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Objective: This study aimed to systematically analyze molecular subtypes and

therapeutic targets of liver cancer using integrated multi-omics analysis.

Methods: DNA copy number variations (CNVs), simple nucleotide variations (SNVs),

methylation, transcriptome as well as corresponding clinical information for liver

carcinoma were retrieved from The Cancer Genome Atlas (TCGA). Multi-omics analysis

was performed to identify molecular subtypes of liver cancer via integrating CNV,

methylation as well as transcriptome data. Immune scores of two molecular subtypes

were estimated using tumor immune estimation resource (TIMER) tool. Key mRNAs were

screened and prognosis analysis was performed, which were validated using RT-qPCR.

Furthermore, mutation spectra were analyzed in the different subtypes.

Results: Two molecular subtypes (iC1 and iC2) were conducted for liver cancer.

Compared with the iC2 subtype, the iC1 subtype had a worse prognosis and a higher

immune score. Two key mRNAs (ANXA2 and CHAF1B) were significantly related to

liver cancer patients’ prognosis, which were both up-regulated in liver cancer tissues

in comparison to normal tissues. Seventeen genes with p < 0.01 differed significantly for

SNV loci between iC1 and iC2 subtypes.

Conclusion: Our integrated multi-omics analyses provided new insights into the

molecular subtypes of liver cancer, helping to identify novel mRNAs as therapeutic targets

and uncover the mechanisms of liver cancer.
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INTRODUCTION

Liver cancer is the fifth largest malignant tumor and the second leading cause of cancer-related
deaths worldwide (1, 2). It was estimated that 42,220 new cases and 30,200 death cases occurred in
the United States in 2018 (3). The mortality of liver cancer accounts for about 6% of death cases
of cancers in men and 3% of death cases in women (3). Most patients have advanced liver cancer
when first diagnosed. As we all know, several potential risk factors contribute to the occurrence
and development of liver cancer, including chronic hepatitis B/C virus infection, alcoholism
and aflatoxin exposure (4). Under the exposure of these risk factors, genetics and epigenetic
changes may be gradually accumulated, thereby leading to activation of oncogenes and inactivation
of tumor suppressor genes, which in turn will lead to the occurrence of liver cancer (5, 6).
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Furthermore, cancers have association with an increased risk of
coronary heart disease in time of the first 6 months following
diagnoses (7). Despite the considerable progress over the past
few decades, the prognosis of patients with liver cancer is still
poor (5-year survival rate<20%) due to the high recurrence
rate (8). Although extensive research has been conducted on
the mechanisms of liver cancer occurrence and development, its
etiology and carcinogenesis remain unclear. Considering the high
morbidity and mortality of liver cancer, identification of effective
markers and exploration of their potential roles have important
clinical significance for early diagnosis, prevention, and control
of liver cancer.

Growing multi-omics studies have confirmed that genomic
and epigenomic imbalances can affect the occurrence and
development of liver cancer. TCGA project provides genomic,
epigenomic, transcriptomics, and proteomics of 32 human
cancers. A number of data portals such as UCSC Cancer
Genomics Browser (https://genome-cancer.ucsc.edu/) have been
developed (9). As a key regulator of genomic and epigenomic
abnormalities, CNV is significantly correlated with individual
genetic variations and human genetic diversities, which may
change gene expression via modulating mRNA expression
and affecting transcription. Several CNVs have been found
to be closely related to liver cancer. For example, Jagged1
copy number amplification indicates poor prognosis in patients
with liver cancer (10). In-depth research on CNV may help
understand the mechanisms and probe susceptible targets for
liver cancer. Studies have shown that epigenetic changes such
as DNA methylation, contribute to the development of liver
cancer (11, 12). DNA methylation has been considered as a
useful biomarker for early diagnosis of liver cancer. During
carcinogenesis, abnormal DNAmethylation is mainly manifested
by focal methylation around the promoters of specific genes,
and global methylation in non-promoter regions (13, 14).
Hypermethylation of the promoter region is a crucial process
that can lead to epigenetic silencing of tumor suppressor
genes (15, 16). Moreover, abnormal DNA methylation of
non-promoter elements is in association with intratumor
heterogeneity (17).

Herein CNV, DNA methylation, as well as mRNA levels
were detected in a variety of liver cancer samples. Copy
number variation-correlated (CNVcor) as well as methylation-
correlated (METcor) genes were identified to distinguish
molecular subtypes of liver cancer. Furthermore, specific
biomarkers were proposed to drive the classification of
these subtypes.

MATERIALS AND METHODS

Data Collection
HTSeq—counts and HTSeq—FPKM gene expression RNA-seq,
Illumina Human Methylation 450K, and SNV data (mutect2)
were downloaded from the TCGA-liver hepatocellular carcinoma

Abbreviations: CNV, copy number variation; SNV, simple nucleotide variation;

TIMER, tumor immune estimation resource; CNVcor, Copy number variation-

correlated; METcor, methylation-correlated.

TABLE 1 | Clinical characteristic information for the LIHC cohort (overall=363).

Characteristics Groups Number

Age (median [IQR]) 61.00 [52.00, 69.00]

Gender (%) Female 118 (32.5)

Male 245 (67.5)

Race (%) American Indian

or Alaska native

1 (0.3)

Asian 154 (42.4)

Black or African

American

17 (4.7)

White 181 (49.9)

HBV/HCV infection status (%) Yes 151 (41.6)

No 212 (58.4)

Status (%) Dead 233 (64.2)

Alive 130 (35.8)

Pathologic T (%) T1 179 (49.6)

T2 91 (25.2)

T3 77 (21.3)

T4 13 (3.6)

TX 1 (0.3)

Pathologic N (%) N0 248 (68.5)

N1 3 (0.8)

NX 111 (30.7)

Pathologic M (%) M0 262 (72.2)

M1 3 (0.8)

MX 98 (27.0)

Tumor stage (%) I 169 (49.9)

II 84 (24.8)

III 82 (24.2)

IV 4 (1.2)

(LIHC) dataset (n = 363) using the Genetic Disease Control
(GDC) Data Portal (https://portal.gdc.cancer.gov/). The hub is
last updated on 2019-08-28. Masked Copy Number Segment
data were also obtained from the GDC dataset. Furthermore,
clinical information of all samples including age, gender, survival
status, pathologic TNM, tumor stage and overall survival
time was retrieved from the TCGA data portal, listed in
Table 1.

Data Preprocessing
By applying GISTIC2.0, this study calculated the genetic copy
number changes for each sample (18). The methylation data
preprocessing was as follows. Methylation sites that were
undetectable in over 70% of specimens were removed. The KNN
was then utilized for filling in missing values. Furthermore, we
removed the following methylation data: (1) the methylation
data of the SNP sites, (2) the methylation site data on the sex
chromosome, and (3) the multi-aligned methylation site data.
Methylated sites in the 200 bp range upstream or downstream
from gene transcription start were retained in this study. For
mRNA expression profiles, this study filtered out mRNAs with
FPKM value < 0.1 across 50% specimens.
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FIGURE 1 | Screening CNVCor and METCor genes in liver cancer. Chromosomal distributions (A) and correlations (B) of CNVcor genes. Horizontal axis indicates

chromosomes; ordinate axis represents the proportion or the correlation coefficients of CNVcor genes. The middle line of the box plot is the median of the data, which

represents the average level of the sample data. The upper and lower limits of the box plot are the upper quartile and the lower quartile of the data. Black dots

represent outliers. (C) Chromosomal distribution of METcor genes. Y-axis represents the proportion of METcor genes. (D) Distribution of z-values for CNVcor genes

and METcor genes. Horizontal axis is z value correlation, and ordinate axis is the density distributions corresponding to z values. (E) The proportion of each METcor

gene type. (F) The proportion of each methylation locus. (G) Venn diagram showing overlapping survival-related CNVcor genes and METcor genes.

Correlation Analysis
The correlation coefficient of CNV data or methylation
data with gene expression was calculated, which was
then transformed to z-value based on ln [(1 + r)/(1 –
r)]. Under the screening criterion of p < 0.01, CNVcor
and METcor genes were obtained with the test of
correlation coefficient.

Integrative Analysis of CNV, Methylation
and mRNA Expression Data
Multi-omics clustering analysis was conducted by integrating
CNV, methylation as well as mRNA expression profiles using
the non-negative matrix factorization (NMF) package in R (19).
Lambda values were used to determine optimal weights for CNV,
methylation, and mRNA expression data sets.
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TABLE 2 | Fisher significance test of CNVCor and METCor gene frequencies on chromosomes.

Chromosomes All genes METcor genes CNVcor genes METcor FisherP METcor FDR CNVcor FisherP CNVcor FDR

chr1 2059 777 1055 1.92E-04 0.001056215 0.011311298 0.045345148

chr10 734 219 364 0.418195975 0.460015573 0.290234004 0.35473045

chr11 1318 393 484 0.267306507 0.322891157 1.95E-05 4.28E-04

chr12 1030 305 453 0.278860544 0.322891157 0.390088389 0.451681293

chr13 323 124 175 0.084400506 0.142831625 0.098603748 0.216928245

chr14 820 190 311 6.67E-05 4.89E-04 0.003285193 0.018068562

chr15 613 151 261 0.004556993 0.011139317 0.284006963 0.35473045

chr16 865 297 464 0.278179575 0.322891157 0.012366858 0.045345148

chr17 1187 457 591 0.001112523 0.00407925 0.156199369 0.286365511

chr18 271 78 143 0.450440412 0.471889955 0.220911045 0.35473045

chr19 1461 515 680 0.060434835 0.110797198 0.904106072 0.904106072

chr2 1296 345 538 0.003469529 0.010615833 0.040472584 0.111299606

chr20 540 154 272 0.242389855 0.322891157 0.267280512 0.35473045

chr21 233 47 98 0.003860303 0.010615833 0.475549326 0.523104258

chr22 489 152 234 0.815424881 0.815424881 0.685593908 0.718241237

chr3 1072 312 464 0.175300624 0.257107583 0.247938803 0.35473045

chr4 747 276 371 0.044594131 0.089188261 0.279538529 0.35473045

chr5 870 239 308 0.044592458 0.089188261 6.12E-05 6.73E-04

chr6 1043 412 536 4.37E-04 0.001922587 0.055334401 0.13526187

chr7 969 278 393 0.135649877 0.213164093 0.031565197 0.099204905

chr8 670 318 378 2.69E-08 2.96E-07 0.002640408 0.018068562

chr9 774 142 394 3.04E-10 6.68E-09 0.13166299 0.263325981

Immune Infiltration Estimation
Immune infiltrates across liver cancer were from the Tumor
Immune Estimation Resource (TIMER) website (https://
cistrome.shinyapps.io/timer/) (20, 21). The infiltration levels
of six immune cells composed of B cells, CD4+ T cells,
CD8+ T cells, neutrophils, macrophages, and dendritic cells
were estimated.

Gene Set Variation Analysis (GSVA)
The GSVA algorithm was applied for evaluating the enriched
signaling pathways between subtypes based on gene expression
profiles (22). The pathway enrichment score of each sample was
determined and the differences between subtypes were analyzed
by employing the limma package in R (23).

RT-qPCR
Total RNA was extracted from 20 pairs of liver cancer
tissues and normal tissues using Trizol reagent (Invitrogen,
USA), which was reverse transcribed cDNA. All patients
provided written informed consent. This study was approved
by the Ethics Committee of The Third Affiliated Hospital of
Chongqing Medical University (2019063). SYBR fluorescence
quantitative PCR kit (Takara, Japan) was utilized to perform PCR.
ANXA2: 5′-GTGGTGGAGATGACTGAAGCC-3′ (forward) and
5′-CCACGGGGACTGTTATTCG-3′ (reverse); CHAF1B: 5′-
CCTGGAAAAGCCACTCTTGCTG-3′ (forward) and 5′- ACA
GAAGCACGGAATCCTCCGA-3′(reverse); GAPDH: 5′-TGA
CTTCAACAGCGACACCCA-3′ (forward) and 5′-CACCCT

GTTGCTGTAGCCAAA-3′ (reverse). GAPDH served as a
reference control. Relative ANXA2 and CHAF1B expression was
determined with the 2−11Ct.

Western Blot
RIPA lysis buffer (Beijing Biotech Biotechnology Company,
China) was used to extract total protein from tissue specimens.
The protein concentration was determined with BCA assay
kit (BioTek, USA). Twenty micro gram total protein was
separated by 10% sodium dodecyl sulfate-polyacrylamide (SDS-
PAGE) (Beyotime, Shanghai, China), and transferred to PVDF
membrane (Millipore, USA). The PVDF membrane was blocked
with 10% skimmedmilk powder for 1 h at room temperature and
incubated with the primary antibodies against ANXA2 (1/10000;
ab178677; Abcam, USA), CHAF1B (1/10000; ab109442; Abcam,
USA) and β-actin (1/5000; ab179467; Abcam, USA) overnight
at 4◦C. The membrane was washed 3 times with TBST
and incubated with secondary antibody (1/3000, ab6789;
Abcam, USA) for 2 h at room temperature. The membrane
was visualized with an enhanced chemiluminescence solution
(Thermo Fisher, USA).

Statistical Analysis
All analyses were carried out using R packages and Graphpad
Prism software. ANXA2 and CHAF1B expression was validated
in liver cancer and normal tissues using the gene expression
data from the International Cancer Genome Consortium (ICGC;
http://icgc.org/). Each experiment was repeated three times. Data
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FIGURE 2 | Correlation between CNVs and methylations in liver carcinoma. (A) Correlations of CNV gain with loss. (B) Correlations of MetHypo with MetHyper. (C)

Correlations of CNV loss with MetHypo. (D) Correlations between CNV loss and MetHyper. (E) Correlations of CNV gain with MetHyper. (F) Correlations of CNV gain

with MetHyper. X axis represents CNV or methylation scores and y axis represents CNV or methylation scores.

were presented as the mean ± standard deviation. Student’s t
test was applied for comparisons between two groups. P < 0.05
indicated statistical significance.

RESULTS

Screening CNVCor/METCor Genes in Liver
Cancer
Totally, 9161 CNVCor genes were identified (p < 0.01;
Supplementary Table 1). As depicted in the distribution
of CNVCor genes on chromosomes, CNVCor genes most
frequently occurred on chr1 (FDR<0.05; Figure 1A and
Table 2). The box plots showed the distribution in pearson
correlation coefficients of CNVCor genes on chromosomes
(Figure 1B). 16037 methylation sites corresponding 6181
genes were identified under the screening criteria of p < 0.01
(Supplementary Table 2). As shown in Figure 1C and Table 2,
METcor genes were prone to appear on chr1. In the correlation
z-value distribution, the correlation between CNVcor gene and
its expression leaned to the right, while the correlation between

METcor gene and its expression leaned to the left, indicating
positive associations between CNVs and gene expressions, while
negative associations between methylations and gene expressions
(Figure 1D). METcor genes mainly contained protein-coding
genes (Figure 1E). Furthermore, methylation loci were mainly
situated in the island, S shore, N shore, S shelf as well as N
shelf regions (Figure 1F). According to the median expression
value of CNVCor/METCor genes, the samples were divided into
high- and low- groups. Kaplan-Meier survival analysis was then
performed. CNVCor genes and METCor genes with p < 0.01
were identified as survival-related CNVCor (n = 745)/METCor
genes (n = 344). Two-hundred and fifty-three overlapping
CNVcor genes and METcor genes were in significant association
with survival of liver cancer (Figure 1G), which were used for
further analysis.

Correlations Between CNVs and
Methylations in Liver Cancer
We further analyzed the correlations between CNVs and
methylations in liver cancer. CNVs were divided into three

Frontiers in Medicine | www.frontiersin.org 5 May 2021 | Volume 8 | Article 654635

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Shen et al. Therapeutic Targets for Liver Cancer

FIGURE 3 | Identification of molecular subtypes according to CNVcor and METcor genes. (A,B) NMF cluster analysis based on CNVcor genes. (C,D) NMF cluster

analysis based on METcor genes. Kaplan-Meier curve analysis of CNVcor gene clusters (E) and METcor gene clusters (F). (G) Overlap between CNVcor and METcor

gene clusters. The color shade indicates the number of overlapping specimens.

classifications: loss, normal, as well as gain according to−0.3-0.3.
We classified methylations into hypomethylation (MetHypo),
normal and hypermethylation (MetHyper) based on the cutoffs
of 0.2 and 0.8. The correlations among loss, gain, MetHypo and
MetHyper were analyzed. The results showed that CNV gain
was positively correlated to CNV loss (R = 0.14, p = 0.0098;
Figure 2A). Furthermore, a strong negative correlation between
MetHypo and MetHyper was found in Figure 2B (R = −0.49; p
< 2.2e-16). Intriguingly, we found that CNV loss was positively
correlated with MetHypo (R = 0.16, p = 0.0029; Figure 2C).
However, there were no distinct correlations between CNV loss
and MetHyper (Figure 2D), between CNV gain and MetHyper
(Figure 2E), between CNV gain and MetHyper (Figure 2F).

Identification of CNVcor and METcor Gene
Molecular Subtypes
NMF method was used for clustering analysis according to
CNVcor and METcor genes. The optimal number of clustering
was 2 for CNVcor genes (Figures 3A,B) and METcor genes

(Figures 3C,D). Both the CNVcor genes (p = 0.00011) and
METcor genes (p < 0.0001) in the two molecular subtypes were
in significant association with overall survival of patients with
liver cancer (Figures 3E,F). We further compared the differences
between CNVcor and METcor gene molecular subtypes. There
were high proportions of overlapping samples between CNVcor
and METcor gene molecular subtypes (Figure 3G).

Construction of Two Multi-Omics
Molecular Subtypes for Liver Cancer After
Integration of CNV, DNA Methylation and
mRNA Expression
Based on the CNV data related to the CNVcor genes,
the methylation site data related to the METcor genes,
and the transcriptome data of the CNVcor and METcor
genes, multi-omics clustering analysis was performed using
iCluster. The iCluster clustering results showed that the
optimal clustering results were 2 groups. iCluster clustering
heat maps depicted the distributions of CNVs of CNVcor
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FIGURE 4 | Multi-omics clustering analysis of CNV, DNA methylation and mRNA expression. (A) iCluster clustering heat map showing the CNV distribution of CNVcor

genes. (B) iCluster clustering heat map showing the methylation site distribution of METcor genes. (C) Kaplan-Meier survival analysis results for two subtypes. (D)

Intersection of NMF and iCluster CNVcor gene sets. (E) Overlap between NMF METcor gene subsets and iCluster METcor subsets. (F) Overlap between iCluster

METcor gene subsets and iCluster CNVcor gene subsets.

genes (Figure 4A) and of methylation sites of METcor
genes (Figure 4B) in two iClusters, respectively. There was
significantly difference in overall survival between iC1 and
iC2 (p < 0.0001; Figure 4C). There were high proportions of
overlapping samples between NMF CNVcor and iCluster
CNVcor gene clustering subsets (Figure 4D), between
NMF METcor and iCluster METcor gene clustering subsets
(Figure 4E), between iCluster CNVcor and iCluster METcor
gene subsets (Figure 4F).

Differences in Immune Infiltrations
Between Two Multi-Omics Molecular
Subtypes for Liver Cancer
All genes were clustered into two iClusters. Correlations between
genes and immune infiltrations were estimated using TIMER.
Intriguingly, we found that the immune scores of iC1 subtype
in B cells (p = 3e-06; Figure 5A), CD4+ T cells (p = 0.0003;
Figure 5B), CD8+ T cells (p = 4.9e-07; Figure 5C), dendritic
cells (p = 3.2e-09; Figure 5D), macrophages (p = 2.1e-
10; Figure 5E) and neutrophils (3.3e-10; Figure 5F) were all

significantly higher that of iC2 subtype. Heatmaps depicted that
there was significant difference in six immune cell scores between
two iClusters (Figure 5G).

Molecular Features of Gene Subtypes in
Liver Cancer
We analyzed differences in CNVs (adjusted p < 0.01),
methylation (adjusted p< 0.01) andmRNA expression (|FC|>1.5
and FDR<0.05) between iC1 and iC2 subtypes. Venn diagram
showed two genes (including ANXA2 and CHAF1B) differed
in CNVs, methylation and mRNA expression between iC1 and
iC2 subtypes (Figure 6A). A high proportion of ANXA2 gain
in iC2 subtype and its loss in iC1 subtype was found in
Figure 6B. Hypomethylated ANXA2 more frequently occurred
in iC1 and iC2 subtypes (Figure 6C). Box plots depicted that
ANXA2 was significantly up-regulated in iC1 subtype than iC2
subtype (p < 2.22e-16; Figure 6D). High ANXA2 expression
significantly indicated a poorer prognosis of liver cancer (p =

0.019; Figure 6E). There was a higher proportion of CHAF1B
gain and a lower proportion of its loss in iC2 compared
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FIGURE 5 | Differences in immune infiltrations between two multi-omics molecular subtypes for liver cancer. Differences in contents of B cells (A), CD4+ T cells (B),

CD8+ T cells (C), dendritic cells (D), macrophages (E), and neutrophils (F) between iC1 and iC2 subtypes. (G) Heatmap for six immune cell scores among all samples.
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FIGURE 6 | Molecular features of gene subtypes in liver cancer. (A) Venn diagram showing differences in CNVs, methylation and mRNA expression between iC1 and

iC2 subtypes. (B) Proportions of ANXA2 gain and loss in iC1 and iC2 subtypes. (C) Proportions of ANXA2 hypermethylation and hypomethylation. (D) Box plots

showing the differences in ANXA2 expression between iC1 and iC2 subtypes. (E) Kaplan-Meier survival curves for ANXA2 expression. (F) Proportions of CHAF1B gain

and loss in iC1 and iC2 subtypes. (G) The proportion of CHAF1B hypermethylation and hypomethylation. (H) Box plots showing the differences in CHAF1B

expression between iC1 and iC2 subtypes. (I) Kaplan-Meier survival analysis results for CHAF1B expression.

to iC1 subtype (Figure 6F). CHAF1B hypermethylation more

frequently occurred in iC2 subtype (Figure 6G). Higher CHAF1B

expression was found in iC2 compared to iC1 subtype

(p < 2.22e-16; Figure 6H). Its high expression was significantly
associated with shorter survival time of patients with liver cancer

(p= 0.003; Figure 6I).

Differences in SNVs and Pathways
Between Two Multi-Omics Molecular
Subtypes for Liver Cancer
Fisher-exact tests were applied for comparing the differences in
SNV locus mutation between two subtypes. Seventeen significant
mutated sites with adjusted p < 0.01 were screened, as shown
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FIGURE 7 | Genetic mutations and enriched pathways in two multi-omics molecular subtypes for liver cancer. (A) Differences in genes with single-nucleotide variant

(SNV) in iC1 and iC2 multi-omics molecular subtype for liver cancer. Different colors express different numbers of mutations in a gene. (B) Differences in enriched

signaling pathways between subtypes by GSVA method.

TABLE 3 | The top ten most significant associations between ANXA2 expression

and SNVs.

Genes snvGenes SNVs CorrP Corr

ANXA2 ACAN p.V2481V 0.00315 0.157184

ANXA2 ADCYAP1R1 p.G46V 0.00315 0.157184

ANXA2 ANAPC1 p.L1872* 0.00315 0.157184

ANXA2 ARFGEF1 p.V494A 0.00315 0.157184

ANXA2 ARHGAP26 p.K475* 0.00315 0.157184

ANXA2 ATP6V0D2 p.M300I 0.00315 0.157184

ANXA2 BRF1 p.Y294C 0.00315 0.157184

ANXA2 C11orf87 p.P168Q 0.00315 0.157184

ANXA2 C2CD4C p.D129D 0.00315 0.157184

ANXA2 CDH11 p.R50H 0.00315 0.157184

in Figure 7A. We found that iC1 subtype had higher frequency
mutations than iC2 subtype. We further assessed the correlation
between each SNV locus and expression of ANXA2 and
CHAF1B. Tables 3, 4 show the top ten SNV loci for ANXA2 and
CHAF1B, respectively. Our findings indicated that these SNV loci
might affect expression of ANXA2 and CHAF1B. To explore the
differences in biological functions between iC1 and iC2 subtypes,
GSVA method was applied. As a result, there were distinct
differences in metabolism pathways between subtypes such as
taurine and hypotaurine metabolism, sphingolipid metabolism,

TABLE 4 | The top ten most significant associations between CHAF1B

expression and SNVs.

Gene name snvGene SNV Corr CorrP

CHAF1B TP53 p.R249S 0.219796 3.30E-05

CHAF1B ESYT2 p.R569H 0.210288 7.20E-05

CHAF1B ABCC3 p.T267K 0.158038 0.002988

CHAF1B ADGRE1 p.C742Y 0.158038 0.002988

CHAF1B ADGRL4 p.V295A 0.158038 0.002988

CHAF1B ADH4 p.F182V 0.158038 0.002988

CHAF1B AKAP10 p.D573Y 0.158038 0.002988

CHAF1B ALB p.L609Nfs*33 0.158038 0.002988

CHAF1B ARHGEF11 p.K1355* 0.158038 0.002988

CHAF1B ATG2B p.H211R 0.158038 0.002988

inositol phosphate metabolism, amido sugar and nucleotide
sugar metabolism (Figure 7B).

Validation of ANXA2 and CHAF1B in Liver
Cancer Tissues
In the ICGC database, our data confirmed that ANXA2
and CHAF1B were both up-regulated in liver cancer in
comparison to normal tissues (Figures 8A,B). Twenty paired
liver cancer and normal tissue specimens were harvested
in this study. Using RT-qPCR, we validated the mRNA
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FIGURE 8 | Validation of ANXA2 and CHAF1B mRNAs in liver cancer tissues. (A,B) Box plots for ANXA2 and CHAF1B expressions in liver cancer and normal tissues

from the ICGC database. (C,D) RT-qPCR and (E–G) western blot for ANXA2 and CHAF1B expressions in 20 paired liver cancer and normal tissue specimens.
**P < 0.01; ***P < 0.001; ****P < 0.0001.

expression of ANXA2 and CHAF1B in liver cancer. The results
showed that ANXA2 (Figure 8C) and CHAF1B (Figure 8D)
were highly expressed in liver cancer compared to normal
specimens, which were consistent with bioinformatics analysis
results. Consistently, higher ANXA2 (Figure 8E) and CHAF1B
(Figures 8F,G) expressions were found in liver cancer specimens
by western blot.

DISCUSSION

Liver cancer is an aggressive malignant tumor and one of the
leading causes of tumor-related deaths (24, 25). Unfortunately,
traditional TNM staging can only stratify patients on the
basis of clinical manifestations. Despite advances in treatment
strategies, effective molecular targets have not been successfully
validated. Hence, there is an urgent need to understand the
molecular mechanisms and explore therapeutic targets of liver
cancer to improve patients’ prognosis. With the advances in
sequencing technology, it is accessible to obtain large amounts
of high-throughput genome sequencing data. Comprehensive
analyses about multi-omics data may help conduct accurate
management against liver cancer (26–28). Thus, in this study,
we integrated multi-omics data from 363 patients with liver
cancer to establish two molecular subtypes (iC1 and iC2).
Compared with the iC2 subtype, the iC1 subtypes had a
worse prognosis. These data emphasize the clinical significance
concerning multi-omics analyses of CNVs and methylations
in liver cancer. We further characterized the immune cell
populations of these two liver cancer subtypes. The scores of

the six immune cells of the iC1 subtype were significantly
higher than those of the iC2 subtype. In addition, mutation
profiles showed that the mutation level of iC1 subtype was
markedly higher than that of iC2 subtype, which might
lead to poor prognosis of iC1 subtype. Some recent studies
have shown that genomics, epigenomics, and transcriptomics
play a vital role in tumorigenesis and can predict patients’
prognosis (29, 30). Thus, multi-omics studies can help determine
tumor heterogeneity, candidate therapeutic targets, and new
mechanisms for cancers (22).

By integration of gene expression, CNV gain/loss and
hypomethylation/hypermethylation, we identified two

prognostic molecular targets, ANXA2 and CHAF1B. Due
to the establishment and collection of three data sets and

corresponding clinical follow-up information by different

organizations, only two overlapping genes in the three data

sets may be induced due to internal heterogeneity as well as

diversity. These two mRNAs were validated in three independent

data sets, suggesting that these genes have universal prognostic

significance. Both genes were highly expressed in the iC1

subtype compared to the iC2 subtype. More importantly, their

high expression indicated a poorer prognosis. Correlation

analysis showed that the mutation site of SNV was significantly

correlated with ANXA2 and CHAF1B gene expression.

Therefore, assessing the gene expression may be helpful in

the diagnoses of early liver cancer. Consistent with previous

studies, ANXA2 has been found to be highly expressed in
hepatocellular carcinoma (HCC) tissues compared to adjacent
normal tissues, furthermore, its high expression is in association
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with an aggressive phenotype in HCC (31). Highly expressed
ANXA2 could induce HCC chemotaxis and metastasis (32),
while its knockdown could suppress invasion and migration of
liver cancer cells (33). ANXA2 has good diagnostic potential for
patients with HBV-related HCC (34). ANXA2 is also involved
in the pathogenesis of cardiovascular diseases. For example,
both rs11633032 and rs17191344 SNPs can reduce ANXA2 gene
expression. Its down-regulation is related to an increased risk of
coronary heart disease (35). Also, ANXA2 modulates pulmonary
arterial smooth muscle cell proliferation for hepatopulmonary
syndrome (36). For CHAF1B, it has been reported that it
can promote liver cancer cell migration (37). Thus, in-depth
mechanism of these two mRNAs in liver cancer will be probed in
further research.

However, several limitations of our study should be pointed
out. First, our conclusions were based on retrospective
cohorts, and prospective research will be performed to
verify these findings. Second, this integrated multi-omics
analysis was only based on genomics, epigenomics, and
transcriptomics not including proteomics and metabolomics
because there were no proteomics and metabolomics data in
TCGA database. Third, although our RT-qPCR and western
blot results confirmed that ANXA2 and CHAF1B were
highly expressed in liver cancer tissues compared to normal
specimens, biological functions and mechanisms of ANXA2
and CHAF1B in liver cancer should be further validated.

CONCLUSION

In conclusion, we investigated the possible pathogenesis of
liver cancer through multi-omics analysis based on genomics,
epigenomics, and transcriptomics. Our results suggested that
DNA CNV and methylation may play important roles in
liver cancer. Furthermore, we identified two clinically relevant

molecular subtypes as well as two key biomarkers for liver
cancer. These novel mechanisms and clinical classifications may
help develop accurate diagnosis and treatments for patients with
liver cancer.
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