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Three-dimensional (3D) liver tumor segmentation from Computed Tomography (CT)
images is a prerequisite for computer-aided diagnosis, treatment planning, and
monitoring of liver cancer. Despite many years of research, 3D liver tumor segmentation
remains a challenging task. In this paper, we propose an effective and efficient method for
tumor segmentation in liver CT images using encoder-decoder based octave convolution
networks. Compared with other convolution networks utilizing standard convolution
for feature extraction, the proposed method utilizes octave convolutions for learning
multiple-spatial-frequency features, thus can better capture tumors with varying sizes
and shapes. The proposed network takes advantage of a fully convolutional architecture
which performs efficient end-to-end learning and inference. More importantly, we
introduce a deep supervision mechanism during the learning process to combat potential
optimization difficulties, and thus the model can acquire a much faster convergence rate
and more powerful discrimination capability. Finally, we integrate octave convolutions
into the encoder-decoder architecture of UNet, which can generate high resolution
tumor segmentation in one single forward feeding without post-processing steps. Both
architectures are trained on a subset of the LiTS (Liver Tumor Segmentation) Challenge.
The proposed approach is shown to significantly outperform other networks in terms of
various accuracy measures and processing speed.

Keywords: liver, liver tumor, deep learning, octave convolution, segmentation

1. INTRODUCTION

According to the World Health Organization, liver cancer was the second most common cause
of cancer deaths in 2015. Hepatocellular carcinoma (HCC) is the most common primary liver
cancer and the sixth most common cancer. Each year, the incidence and death rates of liver cancer
are steadily increasing. In addition, the liver is also a common site for secondary tumors. It is
an important factor leading to human death. With the rapid development of tumor radiation
technology, radiotherapy has entered the stage of precision radiotherapy represented by image
guidance and adaptive radiotherapy. Precision radiotherapy needs to accurately delineate the target
area (tumor) of radiotherapy to guide treatment and subsequent radiation plans. But at this stage,
accurate target area delineation in clinical medicine needs to be done manually by experienced
physicians, and its accuracy and efficiency completely depend on the physician’s clinical experience.
This work is not only time-consuming, but also poorly reproducible.
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Using computer image processing technology, combined with
medical imaging diagnostic technology, early diagnosis, three-
dimensional modeling, and quantitative analysis of liver diseases
can enable doctors to have sufficient data before surgery, make
preoperative planning, improve the success rate of surgery, and
make reasonable preparations for an effective treatment plan.
The accurate and reliable segmentation of liver contours from
abdominal CT images is the first step in the early diagnosis
of liver disease, the estimation of liver size and condition, and
three-dimensional modeling. It is also a very critical step. The
segmentation results have a direct effect on subsequent work. In
actual clinical applications, the liver contour is usually manually
segmented from CT images by physicians with relevant practical
experience and professional knowledge. However, this process
is very time-consuming and energy-consuming, and is subject
to the subjective factors, experience, and knowledge of different
physicians. The effect of the difference will often result in
different segmentation results. Therefore, in order to reduce the
workload of doctors, improve work efficiency, and obtain more
objective and accurate segmentation results, computer-aided
diagnosis technology must be introduced to help professional
doctors segment liver CT images.

To solve this problem, researchers have invested in the
research and come up with a number of approaches. Over the past
few decades, they have focused on developing algorithms such
as level sets, watershed, statistical shape models, region growth,
active contour models, threshold processing, pattern cutting,
and traditional machine learning methods that require manual
extraction of tumor features.

Traditional liver segmentation methods are based on image
processing methods, and mainly rely on some shallow features
of the image, such as grayscale, statistical structure, and
texture to segment liver contours. This feature can be obtained
directly from the image or obtained by artificially designed
extraction operators. These shallow features are less robust, not
representative, and susceptible to noise interference. Practice has
proved that it is often those abstract and deep features that are
more representative. Deep learning technology can mine the deep
abstract features of data from a large amount of data and apply
them to liver segmentation tasks to improve the accuracy and
robustness of segmentation.

Region growing, thresholding, or clustering methods have
been widely used in medical image segmentation because they are
fast, easy to implement, and have relatively low computational
costs. However, the main drawback of these methods is that
they use only strength information. As a result, this method
is prone to boundary leakage at blurred tumor boundaries.
Therefore, prior knowledge or other algorithms are integrated to
reduce under-segmentation or over-segmentation (1-3). Anter
et al. (1) present an automatic tumor segmentation method
using adaptive region growth. A marker-controlled watershed
algorithm was used to detect the initial seed points of regional
growth. Yan et al. (4) present a semi-automatic segmentation
method based on watershed transformation. They first manually
placed seed points in the tumor area as markers, and then
performed watershed transformation to delineate and extract
tumor contours in the image. Therefore, the density information

of the tumor can be obtained as a threshold to separate the
hepatic lesion from its adjacent tissues. Then, the threshold is
refined from the segmented lesion to obtain accurate results.
DAS and Sabut (3) used adaptive thresholding, morphological
processing, and nucleated fuzzy C-means (FCM) algorithms
to segment liver tumors from CT images. Moghbel et al. (5)
present an automatic tumor segmentation scheme based on
supervised random Walker method. FCM with the function of
cuckoo optimization is used for PIXEL marking of final random
Walker segmentation.

Active contour methods, such as fast moving and level
set algorithms, are popular segmentation techniques. However,
good initialization and velocity function are needed to obtain
accurate segmentation results, especially for tumors with uneven
intensity and weak boundaries. Li et al. (6) present a new level
set model that combines edge- and region-based information
with prior information. An FCM algorithm is used to estimate
the probability of tumor tissue. Li et al. (6) present a semi-
automatic method for segmentation of liver tumors from
magnetic resonance (MR) images, which uses a fast-moving
algorithm to generate initial labeled regions and then classifies
other unlabeled voxels through a neural network. A graph cutting
method has also been widely used in medical image segmentation
(7, 8), which can achieve global optimization solutions. Stawiaski
et al. (7) present an interactive segmentation method based
on watershed and graph cutting. When held in conjunction
with the 2008 Liver Tumor Segmentation Challenge (LTSCO08)
competition [in conjunction with the 2008 Medical Image
Computing and Computer-Assisted Intervention (MICCAI)
conference], the method achieved the highest accuracy compared
to other semi-automatic or automated methods. Linguraru et al.
(8) present an automatic pattern segmentation method that
uses pattern cutting with Hessian-based shape constraints to
bias speckle-like tumors. However, the main drawback of such
techniques based on level sets or graphic cuttings is their high
computational cost, especially for 3D volume data.

Recently, deep learning (9-21) has penetrated into a variety
of applications and surpassed the state-of-the-art performance
in many fields such as image detection, classification, and
segmentation (22-26), which also excites us to use this technique
in the liver tumor segmentation task. Many researchers have
already used deep learning methods to explore the task of
liver tumor segmentation. In practical applications, CNN shows
excellent feature extraction capabilities. Among them, fully
convolutional neural networks (FCN) as an improved network of
CNN have been widely used in the field of image segmentation.
Different from image classification, semantic segmentation needs
to determine the category of each pixel to achieve accurate
segmentation. FCN replaces the last fully connected layer of
CNN with a deconvolution layer to achieve pixel-to-pixel
classification. The application of FCN and its derivatives in image
segmentation continues to expand. Its encoder is the same as
the 13 convolutional layers in VGG-16. The decoder maps the
features extracted by the encoder to the encoder with the same
resolution as the input. When the feature is extracted from small
to small, the decoder gradually enlarges the extracted feature
to the size of the input image from small to large. However,
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the traditional FCN network has poor edge segmentation and
low accuracy, which cannot meet the requirements of medical
image segmentation. Li et al. (6) propose a H-DensU-Net,
which consists of 2D and 3D U-Net, for the segmentation of
liver tumors. 2D U-Net is used to extract tumor features in
individual sections, while 3D U-Net is used to understand tumor
spatial information between sections. Sun et al. (27) present a
method of liver tumor segmentation based on multi-channel full
convolutional network (MC-FCN). They designed an MC-FCN
to train contrast-enhanced CT images at different imaging stages,
because each stage of the data provides unique information about
the pathological features of the tumor. However, these neural
networks are fully connected between adjacent layers, which leads
to problems such as over-parameterization and over-fitting for
tumor segmentation tasks. In addition, the number of trainable
parameters in a fully connected neural network is related to the
size of the input image, which results in higher computational
costs when processing high-resolution images.

One of the challenges of deep learning for medical image
processing is that the samples provided are often relatively
small, and U-Net still performs well under this limitation. As
an image semantic segmentation network, U-Net was mainly
used to process medical images when it was proposed. The
U-Net network is a CNN-based image segmentation network,
mainly used for medical image segmentation. When it was
first proposed, it was used for cell wall segmentation. Later,
it has excellent performance in lung nodule detection and
blood vessel extraction on the fundus retina. Including the
CT image segmentation of liver tumor lesions. In specific
implementation, this type of method can use deep features
to locate liver tissue regions and use shallow features to
achieve accurate segmentation results. Many medical image
segmentation problems are improved based on U-Net. According
to the adopted form of U-Net network architecture, it can be
divided into single network liver tumor segmentation method,
multi-network liver tumor segmentation method, and u. A
liver tumor segmentation method combining Net network and
traditional methods. Regardless of the calculation and memory
performance, the 3D network can combine the image layer
information to ensure a change continuity between the interlayer
image masks, and the segmentation effect is better than 2D.

Considering clinical suitability and segmentation accuracy as
well as processing time, our goal is to develop an efficient, robust,
and accurate method for tumor segmentation. Therefore, in this
paper, a deep learning method based on learning and decoding
layered features with multiple spatial frequencies is proposed to
achieve 3D liver tumor segmentation from CT images. The main
contributions of this work are three-fold:

e Due to observe the CT liver tumor image can be decomposed
to describe the structure of the smooth change (such as the
shape of the tumor) mutations in the low spatial frequency
components and describe the details of (the edge of the tumor,
for example) the high spatial frequency components, so we
use the octave convolution (28) encoder block for building
characteristics, and use them to study neural network layered
multiple frequency characteristics of multiple levels.

e We propose to decompose the convolution feature graph into
two groups at different spatial frequencies and process them
with different extended convolution at their corresponding
frequencies (one octave apart). Storage and computation can
be saved because the resolution of low frequency graphs can
be reduced. This also helps each layer to have a larger receive
field to capture more contextual information. Importantly, the
proposed blocks are fast in practice and can reach speeds close
to the theoretical limit.

e More importantly, we introduce deep supervision to
the hidden layer, which can accelerate the optimization
convergence speed and improve the prediction accuracy.

e In addition, the proposed network is superior to the
benchmark U-Net in terms of segmentation performance and
computing overhead, while achieving better or comparable
performance to the latest approach on open data sets.

2. METHODS

U-Net is modified on the basis of the existing CNN structure
for classification, that is, the original fully connected layer of
CNN is changed into a convolutional layer. FCN is composed
of convolution and deconvolution. Through the process of
convolution and deconvolution, based on end-to-end learning,
the classification of each pixel of the image is completed, thereby
realizing the segmentation of the entire input image. U-Net
realizes the semantic segmentation of images through an end-
to-end network structure. The end-to-end network can reduce
manual preprocessing and subsequent processing and make the
model from the original input to the final output as much
as possible. The network learns the features by itself, and the
extracted features are also integrated into the algorithm. The
network model can be automatically adjusted according to the
data, thereby increasing the overall fit of the model, and the cost
of end-to-end network learning is lower than that of non-end-to-
end network structure.

2.1. Encoder Part

The liver tumors often have varying sizes and shapes. The
low- and high- frequency components of tumors focus on
capturing the style of tumor and edge information, respectively.
Motivated by this observation, we hypothesize that adopting
a multi-frequency feature learning approach may be beneficial
for segmenting the tumor from liver CT images. Therefore,
the octave convolution (28) is adopted as an extractor for
multifrequency features in this work. The computational
graph for multifrequency feature transformations of the octave
convolution is illustrated in Figure 1. Let X and X’ denote the
inputs of high- and low- frequency feature maps, respectively.
The high- and low-frequency outputs of the octave convolution
are given by v = fH=H(xH) + fL=H(XL) and L=
FEL(xty 4+ fH=L(xH), where fA~H and f'=L denote two
standard convolution operations for intra-frequency information
update, whereas f7=L and fX7H denote the process of inter-
frequency information exchange. Specifically, f#~L is equivalent
to first down-sampling the input by average-pooling with a scale
of two and then applying a standard convolution for feature
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transformation, and fL~H is equivalent to up-sampling the

output of a standard convolution by nearest interpolation with
a scale of two.

To calculate these items, working (28) splits the convolution
kernel Winto two components W = [W!, Wk]is responsible
for convolved with Xfand X%. Each component can be further
divided into in-frequency and in-frequency parts: WH =
[WH=H wil=>Hand wt = [WE=L WH=L] whose parameter
tensor shape is shown in Figure 2. Especially for the high-
frequency feature graph, we use A to calculate its regular
convolution for in-frequency update at the position (p, g)and for
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FIGURE 1 | Computation graph of the multifrequency feature transformation
of octave convolution. The operation mainly contains two processes of the
inter-frequency information exchange (=" and f~1) and intra-frequency
information update (f-~t and =)
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FIGURE 2 | The octave convolution kernel. k x k octave convolution kernel W
is equivalent to vanilla convolution kernel because they have exactly the same
number of parameters.

inter-frequency communication. We can fold the up-sampling of
the feature tensor X into convolution without explicit calculation
and storage of the up-sampling function as follows:

H _ yvH—H L—H
YP»q _YP’q + YP#

H—H H
Z Wi+ L&t Xptiqtj

ijeNi (1)
WL~>H XL ) ‘
T2 Wi e X140 4)
i,jeN

where | -]represents a lower bound operation. Similarly, for low-
frequency characteristic graphs, we use regular convolution to
calculate in-frequency update. Note that since the graph is an
octave lower, the convolution is also low frequency W.R.T. High
frequency coordinate space. For inter-frequency communication,
we can fold the subsample of the feature tensor Xinto the
convolution again, as shown below:

L _ yvL—L H—L
YP>‘1 _YP"I +YP>‘1
L
ikt i1 Xpige
ijeN (2)
+ Y whL iy k-1 o
i+ kL »J ) (25p+0.5+1),(2%G-+0.54)
ije N

= w’

where multiplying a factor 2 to the locations (p,q) performs
down-sampling, and further shifting the location by a half step
is to ensure the down-sampled maps are well-aligned with the
input.

2.2. Decoder Part

Deconvolution is a convolution operation, which is the inverse
process of pooling. In U-Net, the pooling operation reduces
the size of the input picture, but in the image segmentation
process, each pixel needs to be classified, and finally a segmented
image with the same dimension as the input picture is obtained.
Therefore, the generated heat map (heat map) is restored
to the original image dimensions. Through reverse training,
deconvolution can achieve the effect of output reconstruction
and input, so that the output image can be restored to the same
dimension as the input image.

On the one hand, in the process of feature coding as shown
in the Figure 3, although the spatial size of the feature graph
gradually decreases, the feature graph gradually loses spatial
details. This compression effect forces the kernel to learn more
discriminations with higher levels of abstraction. On the other
hand, multi-frequency feature extraction alone is not sufficient to
perform dense pixel classification for liver tumor segmentation.
A process is needed to decode the feature map to recover spatial
detail and generate a high-resolution probabilistic map of the
tumor. A simple way to do this is to use bilinear interpolation,
which unfortunately lacks the ability to learn the decoding
transformation that transpose convolution has. Therefore, we
choose the transpose convolution to up-sample the feature.
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2.3. The Proposed Network

In this section, a novel encoder-decoder based neural network
architecture called OCunet is proposed. After end-to-end
training, the proposed OCunet is able to extract and decode
layered multifrequency features for the segmentation of liver
tumors in full-size CT images. The computational pipeline
of OCunet consists of two main processes, namely feature
encoding and decoding. By using octave convolution, we design
multi-frequency feature encoder block and decoder block for
hierarchical multi-frequency feature learning and decoding. By
sequentially stacking multiple encoder blocks (as shown in
Figure 4), layered multifrequency features can learn to capture
details of the low frequency components that describe smooth
changes in the structure (such as the main blood vessels)
and the high frequency components that describe details of
sudden changes (including the fine components), as shown
in Figure 3.

2.4. Loss Function

The learning of the 3D network is formulated as a problem of
minimizing the per-pixel binary classification error relative to
the ground mask, but the optimization process is challenging. A
major problem is the disappearance of the gradient, which makes
the loss back propagation ineffective in the early layers. This
problem is likely to be more serious in 3D and will inevitably slow
down the convergence rate and the discriminating ability of the
model. To address this challenge, we used additional monitoring
injected into some hidden layers to counteract the negative effects
of gradient disappearance. Specifically, we used an additional
deconvolution layer to amplify some of the lower- and mid-level
feature quantities, and then used the Softmax layer to obtain
dense predictions for calculating classification errors. Using the
gradient obtained from the prediction of these branches and
the last output layer, the effect of gradient disappearance can be
effectively mitigated.

18801

-

3D Octave
Covolution

FIGURE 3 | Detailed network architecture of the proposed network.
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FIGURE 4 | Training data provided by LiTS-challenge.
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FCN UNet UNet++ 3DUNet OcUNet
FIGURE 5 | Example of tumor segmentation results from a testing image.
Since the number of voxels belonging to the foreground is total retrieved instances.
much smaller than the number belonging to the background
(i.e., the liver), this problem of data imbalance usually leads to . TP
.. . . . . Precision = ———. (3)
a prediction bias when using traditional loss functions. In order TP + FP

to solve this problem, the loss function, Dice coefficient (DICE),
which represents the similarity measure between the ground
truth and the predicted score graph, is proposed.

3. EXPERIMENTS

3.1. Datasets

The LiTs dataset! includes 130 contrast-enhanced 3D abdominal
CT scan images from 6 different clinical sites, of which 130 cases
are used for training and the remaining 70 are used for testing.
The CT scan is accompanied by reference annotations of the liver
and tumors made by a trained radiologist. The data set contains
908 lesions. The data set has significant differences in image
quality, spatial resolution, and vision. The in-plane resolution
is 0.6 x 0.6mm-1.0 x 1.0mm, slice thickness (layer spacing) is
0.45-6.0 mm, the axial slice size of all scans is fixed at 512 x
512 pixels, but the number of slices per scan It ranges from 42 to
1,026 sheets.

Further test data were provided by the Radiology Centre of
the Medical University of Innsbruck. The data set contains CT
scans of patients with liver cancer, with reference notes drawn
up by medical scientists. Because deep learning methods can
achieve better performance if the data has a consistent size or
distribution, all data is normalized to strength values between
[0,1] before starting optimization.

3.2. Implementation Details

Our OCunet was implemented with PyTorch library. We trained
the network from scratch with weights initialized from Gaussian
distribution. The learning rate was initialized as 0.1 and divided
by 10 every 1,000 epochs. Each training epoch took around 2 min
using a GPU of NVIDIA GTX 2080Ti.

3.3. Metrics

(1) Precision: Precision, or the positive predictive value,
refers to the fraction of relevant instances among the

Uhttps://competitions.codalab.org/competitions/17094

(2) Recall: Recall, also known as sensitivity, refers to the fraction
of relevant instances retrieved over the total amount of
relevant instances.

TP
Recall = ———. (4)
TP + FN

(3) Accuracy: Accuracy refers to the fraction of relevant
instances among the total instances.

TP + TN

. 5
TP+ TN + FP+ FN )

Accuracy =

(4) Specificity: Accuracy refers to the fraction of retrieved
instances among the total amount of relevant instances.

TN

I TN (6)
FP+TN

Specificity =

(5) DICE Score: also called the overlap index, is the most
commonly used index to verify the segmentation of medical
images, and it usually represents the repetition rate between
the segmentation result and the mark. The value range of
DICE is 0 1, 0 means real. The experimental segmentation
result and the labeling result deviate seriously, and 1 means
that the experimental segmentation result and the labeling
result completely coincide. It is defined as follows:

2|AN B

™)

where A is the estimated maps, B denotes the ground truth,
|A N B| represents the number of pixels common to both
images. The higher value of the dice coefficient denotes the better
segmentation accuracy.
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FIGURE 6 | Compared results of tumor segmentation with different methods.

3.4. Evaluation on Test Data

Figures 5, 6 show tumor segmentation results from training
and test images, respectively. The red is a liver tumor. We
compare the basic facts with the results generated by FCN, U-Net,
UNet++, and 3DU-Net. In order to visualize the simplicity of the
results caused by network differences, here we train the network
only on the axial plane. In Figure 5, by FCN, U-Net, UNet++,
and 3DU-Net provide results showed in the first, second, third,
and fourth columns, we can see that in the FCN and U-Net
segmentation results, residual connection can distinguish to
some extent of tumor, but will miss part should belong to the
tumor tissue. In UNet++ more accurate segmentation results can
be predicted through intense connection, but compared with the
result of a split, a split less than 3DU-Net still exists, thanks
to combat training strategy, and can recognize more voxels
belonging to the tumor. In the Figure 6, the results obtained from
the test image show a similar appearance to the training image.
However, it can be seen that liver tumors produced by 3DUNet
are segmented more accurately. Although the segmentation
results provided by 3DU-Net still have some unsegmented tumor
tissue, it has been significantly improved compared to the other
two methods, demonstrating the effectiveness of the algorithm.
The quantitative results are reported in Table 1.

3.5. Ablation Study

In this section, we conduct experiments to investigate the
effectiveness of different modules of our model. Starting from
our baseline, we gradually inject our modifications on the whole
structure. The results are summarized in Table 2, from which
we can see that octave convolution is an effective block for liver
tumor segmentation. In addition, we can find that the deep
supervision can promote the performance the proposed method.

4. CONCLUSION

In this work, we propose a new network for segmentation of
liver tumors. We solve the problem of reducing the extensive
spatial redundancy in the original CNN model, and propose a
novel Octave convolution operation to store and process the low
frequency and high frequency features respectively to improve
the model efficiency. In addition to octave convolution, the well-
designed OCunet can also extract layered features with multiple
spatial frequencies and reconstruct accurate tumor segmentation.
Thanks to the design of layered multi-frequency features, OCunet
is superior to the baseline model in terms of segmentation

TABLE 1 | Comparing different methods with the proposed dataset on the liver
tumor segmentation task.

Metrics FCN U-Net UNet++ 3DU-Net 3D Attention OCunet
Precision ~ 0.872  0.896 0.901 0.914 0.926 0.939
Recall 0.923  0.930 0.931 0.925 0.951 0.962
Accuracy  0.912  0.930 0.942 0.951 0.956 0.959
Specificity  0.909  0.917 0.918 0.957 0.966 0.967
DICE 0.923 0.942 0.945 0.958 0.961 0.963
TABLE 2 | Ablation study results.

Metrics Precision Recall Accuracy Specificity DICE
w/o Octave Conv. 0.921 0.939 0.938 0.942 0.947
w Octave Conv. 0.928 0.946 0.944 0.950 0.951
Add 1 Loss 0.930 0.951 0.948 0.958 0.957
Add 2 Loss 0.936 0.959 0.952 0.962 0.960
OCunet 0.939 0.962 0.959 0.967 0.963

performance and computational overhead. A large number of
experiments show that the proposed method based on octave
convolution converges quickly and can produce high quality
segmentation results.

At present, the development direction of deep learning
in liver tumor segmentation is mainly concentrated in the
following points: (1) The training of deep learning algorithms
needs to rely on a large number of data sets, and due to its
particularity and sensitivity, medical images need to be manually
obtained and labeled by experts. The process is very time-
consuming. Therefore, it is not only necessary for medical
providers to provide more data support, but also to adopt
enhanced methods for the data set to increase the size of the
data set. The use of three-dimensional neural network and
network deepening is a future research direction of this field;
(2) The use of multi-modal liver images for segmentation and
the combination of multiple different deep neural networks to
extract deeper image information and improve the accuracy of
liver tumor segmentation are also a major research direction in
this field; (3) Currently most medical image segmentation uses
supervised deep learning algorithms. However, for some rare
diseases that lack a large amount of data support, supervised
deep learning algorithms cannot exert their performance. To
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overcome the lack of data for the available problems, some
researchers will transfer the supervised field to the semi-
supervised or unsupervised field. For example, the GAN network
is proposed. Combining the GAN network with other higher-
performance networks, further research can be carried out in
the future.
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