity must
be excluded when evaluating the significance of a factor on
liver injury.

2) Some studies are waiting for follow-up data for COVID-19
patients, as well as data from COVID-19 patients with long
course of disease. Exploration on the relationship between
coronavirus infections and chronic liver diseases, such as
liver cirrhosis, liver cancers and liver transplantation, is of
great significance, and long-term data collection is needed. A
systematic record of clinical information and liver diseases,
including biochemical indicators, virus-related indicators,
clinical symptoms, immunity states and psychological states

of each stage of the disease.We should also utilize information
on family history to deeply illustrate the relationship between
pre-existing liver disease and COVID-19-induced liver injury.

3) Genetic regulatory mechanisms of coronavirus infections
warrant further exploration. For example, the level of ACE2
expression in hepatocytes can largely decide the extent of
direct liver injury, but upregulation of ACE2 expression
does not occur in all patients. Therefore, genetic variations
and transcriptome data obtained from second-generation
sequencing can provide more ideas regarding the mechanism
of COVID-19 susceptibility and its complications.

4) Suitable animal models are urgently needed. For studying the
relationship between pre-existing liver diseases and COVID-
19-induced liver injury, it is better to establish an animal
model that has both liver diseases and COVID-19. The safety
and potential adverse events of drugs and vaccines that
might occur in COVID-19 patients should be evaluated in
animal experiments.

CONCLUSION

Our understanding of coronaviruses, their diagnosis, treatment,
and prevention is rapidly evolving. As the pandemic spreads
and new evidence is published, it is important to study the
effect of coronaviruses on the liver and identify the risk factors
for hepatic complications in patients with coronavirus infection.
There is an urgent need to develop a clinical guidance for
liver diseases patients with coronavirus infection. A complete
record of patients with coronaviruses infection with systematic
recording of clinical information and liver diseases will be useful
to the identification of hepatic complications, the development of
hepatic complications riskmodels, and the prediction of response
to treatment.
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