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Automatic segmentation of brain tumors from multi-modalities magnetic resonance

image data has the potential to enable preoperative planning and intraoperative volume

measurement. Recent advances in deep convolutional neural network technology have

opened up an opportunity to achieve end-to-end segmenting the brain tumor areas.

However, the medical image data used in brain tumor segmentation are relatively

scarce and the appearance of brain tumors is varied, so that it is difficult to find a

learnable pattern to directly describe tumor regions. In this paper, we propose a novel

cross-modalities interactive feature learning framework to segment brain tumors from

the multi-modalities data. The core idea is that the multi-modality MR data contain

rich patterns of the normal brain regions, which can be easily captured and can be

potentially used to detect the non-normal brain regions, i.e., brain tumor regions.

The proposed multi-modalities interactive feature learning framework consists of two

modules: cross-modality feature extracting module and attention guided feature fusing

module, which aim at exploring the rich patterns cross multi-modalities and guiding

the interacting and the fusing process for the rich features from different modalities.

Comprehensive experiments are conducted on the BraTS 2018 benchmark, which show

that the proposed cross-modality feature learning framework can effectively improve the

brain tumor segmentation performance when compared with the baseline methods and

state-of-the-art methods.

Keywords: brain tumor segmentation, deep neural network, multi-modality learning, feature fusion,

attention mechanism

1. INTRODUCTION

Brain cancer is an aggressive and highly lethal malignancy that has received more and more
attention and presented multiple technical challenges for studies on brain tumors. Owing to the
diversity of the appearance and morphology of brain tumors, accurately automatically segmenting
tumor areas from multi-modality magnetic resonance image (MRI) sequences is a difficult but
meaningful issue in field of artificial intelligence and assisted diagnosis (1). In this paper, we study a
deep-learning based automatic brain tumor segmentation network to assist clinicians in improving
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the diagnostic efficiency of brain tumors. For the automatically
tumor segmentation task, the input medical images are multi-
modality data and the corresponding segmentation masks
contain multi areas of the brain tumor. Specifically, the input
multi-modality medical image consist of four MRI modality,
i.e., T1-weighted (T1) modality, contrast enhanced T1-weighted
(T1c) modality, T2-weighted (T2) modality, and T2 Fluid
Attenuation Inversion Recovery (FLAIR) modality. The goal of
brain tumor segmentation is to determine the volume, shape,
and localization of brain tumor areas, i.e., the whole tumor (WT)
area, the tumor core (TC) area, and the enhancing tumor (ET)
core area, which play crucial roles in brain tumor diagnosis
and monitoring.

To achieve automatic brain tumor segmentation, some
methods use the deep convolutional neural network (DCNNs)
to extract the features of tumors and determine the labels of
multi-class pixels in the end-to-end fashion. However, existing
brain tumor segmentation methods (2–4) usually consider this
task as a semantic segmentation problem for common nature
images, which methods omit the great disparity between the
medical image and the common nature image. Specifically, there
are two-fold distinct properties between these two kinds of
images: (1) As a departure from the common nature image, the
medical image usually consist of multiple MRI modalities that
capture different pathological properties. (2) The geometrical
shape, spatial position, and texture structure of tumor in medical
images are complex and changeable, and the tumor does not have
a specific, regular pattern of appearance. Therefore, such existing
approaches would not obtain the optimal solutions.

Due to the above discussions properties, for the brain
tumor segmentation task, the deep learning based segmentation
methods still has challenging issues needed to be addressed.
First, the existing methods cannot fully mine the potential
knowledge in multi-modalities. Specifically, the previous works
use simple parameter-sharing feature extractors to obtain
features of different modal data and directly concatenate the
information from differentmodality data. Such feature extraction
and processingmethods lack a datamining strategy for effectively
informational fusing and extracting knowledge from complex
data structures. Second, due to the nonspecific structural pattern
in the tumor area, the existing supervised learning-based
segmentation methods, which are guided only by a manually
annotated foreground and background segmentation ground
truth, are difficult to learn the complete discriminant information
of brain tumor.

To address these issues, in this paper, we proposed a
novel interactive modality deep feature learning framework
to learn the discriminant information of brain tumor from
the multi-modality MRI data. Considering the fact that the
texture and spatial position of normal organs in medical images
have specific structural patterns, and deep neural networks
can easily learn discriminant information from such regular
patterns. Meanwhile, radiologists need to combine information
from multiple modalities to determine the full range of areas
of a brain tumor. For the multi-modality MRI data, the
intra-modality information describes the discriminant feature

between the normal organ and the lesion area (i.e., brain
area and tumor area) in medical images, the inter-modality
information provides additional cross-modal constraints for
determining the visual boundaries and different regions of the
brain tumor. Specifically, the proposed interactive modality deep
feature learning framework consists of the cross-modality feature
extraction and the normal region-guided feature fusion.

Figure 1 illustrates the proposed learning framework briefly.
In the cross-modality feature extracting process, we adopt a two-
step feature interacting strategy to extract the interactive features
across different modality data. The first feature interacting
step concatenates multi-modality image data in channel-wise to
extract the low-level interactive features at input level, and the
second feature interacting step integrates the high-level features
of different modality pairs to extract the high-level interactive
features. In the normal region-guided feature fusion, we propose
a novel reverse attention-based feature fusion framework to
collectively enhance the features of normal brain region from
different modality data. This encourages the feature extracting
network to learn intrinsic patterns that are helpful to determine
the normal brain area from each modality data. The intuition
behind this process is that the reverse attention mechanism
enhance the non-tumor regions in the brain MRI data, and those
regions contain rich structure and texture information of normal
brain regions.

2. RELATED WORKS

2.1. Brain Tumor Segmentation
Brain tumor segmentation is a hot topic in the medical image
analysis and machine learning community. It has received great
attention in the past few years. Early efforts in this filed designed
hand-crafted features and adopted the classic machine learning
models to predict the brain tumor areas. Due to the rapid
development of the deep learning technique (5–9), the recent
brain tumor segmentation approaches mainly apply the deep
features and classifiers from the DCNN models. Based on the
type of the convolutional operation used in the DCNN models,
we briefly divide the existing methods into two groups, i.e.,
the 2D CNN-based methods and 3D CNN-based method. The
2D CNN-based methods (10–12) apply the 2D convolutional
operations and split the 3D volume samples into 2D slices or 2D
patches.While the 3DCNN-basedmethods (13–16) apply the 3D
convolutional operations, which can take the whole 3D volume
samples or the extracted sub-3D patches as the network input.

2.2. Multi-Modality Feature Learning
Multi-modality feature learning is gaining more and more
attention in the recent years as the multi-modality data can
provide richer information for sensing the physical world.
Existing works have applied multi-modality feature learning
in many computer vision-based tasks such as 3D shape
recognition (17–20) and retrieval (21–24), survival prediction
(25), RGB-D object recognition (26), and person re-identification
(27). Among these methods, Bu et al. (21) built a multi-
modality fusion head to fuse the deep features learnt by
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FIGURE 1 | A brief illustration of the proposed multi-modality interactive feature learning framework for brain tumor segmentation.

a CNN network branch and a deep belief network (DBN)
branch. To integrate multiple modalities and eliminate view
variations, Yao et al. (25) designed a deep correlational
learning module for learning informative features on the
pathological data and the molecular data. Wang et al.
(28) proposed a large-margin multi-modal deep learning
framework to discover the most discriminative features for each
modality and harness the complementary relationship between
different modalities.

3. DATASET DESCRIPTION

We implement all experiments on BraTS 2018 benchmark
(29–31) to evaluate the performance of proposed brain tumor
segmentation. The BraTS 2018 benchmark dataset contains four
modalities, i.e., T1, T1-c, T2, and FLAIR, for each patient.
The BraTS 2018 benchmark has two subsets: a training set,
which contains 285 subjects, and a validation set containing
66 subjects with hidden ground truth. Each subject holds a
manual expert segmentation of three tumor sub-compartments:
edema (ED), ET, and necrotic tissue combined with non-
enhancing tumor (NCR/NET). In the official BraTS evaluation,
these sub-compartments are combined into three hierarchical
labels: WT, TC, and ET. WT is a combination of all tumor
sub-compartments (i.e., ET, NCR/NET), TC combines ET and
NCR/NET, and ET is defined by the ET sub-compartment.
Aiming at yielding uncertainty estimates for these hierarchical
tumor regions, we combined the tumor sub-compartment
labels into the hierarchical labels before the training of the
automated segmentation models. The BraTS 2018 dataset comes
preprocessed; the subjects and MR images are co-registered
to the same anatomical template, resampled to unit voxel
size (1 × 1 × 1), and skull stripped. When implementing
the experiments on each of the benchmarks, we randomly
select the 80% data in training set to train the brain tumor
segmentation models while use the rest of the data in training
set to test the segmentation performance. We additionally
normalized each MR image subject-wise to zero mean and
unit variance.

4. METHODS

The aim is to segment the brain tumor regions including the WT
region, the TC region, and the enhancing TC region from multi-
modalityMRI data. For this purpose, we propose to build amulti-
modality-based single prediction multi-region segmentation
method that utilizes the cross-modalities interactive features
from MRI data. In this work, we propose to train a cross-
modalities interactive feature extracting and fusing network
using reverse attention guidance and use the trained network for
segmenting brain tumor regions in MRI data.

In this section, we first describe the network architecture
and the workflow of the proposed multi-modalities brain tumor
segmentation framework and also including the details of the
cross-modality feature extracting process and the attention-
guided feature fusion that are two important interactive feature
learning modules. Then, we introduce the implement details of
the training process and experiments.

4.1. Multi-Modalities Brain Tumor
Segmentation Network
Given an input MRI data X = {xT1, xT1c, xT2, xFLAIR}, where
the variables xT1,xT1c,xT2, and xFLAIR represent the T1-weighted
modality, the contrast-enhanced T1-weighted modality, the T2-
weighted modality, and the fluid attenuation inversion recovery
modality, respectively, we follow the work (32) to split the multi-
modalities input X to form two modality pairs Xg1 = {xT1, xT1c}
and Xg2 = {xT2, xFLAIR}, which encourages the information
within each modality pair tends to be consistent while the
information from differentmodality pairs tends to be distinct and
complementary. The cross-modality feature extracting module
takes the modality pair as input, and outputs the interactive
features of the multi-modalities data. Then, the attention-guided
feature fusion module takes the interactive features as input and
output the fused cross-modality interactive feature. Finally, the
segmentation results of the brain tumor region are generated
from the fused cross-modality interactive feature. The network
architecture of our proposed multi-modalities brain tumor
segmentation framework is shown in Figure 2. Each component
will be elaborated as follows.
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FIGURE 2 | Illustration of the network architecture of the segmentation process.

FIGURE 3 | Illustration of the details of the reverse co-attention block, where the “A” represents the average operation.

4.1.1. Cross-Modality Feature Extracting Module
Current popular multi-modalities feature extracting network
usually rely on a single simple interactive strategy, i.e., the
channel concatenation (33) or the parameters sharing (34).
The channel concatenation strategy only considers the common
features among different modalities, but ignore the richness of
the features brought by the modes; conversely, the parameters
sharing strategy only pays attention to the richness of features
brought by multi-modalities, but ignores the common features
among different modalities. To effectively interact features

between different modalities, we employ the combinational
strategy of both the channel concatenation and the parameters
sharing to extract the common features among similar modalities
and use the information between different modalities to improve
the richness of the features. Specifically, we use a CNN-based
network to extract the common features in a modality pair
where the modalities sharing consistent feature for common
pathological areas and normal areas, as shown in Figure 2. The
cross-modality feature extracting module has two input channels
corresponding to the two MR images from one modality pair,
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FIGURE 4 | Illustration of the details of the feature fusion block, where the operation “C” represents the channel-wise concatenation.

i.e., Xg1 = {xT1, xT1c} or Xg2 = {xT2, xFLAIR}. Meanwhile,
the feature extractor is sharing parameters for extracting the
interactive features of the different modality pairs.

Considering the low-level features contribute less to
segmentation performance but demand more computational
resources, we aggregate the high-level features to predict the
common brain tumor areas in eachmodality pair. Specifically, for
an input modality pair xg1 = {xT1, xT1c} (or xg2 = {xT2, xFLAIR),
each modality data with size h × w × l, five levels of features
fi, i = 1, . . . , 5 with resolution [h/2k−1,w/2k−1, l/2k−1] can be
extracted from the cross-modality feature extracting network.
Then, we follow the work (35) to divide interactive features fi
into low-level features group {fi, i = 1, 2} and high-level features
group {fi, i = 3, 4, 5}. The low-level features contain lots of
modality information, which are not applicable to interactive
features fusion between multi-modalities. Thus, we employ the
partial decoder Dp (35) to only aggregate the high-level feature
{fi, i = 3, 4, 5} with a cascade fashion. The interactive feature of
one modality pair is computed by the fDp = Dp(f3, f4, f5), and we
also can obtain the global mapMg of the input modality pair.

4.1.2. Attention Guided Feature Fusing Module
The global map Mg is formed by the high-level features {fi, i =
3, 4, 5}, which captures the high-level information such as normal
brain areas and tumor areas. However, the rich diversity of
brain tumor regions makes it impossible for feature extraction
models to extract a learnable structural pattern from this region.
Compared with brain tumor regions, the normal brain regions in
the training images are regularly distributed, and these structural
patterns are easier to perceive and extract. Motivated by this
observation, we propose a cross-modality features fusing strategy
to progressively discriminative brain regions through an erasing
foreground object manner [pranet 27,4]. Instead of predicting the
non-normal regions (brain tumor areas) directly, we propose to
determine the normal brain regions in the multi-modalities MR
data by learning the reverse attention (35) from the high-level
features. The proposed attention-guided feature fusing module

consists of two blocks: the feature fusion block and the reverse
co-attention block.

As shown in Figure 3, the reverse co-attention block takes two
side-output feature maps from two modality pairs as input and
outputs a reverse co-attention weight. The side-output feature
maps Mi, i = 3, 4, 5 are generated by the previous FFD (feature
fusing block). In each reverse co-attention block, a sigmoid
operation and a reverse operation are used to generate the reverse
attention weight Ri. The reverse attention weight Ri is a negative
salient object detection in the computer vision community (36–
39) and can be formulated as Equation (1):

Ri = ⊖(σ (Mi)) (1)

where the ⊖ denotes a reverse operation subtracting the input
from all 1’s matrix E and σ is the Sigmoid function. To explore
the high-level interactive features of the two modality pairs,
we average the reverse attention weights from the two cross-
modalities feature extracting module to generate a reverse co-
attention weights Ri.

The details of feature fusing block is shown in Figure 4. This
block tasks the high-level features of the two modality pairs and
a reverse co-attention weight as input to generate the side-output
feature maps and the interactive feature map. The reverse co-
attention weight enhances the features of the common interest
regions in the twomodality pairs, and weakens the features of the
common no interest regions, which will enable deep integration
of features between multiple modality pairs. Specifically, the

output interactive features {f i, i = 3, 4, 5} of each modality pair
can be obtained by element-wise multiplying (

⊗
) the high-level

feature {fi, i = 3, 4, 5} by the reverse co-attention weight Ri, as
Equation (2):

f i = fi
⊗

Ri+1 (2)

We concatenate the reverse co-attention feature of the two
modality pairs in channel-wise to deeply fuse the features of the
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two modality pairs. The final segmentation result is obtained by
progressively superpose the fused features.

4.2. Learning Process and Implementation
Details
4.2.1. Loss Function
Our loss function consist of segmentation loss Lsg and saliency
detection loss Lsd. The Lsg is Dice Similarity Coefficient
(DSC) (32), which evaluates the similarity between two higher-
dimensional sets, i.e., the segmentation masks and the ground-
truth masks, and can be formulated as Equation (4):

Lsg(Y,U) = 1−
2× |Y

⋂
S|

|Y| + |S|
(3)

where Y and S represent the ground-truth annotation
and the segmentation mask for the desired brain tumor
areas, respectively.

The saliency detection loss Lsd implements deep supervision
for the three side-output feature maps {M3,M4,M5} and the
global map Mg , which prevents the model from being heavily
affected by the unbalance among different types of tumor areas.
We adopt weighted binary cross entropy (BCE) loss to achieve
this proposal. The weighted BCE loss pays more attention to
hard pixels rather than assigning all pixels equal weights (35).
The definitions of these losses are the same as in [21,26] and
their effectiveness has been validated in the field of salient object
detection. Each map is up-sampled M

up
i to the same size as the

ground-truth map G, which is obtained by dividing the tumor
regions annotation into three separate binary maps (i.e., WT
map, ET map, and TC map). The deep supervision loss Ldeep can
be formulated as Equation (4):

Ldeep = Lsd(G,M
up
g )+

5∑

i=3

Lsd(G,M
up
i ) (4)

The total loss function Ltotal can be formulated as Equation (5):

Ltotal = αLsg(Y,U)+ (1− α)(Lsd(G,M
up
g )+

5∑

i=3

Lsd(G,M
up
i ))

(5)
where the weight α is empirically set to 0.7.

4.2.2. Implementation Details
We follow the work (32) to adopt the pre-trained parameters of
transition generative networks to initialize the feature extracting
network in our methods. Specifically, each of the input modality
data was normalized to have zeromean and unit variance, and the
inputs of both the cross-modality feature transition are randomly
sampled from the training data set, and the input patch size is
128 × 128 × 128. We also employ U-net as backbone, where
the base number of filters is 16 and increased to twice after
each down-sampling layer. We use Adam optimizer with an
initial learning rate is 10-e4 and λ is 10 to optimize the objective
function. The network branches were implemented in Pytorch on

four NVIDIA GTX 1080TI GPU. It totally takes 5 h to complete
the training process and the test speed is 2.5 s per subject.

5. EVALUATION METRICS

The performance of the segmentation algorithm is evaluated
based on two metrics, i.e., the Dice score, and the 95th percentile
of the Hausdorff Distance (Hausdorff95).

The Dice score is a commonly used metric for measuring the
segmentation accuracy at the pixel level. It is a statistical gauge of
the similarity between two sets of samples. Given S, a set of pixels
belonging to a ground truth of the segmentation mask of brain
tumor regions, and P, a set of pixels belonging to a predicted
segmentation mask of the brain tumor regions.The Dice score
is defined as in Equation (6), where | · | denotes set cardinality.
The Dice score ranges from 0 (no overlap between S and P) to 1
(perfect overlap between S and P), and the lower is better.

Dice =
2× |S

⋂
P|

|S| + |P|
(6)

The 95th percentile of the Hausdorff Distance (Hausdorff95) is
a boundary-based segmentation accuracy evaluation metric. It
calculates the distance between the two point sets. Considering
the predicted segmentation mask P and the ground-truth mask
S, the Hausdorff distance between the two set is defined as
Equation (7):

dH(S, P) = max[maxp∈Pmins∈S[D(S, P)],maxs∈Sminp∈P[d(S, P)]]
(7)

where the dH(x, y) denotes the distance between pixels x ∈

P and y ∈ S. We follow the work (40) to use Euclidean
distance to calculate the pixel-wise distance. The Hausdorff
distance represents the longest distance from P (respectively S)
to its closest point in S (respectively P). It is the most extreme
value from all distances between the pairs of the nearest pixel
on the boundaries of S and P. Finally, the score of Hausdorff
distance is multiplied by 95% to eliminate the interference from
outlier points.

In this work, the predicted segmentation masks are compared
with the ground-truth masks via Dice score and the 95th
percentile of Hausdorff distance (Hausdorff95). A higher Dice
coefficient and a lower Hausdorff distance indicate the efficacy
of the brain tumor segmentation method.

6. RESULTS

This section presents quantitative and qualitative evaluations
of the performance of the proposed segmentation method to
segment the three brain tumor regions in the multi-modality
MRI data.

6.1. Ablation Study of the Proposed
Approach
For the analysis of the contribution and the effect of our proposed
branches for brain tumor segmentation task, we conduct the
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TABLE 1 | Ablation study of the proposed approach and the other baseline

models on the BraTS 2018 validation set.

Methods
Dice score Hausdorff95

WT ET TC Average WT ET TC Average

“fg1” 0.698 0.793 0.808 0.766 4.412 9.614 8.184 7.403

“fg2” 0.517 0.876 0.749 0.714 10.461 5.668 9.472 8.534

“fg1+2” 0.674 0.818 0.782 0.758 5.072 6.101 8.562 6.578

“Ours w/o CA” 0.778 0.885 0.819 0.827 3.841 5.912 7.291 5.681

“Ours w AT” 0.789 0.897 0.836 0.841 4.690 4.912 6.912 5.505

Ours 0.801 0.909 0.854 0.855 3.879 4.571 6.411 4.954

Higher Dice scores indicate the better results, while lower Hausdorff95 scores indicate

the better results.

experiments on the following baseline models. The first two
baseline models train the single-modality-pair feature extracting
modules “fg1” and “fg2” with the input modality data Xg1 =

{xT1, xT1c} or Xg2 = {xT2, xFLAIR}, respectively. The third
baseline model “fg1+2” fuses the prediction of “fg1” and “fg2”
by directly computing the average of the obtained segmentation
maps without using any feature fusing strategies proposed in
this paper. The first three baselines are designed to analyze
the contribution of the multi-modalities of the MRI data for
segmenting the brain tumor regions. We also introduce two
baseline models “Ours w AT” and “Ours w/o CA” to analyze
the contribution of the proposed reverse attention-guided feature
fusion and segmentation module. Specifically, “Ours w AT”
represents the feature fusion module use, a saliency attention
strategy (41) to fuse the cross-modalities features, and “Ours w/o
CA” represents the feature fusion module use, the independent
reverse attention that do not interact between the modality
pairs to guide the feature fusing. We use the parameters of
the pre-trained generative feature transition network (32) to
initialize all the aforementioned baseline models, and these
baselines are fine-tuned on the same training data as our
method. The experimental results are reported in top rows
of Table 1.

By comparing single-modality pair modules (“fg1” and “fg2”)
and the multi-modality pair baseline “fg1+2”, we observe
that the baseline achieves more stable performance than the
single-modality pair modules, but it does not achieve the
better comprehensive performance than baseline “fg1.” This
can demonstrate that the arbitrary feature fusion has limited
improvement on segmentation performance due to the lack
of effective fusion strategy. By comparing the attention-guided
feature fusion baselines (i.e., “Ours w/o CA” and “Ours w
AT”) with the “fg1+2”, we can observe that the attention-guided
feature fusion can improve the segmentation performance.
It demonstrates that the performance improvement of our
method mainly comes from the well-designed multi-modalities
feature fusion and learning strategy. By comparing “Ours”
with baselines “Ours w/o CA” and “Ours w AT,” we can
observe that the common attention of modality pairs plays an
important role in fusing informative features and predicting
accurate tumor areas (see “Ours w/o CA” vs. “Ours w AT”),

TABLE 2 | Comparison results of the proposed approach and the other

state-of-the-art models on the BraTS 2018 validation set.

Methods
Dice score Hausdorff95

WT ET TC Average WT ET TC Average

Myronenko (33) 0.823 0.910 0.867 0.866 3.926 4.516 6.855 5.099

Isensee et al. (42) 0.809 0.913 0.863 0.861 2.410 4.270 6.520 4.400

Puch et al. (2) 0.758 0.895 0.774 0.809 4.502 10.656 7.103 7.420

Chandra et al. (3) 0.767 0.901 0.813 0.827 7.569 6.680 7.630 7.293

Ma et al. (4) 0.743 0.872 0.773 0.796 4.690 6.120 10.400 7.070

Chen et al. (43) 0.733 0.888 0.808 0.810 4.643 5.505 8.140 6.096

Zhang et al. (32) 0.791 0.903 0.836 0.843 3.992 4.998 6.369 5.120

Ours 0.801 0.909 0.854 0.855 3.879 4.571 6.411 4.954

Higher Dice scores indicate the better results, while lower Hausdorff95 scores indicate

the better results.

and the reverse attention mechanism can further improve the
segmentation performance (see “Ours” vs. “Ours w AT”). The
ablation analysis demonstrates the contribution of our proposed
cross-modality feature extracting module and attention guided
feature fusing module for improving the performance of brain
tumor segmentation.

6.2. Comparison With State-of-the-Art
Methods
To evaluate the effectiveness of the proposed brain tumor
segmentation model, on the BraTs2018 dataset, we follow the
work of (32) to compare the segmentation performance of the
proposed method with seven state-of-the-art methods including
three ensemble-models methods, i.e., Myronenko (33), Isensee
et al.(42), Puch et al.(2), and four single-prediction methods:
Chandra et al. (3), Ma et al. (4), Chen et al.(43), and Zhang et
al. (32). The quantitative results are reported in Table 2. The
performances of the segmentation models were evaluated with
the Disc score and Hausdorff95. From Table 2, we can observe
that our methods achieve the best performance when comparing
with the state-of-the-art single-prediction methods both in terms
of Dice score and Hausdorff95. When comparing with the
ensemble-models methods, our method has the second best
performance. Usually, the ensemble-models methods can usually
obtain better performance than the single-prediction methods,
since the ensemble models methods integrate multiple brain
tumor segmentation models that are trained by using different
views or different training subsets, while the single prediction
methods only use one segmentation model to implement
multi-brain tumor areas segmentation tasks. However, the
ensemble-models methods require training multiple models
with more training data, which means higher complexity both
in computational cost and time consumption. Considering
the balance between time cost and algorithm performance,
the performance of our method is satisfactory. Thus, the
comparison results in Table 2 demonstrate the effectiveness of
the proposed approach.

In Figure 5, we also show some examples of the brain
tumor segmentation results for quantitative analysis. From
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FIGURE 5 | Some examples of segmentation results of our proposed brain tumor segmentation on BraTs 2018 dataset.

Figure 5, we can observe that our method is more able to
segment the details of the tumor areas, including TC areas,
enhancing TC areas, and WT areas. The quantitative analysis
results further illustrate the effectiveness of our proposed
segmentation method.

7. CONCLUSION

In this work, we have proposed a novel attention-guided cross-
modality feature learning framework for segmenting brain
tumor areas from the multi-modality MRI data. Considering
the fact that the texture and spatial position of normal organs
in medical images have specific structural patterns, and deep
neural networks can easily learn discriminant information
from such regular patterns, we propose to mine the common

normal patterns across the multi-modality data to captures
the discriminative features between brain tumor areas and
normal brain areas. The proposed learning framework consists
of a cross-modality feature extracting module and an attention
guided feature fusing module. By building a two-step feature
interacting strategy, our proposed feature extracting module
explores the multi-modalities interactive features that capture
the rich information of the multi-modalities MRI data. The

attention-guided feature fusing module encourages the feature
extracting module to learn the structure patterns of the normal

brain areas and aggregates the cross-modalities features in
reasonable manner. Comprehensive experiments are conducted
on BraTS 2018 benchmark, which demonstrate the effectiveness
of our approach when compared to baseline models and state-of-
the-art methods.
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