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Intestinal symptoms, such as nausea, vomiting, and constipation, are common in

Parkinson’s disease patients. These clinical signs normally appear years before the

diagnosis of the neurodegenerative disease, preceding the occurrence of motor

manifestations. Moreover, it is postulated that Parkinson’s disease might originate in the

gut, due to a response against the intestinal microbiota leading to alterations in alpha-

synuclein in the intestinal autonomic nervous system. Transmission of this protein to the

central nervous system is mediated potentially via the vagus nerve. Thus, deposition

of aggregated alpha-synuclein in the gastrointestinal tract has been suggested as a

potential prodromal diagnostic marker for Parkinson’s disease. Interestingly, hallmarks

of chronic intestinal inflammation in inflammatory bowel disease, such as dysbiosis

and increased intestinal permeability, are also observed in Parkinson’s disease patients.

Additionally, alpha-synuclein accumulations were detected in the gut of Crohn’s disease

patients. Despite a solid association between neurodegenerative diseases and gut

inflammation, it is not clear whether intestinal alterations represent cause or consequence

of neuroinflammation in the central nervous system. In this review, we summarize

the bidirectional communication between the brain and the gut in the context of

Parkinson’s disease and intestinal dysfunction/inflammation as present in inflammatory

bowel disease. Further, we focus on the contribution of intestinal epithelium, the

communication between intestinal epithelial cells, microbiota, immune and neuronal cells,

as well as mechanisms causing alterations of epithelial integrity.
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INTRODUCTION

Parkinson’s Disease
Parkinson’s disease (PD) is the second most common
neurological disorder characterized by movement disabilities
(1), but also by non-motor symptoms, including gastrointestinal
dysfunction that often appears years before diagnosis of disease
(2, 3). A neuropathological hallmark of PD is the aggregation of
the synaptic protein alpha-synuclein (aSyn) within the central
nervous system (CNS), leading to degeneration of dopaminergic
neurons within the substantia nigra pars compacta (SNpc) of the
midbrain (1). Moreover, research suggests that inflammatory
responses within the CNS contribute to PD pathology. Hence,
glial cell reactions and T cell infiltration result in increased levels
of inflammatory cytokines within the CNS and are currently
recognized as prominent features of PD (4, 5).

Intestinal Dysfunction and Inflammation
Within PD
Interestingly, recent data indicate that intestinal inflammation
contributes to the pathogenesis of PD (6), and increasing
numbers of studies imply that PDmay start in the gastrointestinal
system years before any motor symptoms develop (7–9). An
acute and chronic intestinal inflammation is a prominent
feature of Inflammatory bowel disease (IBD) comprising the
diseases Ulcerative colitis (UC) and Crohn’s disease (CD).
While UC mainly affects the colon and rectum, CD injures the
entire GI tract (10). IBD is understood to be a result of gut
microbiota dysbiosis and mucosal immune dysregulation (11).
Also, intestinal inflammation in IBD is associated with intestinal
epithelial cell (IEC) alterations and maintaining epithelial
homeostasis helps in protecting against inflammation (12).
Remarkably, PD and IBD share overlapping genetic factors found
within a recent genome-wide-association study (GWAS) (13).
The leucin-rich repeat kinase 2 (LRRK2) gene appears to be the
most susceptibility-factor for both diseases (14, 15). Interestingly,
LRRK2 is one of the genes most commonly associated with
familial and sporadic PD (16). Recent studies show, that patients
with IBD have a higher risk of developing PD as compared
to non-IBD individuals (17, 18). It is well-established that IBD
is characterized by chronic pro-inflammatory immune activity
(11), which is now suggested to be a fundamental element of
neurodegenerative disorders as well (5, 6). Furthermore, animal
studies demonstrate that gut inflammation, similar to IBD,
induces loss of dopaminergic neurons (19, 20). Additionally,
chronic GI inflammation is likely to induce anxiety-like behavior
and alter CNS biochemistry in mice (21). Interestingly, CD
patients have been shown to accumulate aSyn in the gut (22).

Moreover, aSyn and its aggregated forms were also found in
the enteric nervous system (ENS) of PD patients and symptoms
outside the CNS were described including GI impairments (2,
23, 24). This gave rise to the hypothesis that PD pathology can
spread from the gut to the brain and vice versa (23, 25, 26).
This hypothesis is supported by recent animal studies, which
recapitulated the transmission of aSyn pathology via the vagal
nerve, connecting the central with the peripheral nervous system
(27, 28). In this context, the discovery of aSyn expression in

enteroendocrine cells (EECs) within the intestinal epithelium
suggests these cells as sensors of luminal signals triggering the
gut-neural circuit behind aSyn alteration (29, 30). This signal
is then transmitted to the CNS, potentially via the vagus nerve.
Thus, deposition of aggregated aSyn in the GI tract has been
inferred as a potential diagnostic marker for prodromal PD.

This review focuses on overlapping disease pathologies
and the molecular communication between the brain and
the gut in the context of PD and gut inflammation, as
present in IBD (Figure 1). We emphasis on the contribution
of neurodegeneration and neuroinflammation in PD, gut-
brain spreading of PD pathology, intestinal epithelium and
the communication between IECs, microbiota and immune
cells (Figure 2). Moreover, we discuss the mechanisms causing
alterations of epithelial integrity and gastrointestinal (GI)
dysfunction in PD.

NEUROPATHOLOGY IN PD

Motor and Non-motor Manifestations of PD
PD is clinically characterized by classical motor symptoms
including muscular rigidity, bradykinesia, rest tremor, and
postural instability (1). Among several putative factors that
may contribute to PD pathology, the most crucial indication
of PD is the degeneration of neurons in the CNS. The loss of
dopaminergic neurons within the SNpc is the most predominant
feature during disease progression (31) and leads to excessive
dopamine depletion within the basal ganglia, which results in
the above mentioned parkinsonian motor characteristics (1).
The administration of the amino acid precursor of dopamine,
L-DOPA (L-3,4-dihydroxy-L-phenylalanine), has shown to be
the most effective symptomatic treatment. However, if the
motor symptoms occur in PD patients the continuous loss of
neurons is already inexorable (32). Interestingly, PD manifests
already >20 years before the motoric problems occur. This
premotor or prodromal period of disease is defined by e.g.,
constipation, olfactory dysfunction, sleep disorder, cognitive
impairment, autonomic dysfunction, pain and fatigue (1, 3).
Altogether, this leads to the assumption that PD is a complex,
multisystem disorder with both neurologic and systemic non-
motor manifestations.

Lewy Body Pathology in the CNS
A neuropathological hallmark of PD is the formation of
intracellular amyloid inclusions in neuronal bodies and neurites,
known as Lewy bodies (LB) and Lewy neuritis (LN), respectively,
consisting of aggregated aSyn (33). The appearance of these
aSyn-carrying inclusions in patients is also collectively known as
synucleinopathies, referring to PD, dementia with Lewy bodies
(DLB) and multiple system atrophy (MSA) (33–35).

Physiologically, aSyn is natively unfolded and soluble with an
amphipathic N-terminus, a hydrophobic central domain known
as non-amyloid-β component (NAC) region, and an acidic C-
terminus (36). Under pathological conditions, aSyn aggregates
have been shown to exert cell toxic properties (37, 38). The
aggregation mechanisms, by which soluble aSyn changes its
structure to oligomers and ultimately to insoluble β-sheet rich
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fibrils, are still under debate (39–41). However, several factors
have been described to induce structural changes of monomeric
aSyn, involving the interactions with specific lipids (42, 43)
and membranes (44). Further, posttranslational modifications
such as phosphorylation (45), nitration and oxidation (46),
ubiquitination (47), and sumoylation (48) have been shown to
accelerate aSyn pathology. Multiple copies (e.g., duplications
and triplications) (49, 50) and missense mutations (e.g., A53T,
A30P, E46K, and H50Q) (51–53) of the gene encoding for
aSyn (SNCA) foster protein aggregation. In addition, the cellular
microenvironment of aSyn has been reported to play a role in
aSyn conformation and solubility. For instance, aSyn aggregation
behavior differs between neutral pH7.4 (e.g., cytosol) and acidic
pH5 (e.g., lysosome) and aSyn purified from lysosomes was
able to seed aggregation in a concentration-dependent manner
(54, 55). Interestingly, dysfunction in lysosomal pathways have
been linked to PD (56, 57). For degradation, aSyn is processed
within lysosomes by specialized lysosomal enzymes (cathepsins)
(58–60). Hence, deficiency within these lysosomal enzymes,
important for lysosomal function and aSyn degradation, lead
to its aggregation and pathology (61–64). Targeting lysosomal
enzymes by boosting their activity has become a promising
therapeutic approach, which might lower aSyn burden within
neuronal cells and thus decrease the risk of pathological aSyn
aggregation and neurotoxicity (65, 66). In a nutshell, intracellular
accumulation of aSyn, due to inefficient clearance mechanisms,
might drive further aggregation of the protein (67). In this
regard, it was shown that toxic aSyn species can be released
to the periphery from stressed and/or dying neurons and are
subsequently taken up by surrounding cells, leading to spreading
of pathology (68–70). Especially, aggregation intermediates, such
as aSyn oligomers, exhibit highly cell toxic properties (43, 71, 72).

Neuroinflammation in PD
In recent years, evidence evolved that aSyn and inflammatory
processes are extraordinarily connected. In that sense, chronic
neuroinflammation is another characteristic indicator of PD
pathophysiology and is considered to promote the progression of
dopaminergic cell death (73, 74). In general, neuroinflammation
is defined as the immune response of cells within the brain
and plays an important role in maintenance of nervous tissue
homeostasis (4). On the one hand, a moderate inflammation
can protect neurons from damage (75); on the other hand,
inflammatory factors do also affect neurons directly and convey
neurodegeneration. In addition, neuronal cell death induces
inflammatory mechanisms, and contributes to a vicious cycle
of inflammation and progressive loss of neurons in the brain
(76). The neuroinflammatory response is mediated by resident
immune cells (microglia and astrocytes), which release cytokines
and chemokines (4, 77).

Many neuroinflammatory circumstances at post-mortem stage
have also been identified on a molecular basis in PD. For
example, numerous proinflammatory cytokines and factors such
as tumor necrosis factor (TNF)-α, β2-microglobulin, epidermal
growth factor (EGF), transforming growth factor α (TGFα),
TGFβ1, and interleukin (IL)-1β, IL-6, and IL-2 were found in the
striatum of PD patients (78). Furthermore, TNF-α, IL-1β, and

interferon (IF)-γ were also detected in the SNpc of PD patients
(79). Interestingly, dopaminergic neurons express the receptors
of these cytokines (80), that might explain the vulnerability
of DA neurons to inflammatory processes inside the brain. In
addition, increased levels of proinflammatory mediators, such
as IL-1β, IL-2, TNF-α, and IL-6 are present in the serum and
the cerebrospinal fluid (CSF) of PD patients (81–84). These
results suggest the direct migration of immune cells from the
periphery (blood stream) to the brain (or vice versa) during
neurodegenerative process.

Microglia, the resident macrophages in the brain, and
astrocytes, the most abundant glial subtype in the CNS, are
considered to drive the inflammatory response in PD (85). Of
relevance, microglia initiate the innate immune response in the
brain, therefore representing key players upon inflammatory
stimulus (86, 87). Under pathological conditions, activated
microglia release proinflammatory cytokines and reactive oxygen
species (ROS), which affect dopaminergic neuron viability (73,
88). Reactive microglia were found in various brain regions
(89, 90) including the SNpc of PD patients (91). Besides microglia
activation, reactive astrogliosis contributes to PD pathogenesis
and progression (85). Astroglial cells secret the glial cell-line
derived neurotrophic factor (GDNF), which promotes survival
of dopaminergic neurons (92), and regulates the permeability
of the blood-brain-barrier (BBB) (93, 94). Interestingly, in this
regard the BBB is found to be defective in PD patients (95–
97). The mechanism of an altered BBB function is still elusive,
however, the increased levels of proinflammatory cytokines IL-6,
IL-1β, and TNF-α have been associated with a disruption of trans-
endothelial electrical resistance, indicating an increased BBB
permeability (98). Recently, a study showed that aSyn-mediated
release of proinflammatory cytokines and chemokines by
pericytes induces disruption of BBB (99). Further, accumulations
of aSyn in astrocytes are found in post-mortem analysis of PD
patients (100). Reactive astrocytes manifest with PD progression
by increased proinflammatory cytokine secretion such as IL-1β,
TNF-α, and IFN-γ (101–103). A recent study indicates the close
interplay between microglia and astrocytes showing induction of
neurotoxic A1 astrocytes by microglial secretion of IL-1α, TNF-
α and complement component 1q (C1q) (104). In this regard, it
was shown that pathological aSyn inoculation in vitro and in vivo
induces microglia to secrete cytokines and chemokines followed
by astrocyte A1 activation that caused neuronal cell death in
culture and neurodegeneration in mice (105).

Moreover, is has been reported that aSyn itself has an
important role in the initiation andmaintenance of inflammation
in PD. Recent reports have suggested that aSyn acts as
a damage-associated molecular pattern (DAMP), capable of
modulating inflammatory cytokine production in microglia and
inducing intracellular signaling cascades (106, 107). It has been
demonstrated that extracellular oligomeric aSyn is a putative
activator of toll-like receptor (TLR) 2 and promotes microglia-
mediated inflammatory cytokine and ROS production (108,
109). The exact contribution of different aSyn conformations
to TLR activation is currently unclear, however, there are
strong indications that the activation seems to be conformation
dependent. Specifically, TLR4 appears to be involved in the
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uptake of fibrillary aSyn (110). While the presence of monomeric
aSyn seems to enhance phagocytic function, aggregated forms
seem to inhibit this process (111).

Furthermore, lymphocyte infiltration might also play a role
in inflammation processes inside the brain of PD patients. It
was reported that cytotoxic T lymphocytes (CD8+) as well as
CD4+ T helper (Th) cells were more abundant in the brains
of PD patients compared to healthy individuals (112). In this
regard, T cells, in particular Th17 cells, were increased in number
in PD brain and blood. Furthermore, Th17 cells induced cell
death in co-cultures autologous induced pluripotent stem cells
(iPSC)-derived neurons from PD patients (113). Interestingly,
aSyn is able to activate helper and cytotoxic T cell responses
in PD patients, which suggests a possible role of autoimmune
inflammation in PD (114).

Taken together, these current data implicate that PD is an
extraordinary complex disease with many pathophysiological
processes driving disease progression. It becomes evident, that
PD is rather a systemic disorder with a variety of pathological
facets than ‘just’ neurological degeneration.

GUT-BRAIN AXIS IN PD

Approximately 80% of PD patients suffer from GI manifestations
(115), including constipation, which seems to be an important
risk factor for PD (116). As mentioned above, intestinal
symptoms may precede motor manifestations by several years,
suggesting that PD might originate in the gut. This is in line
with the estimation that 90% of idiopathic PD cases are due to
oral ingestion of substances causing cell toxicity (oxidative stress,
mitochondrial dysfunction), such as herbicides and pesticides
(117). According to the hypothesis that PD originates from the
gut (118), aggregates of aSyn were detected in the intestine
of PD samples (119). Despite the evidence of gut to brain
communication in the context of PD, there are still open
questions regarding (A) the exact localization in the gut where
PD might originate, (B) the dissemination pathways within the
gut and to the brain, (C) the declutching event of proteinopathy
in the gut, and (D) the role of the intestinal microbiota, as well as
microbiota-epithelial-immune communication. All this lacking
information is indispensable in order to develop potential PD
diagnosis strategies based on GI premotor symptoms.

aSyn in the Gut and Its Propagation to the
CNS
As already mentioned, LBs and different aSyn conformers were
observed in variety of organs despite the brain. aSyn was reported
to be present in the spinal cord and the peripheral nervous
system (PNS) including the paravertebral sympathetic ganglia,
vagus nerve, the GI tract and among others (120, 121). Indeed,
phosphorylated aSyn, a pathological form of aSyn, has been
detected in the GI tract up to 20 years before onset of PD motor
symptoms (9). Also, Braak and colleagues hypothesized that
synucleinopathy begins in the anterior olfactory nucleus and the
dorsal motor nucleus of the vagus nerve (DMV) (dual-hit theory)
(8, 23), favoring the idea that PD pathology invades the brain

via retrograde axonal transport (25, 26). Braak and colleagues
even suggest that a pathogen, a pathogen-derived component or
other exposures are entering the nervous system through axons
of the myenteric (Auerbach’s) plexus and/or the submucosal
(Meissner’s) plexus via postganglionic neurons and may trigger
aSyn conformation to aggregates and fibrils (8, 122). Thus, the
microbiota has been suggested as a key player, since local immune
activation can lead to systemic inflammation affecting the BBB,
finally causing neuroinflammation and neurodegeneration (123)
(Figure 2). Although it is still not clear whether microbiota
changes are cause or consequence, dysbiosis is considered as a
risk factors for PD development.

Detection of aSyn in the Gastrointestinal Tract
In the context of the ENS, aSyn was first identified in the
esophagus and the colon (124), but it is still not clear where
the deposition under pathological conditions initiates. Current
literature demonstrates that aSyn can also be detected in salivary
glands (125), pharyngeal sensory nerves (126), the esophagus
(120), the stomach and the small intestine (127), the colon (123),
and the appendix (128). Colonic aSyn has been detected even in
premotor PD (119, 129). These observations postulate detection
of intestinal aSyn as a diagnostic tool in PD, even in early phases
of the disease. However, inconsistencies in the detection of aSyn
conformers imply the need of alternative and more accurate
methods for its detection (granular staining in the lamina propia,
perivascular/vascular wall mucosa staining, lacy-granular pattern
in the submucosa, or epithelial cell nuclear staining, 2D/3D
electrophoresis) (24).

Monomeric aSyn expressed in gut neurons can be released
in form of free protein or exosomes, which can be taken
up by neighboring neurons via endocytosis (130). Most
commonly, aSyn is transported directly from neuron to neuron
(131, 132), which requires close cellular contacts and intact
synaptic connections (133). In the gut, this is possible via
the connection between submucosal/myenteric neurons to the
preganglional vagal nerves, which allows aSyn propagation (134).
Proteinopathy within the GI innervation might be due to a
neurotropic pathogen/agent, which initiates Lewy pathology
in the gut (8). Therefore, a connection between the ENS
and the mentioned agent is necessary, since neurons/nerves
do not reach the intestinal lumen. An attractive candidate
in this context would be the intestinal epithelium, which is
in direct contact with luminal content, and therefore acts
as a physical and immunological barrier in the gut. On
the other hand, disturbances of intestinal sealing in chronic
intestinal inflammation leading to leaky gut might allow direct
contact of the initiating factor and the ENS (Figure 2) (135–
137).

Propagation of aSyn Between the Gut and the CNS
The next important question is how aSyn propagates from the
ENS to the CNS. The connection between the ENS and the
CNS, so called gut-brain axis, permits a mutual effect from the
ENS to the CNS, and vice versa. This communication mainly
occurs via the sympathetic system and the vagus nerve of the
autonomic nervous system, and the spinal cord. Four levels of
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control have been defined (138): (1) ENS, including myenteric
and submucosal ganglia, and enteroglial cells; (2) prevertebral
ganglia (visceral reflex responses); (3) spinal tract the through
tractus solitaires in the brain stem and the dorsal motor nucleus
of the vagus nerve; and (4) cortical and basal ganglia neurons.
Healthy individuals maintain intestinal functions, and patients
with neurodegenerative disease suffer from GI problems, not
only PD, but also Alzheimer’s disease, transmissible spongiform
encephalopathies, or amyotrophic lateral sclerosis; while GI
disorders leads to CNS-related symptoms. The connection
between the vagus nerve and the luminal content has been
suggested to be mediated via EECs (139), which might produce
metabolites acting on the vagus nerve, transmitting information
from the nutrients toward the brain, in a glutamatergic
neurotransmission (140) (Figure 2).

The vagus nerve, one of the largest nerves connecting the
gut and brain, is considered to be the direct link between
these two organs (141). Recent data from rodent models could
evaluate a direct propagation of aSyn pathology from the gut
to the brain via the vagal nerve (28, 142–144) (see section
Animal Models of PD and GI Symptoms). Moreover, there has
also been also research in alternative hypothesis of a brain-to-
gut spread of aSyn pathology, showing that a vector-mediated
overexpression of aSyn in the midbrain lead to accumulations
of aSyn in enteric nerves and stomach walls (145). Further, a
more recent study presents that a nigral overexpression of aSyn
exerts significant alteration on the ENS followed by changes in
the microbiome (146). Subsequently, loss of neuronal plexus
and activation of glial cells in the gut impact on intestinal
permeability, barrier function, inflammation, and GI motor
functions. Taken together, this data suggests a bidirectional
potential of aSyn to move both anterogradely and retrogradely
within neurons (Figure 2). If the vagus nerve is the main route
of bidirectional aSyn transmission, vagotomy could be protective
against developing PD. Studies questioning whether a vagotomy
leads to a reduced risk to develop PD could not find a strong
association (147, 148). Only when the cases of a full truncal
vagatomy were restricted >20 years after surgery a decreased
risk for subsequent PD was observed (149). Overall, many
studies support the idea of aSyn gut to brain and inversely
brain to gut spread, however, there are still clinical studies
missing that investigate the start and/or early development of PD
progression, respectively.

Another way of aSyn transmission from the gut to the
brain and vice-versa is thought to be possible through
extracellular vesicles called exosomes, which are found in the
blood serum and CSF of PD patients (Figure 2) (150–152). In
fact, it was shown that exosomes derived from PD patients
incorporate oligomeric aSyn and spread oligomerization of aSyn
in a dose-dependent manner (130, 153, 154). An alternative
gut-brain communication via the circulation has been also
suggested in primates, where the damage of the CNS could
be observed upon intestinal injection of aSyn without affecting
the vagus nerve, but elevated aSyn levels in the circulation
(155). Overall, this indicates that exosomes may function as
intracellular cargo distributing aSyn pathology throughout the
body (Figure 2).

Enteric Nervous System (ENS)
Being the largest and most complex part of the peripheral
nervous system (PNS), the ENS controls crucial functions within
the gastrointestinal tract, such as peristalsis, substance transport,
or local blood supplies. The ENS innervates the whole GI tract,
from the mouth to the rectum, including the salivary glands.
Neuron networks in the gut wall formed ganglia, which are
interconnected by dense fiber bundles. The nerve plexuses are
organized in myenteric and submucosal plexuses, which are, in
turn, interconnected. The myenteric plexus is localized between
the longitudinal and circular muscle layers throughout the GI
tract, and controls smooth muscle activity and motility. The
submucosal plexus is located mainly in the small and large
intestine, also in the stomach, but not in the esophagus (156).

ENS-mediated control of the GI function is independent
from the CNS; therefore, the ENS allows complete sensory-
motor reflexes, based on the existence of primary afferent
neurons, interneurons and motor neurons. However, apart
from this intrinsic innervation within the ENS, the gut is also
innervated via the sympathetic and parasympathetic nervous
system. More than 100 million entities from 20 different neuron
subtypes (depending on the expression of neuropeptides) coexist
with enteroglial cells (EGCs) in the ENS. EGCs express glial
fibrillary acidic protein (GFAP), vimentin and S-100, but also
receptors for cytokines, neuropeptides and neurotrophins, and
therefore, have a dual function on the ENS. As astrocyte-
like cells they also contribute to the function of the intestinal
immune system. Moreover, ECGs participate in the structure of
the ENS and contribute to the maintenance of mucosal barrier
and tissue homeostasis (157). Interestingly, EGCs also serve
as a communication tool between IECs and the ENS (158).
Among ENS neurons, dopaminergic neurons are present in
both plexus (159), and are more frequent in the proximal part
of the GI tract; although the association between the loss of
dopaminergic neurons and PD has been only demonstrated in
the colon (160).

Microbiota
Seeing it as a super-organism, the human body is not only
composed of human cells but also numerous microorganisms
colonizing at mucosal surfaces, allowing various important
body’s functions such as maturation, education of host
immune responses, protection against pathogen proliferation,
and induction of responses to specific drugs. The human gut-
microbiome carries millions of microorganisms and indeed, has
been defined as the most complex ecosystem ever. It contributes
greatly to intestinal immune function as a consequence of
the continuous contact with gut lumen commensals and
potentially harmful agents. A symbiotic relationship between
the human body and these microorganisms permits the
digestion of nutrients and pathogen colonization resistance.
Thus, the intestinal microbiota modulates several functions of
the gastrointestinal tract, such as permeability (161), mucosal
immune function, motility (162), sensory nerve function and
ENS activity (163). Interestingly, it is also associated with brain
functions (164), such as response to stress (165), emotions (138),
pain, digestive behavior (166), and brain biochemistry (167).
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The balance between the human body and the microbiota
(eubiosis) is challenged by several external factors, such as
antibiotic treatment, various diseases, highly processed foods or
lack of sleep. This can lead to microbiota alterations or dysbiosis,
which in most cases is shown by variations in the composition
and reduced diversity between different species. Dysbiosis has
been associated with several pathological situations, including
IBD (168) and PD (169) (Figure 1); although in many cases it is
not clear whether its alteration represents cause or consequence
of the subjacent pathology. The most accepted hypothesis for the
pathogenesis of IBD claims that chronic intestinal inflammation
occurs as an exacerbated immune response against components
of the microbiota in genetically predisposed individuals. The first
hint pointing to the association between the intestinal microbiota
and IBD came from animal studies showing that experimental
inflammation in a number of well-established animal models was
abolished in germ-free mice (170). In addition, inflammation
could be challenged upon colonization with caecal bacteria, while
specific species were able to protect upon recolonization. Despite
numerous efforts in order to identify a single specie capable of
triggering chronic intestinal inflammation (171), nowadays IBD
is considered as a polymicrobial disease, where dysregulation
in the composition of the microbiota affects several species. In
addition to activation of signals upon detection of the microbiota
or derived-antigens, another important aspect is the release
of metabolites derived from the microbiota. This has been
identified using next-generation sequencing, metagenomics and
metabolomics, allowing the description of the microbiome and
its potential alterations (172, 173).

Based on the relevance of the intestinal microbiota, its
modulation in order to restore eubiosis, appears as an
attractive strategy for therapy purposes. In this context, fecal
transplantation implies the transfer of microbiota from healthy
donors to IBD patients. Fecal microbiota transplantation (FMT)
has been tested in various pathological conditions, such as
IBD, diabetes type 2 and even neurodegenerative disease. A
recent study demonstrates the efficacy of this strategy in an
experimental colitis model induced by adoptive transfer of naïve
T cells, since transfer of healthy vs. IBD patient fecal content
permits restoration of T cell responses (decreased Th17/Th2);
and increased Treg/IFNγ and ameliorates thereby colitis (174).
Despite limitations based on the donor testing, the limited
duration of the treatment and the potential alterations upon
antibiotic treatment, FMT it is approved for the treatment
of other intestinal conditions, such as Clostridium difficile
infections (175, 176). In addition to fecal transplantation, a
recent review collects other therapy strategies based on the
modulation of the microbiota via direct or indirect mechanisms,
such as enteral nutrition; pre-, pro-, and post-biotics; inhibition
of Adherent-invasive Escherichia coli (AIEC) adhesion and
tungstate treatment (168). All these strategies to restore
eubiosis are potentially valuable in diverse pathologies coursing
with dysbiosis.

Microbiota in PD
Compared to GI homeostasis, more surprising is the association
between microbiota and brain function, and the fact that

the intestinal flora modulates immune, endocrine, and
neuroendocrine maturation in nervous system sprouting.
Colonization of the human gut upon birth is important for
neonatal brain development, since it allows the synthesis of
vitamins and fatty acids, regulation of BDNF (Brain-derived
neurotrophic factor), synaptophysin and PSD-95 (177).
Experimentally, sterile mice elicit decreased expression of BDNF
in the cerebral cortex and hippocampus, and they show signs
of anxiety and less activity performance (178); while another
study shows that recolonization with healthy flora permitted
production of different neurotransmitters (NTs) and the
abolition of anxiety symptoms (179). An additional important
aspect to be considered is the ability of the microbiota to directly
produce inhibitory NT (GABA) or regulate their synthesis by
the host (180, 181). Moreover, GABA signaling system (GAD
and GABAAR) was detected in IECs and GABAAR stimulation
played important role in regulating intestinal fluid secretion
in rat (182). On the other hand, preventing the reuptake of
NTs (for example, inhibiting 5-HT reuptake by fluoxetine) can
regulate colonization in the gut (183). In addition, important to
mention here is the production of short-chain fatty acids (SCFA)
as microbiota-derived factors, which can affect the CNS thank
to their passaging through the BBB via specific transporters.
SCFAs in the brain regulated microglia homeostasis (184), have
impact on G-protein coupled receptors (GPCRs) (185, 186) and
maintain to the GPR41-mediated SNS activity (187). According
to an association between brain function/development and
colonization of the intestinal tract, the microbiota impacts
then on social behavior, sleep cycle, mood disorders, and
neurodegenerative disease including Alzheimer’s disease and
PD (188).

In the context of the gut-brain axis, components of
the microbiota and its metabolites can act directly on
neurons at the ENS, or signal through IECs (Figure 2)
(189). Nowadays, several pieces of evidence demonstrate a
correlation between dysbiosis and prodromal signs in PD
(190–192). Importantly, changes affecting Firmicutes, Prevotella,
Helicobater pylori (193), Bacteroides, or Bifidobacterium
(194) as well as the imbalance between pro- and anti-
inflammatory species, and the increased release of LPS
should be mentioned (195). Based on a recent Metabolome
wide association studies (MWAS) (196), the dysbiosis in
PD patients is characterized by: increase of opportunistic
pathogens (Porphyromonas, Corynebacterium, Prevotella,
Porphyromonas, and Corynebacterium); reduction of SCFA-
producing bacteria (Oscillospira, Lachnospiraceae_UCG-04,
Lachnospiraceae_ND3007_group, Agathobacter, Butyricicoccus,
Blautia, Faecalibacterium, Lachnospira, Fusicatenibacter,
Roseburia); and elevated carbohydrate-metabolizing probiotics
becoming immunogenic (Lactobacillus or Biffidoacerium). An
independent meta-analysis of 223 PD vs. 137 control patients
from America and Europe suggests elevation of Akkermansia,
Catabacter genera, and Akkermansiaceae family together with
reduction of general Roseburia and Faecalibacterium (197).
Beyond alterations of the microbiota composition, related
metabolic changes have also been observed in PD patients,
such as reduced carbohydrates fermentation, butyrate synthesis,
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FIGURE 1 | Shared molecular disease pathways of the brain and gut pathologies, as found in PD and IBD. Affected molecular features within PD (red) and gut

inflammation (light orange) as well as in both disease (dark orange). Molecular pathways of PD include neuroinflammation, aSyn aggregation in the central nervous

system (CNS), dopaminergic neurons (DA) degeneration, and the disruption of blood-brain barrier (BBB). In IBD an acute and chronic intestinal inflammation is

described. Both diseases can comprise intestinal inflammation, aSyn aggregation in the gastrointestinal tract (GIT), intestinal dysbiosis and a “leaky gut.” The figure

contains modified components of Servier Medical Art, licensed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0) https://smart.servier.com.

increased proteolytic fermentation, and amino acid metabolism
(198). Interestingly, some of these metabolites play crucial roles
for nervous system-related intestinal functions; for instance,
SCFA contribute to 5-HT release and colon motility, proving
again the gut-brain connection (199).

Interestingly, many of the PD-related microbiota alterations
can also be linked to dysbiosis in IBD. Akkermansia muciniphila
is a well-known actor in the context of IBD, since it can
degrade the mucus layer and thereby impair the barrier
function (200), which might favor the contact between the
luminal content and the ENS. On the other hand, Roseburia
and Faecalibacterium (197) possess an anti-inflammatory effect
in IBD, due to their ability to produce SCFAs (201, 202);
while decreased Prevotellaceae is associated with alterations
of intestinal permeability via a similar mechanism (203). On
its part, accumulation of Enterobacteriaceae leads to increased
levels of LPS, explaining its correlation with disease progression
and motor symptoms. Increased LPS levels can contribute
to GI alterations by several mechanisms, such as causing
epithelial leakage (204), inducing the production of cytokines
and inflammation. Moreover, it can pass through the BBB
(205), triggering direct destruction of the substantia nigra (206).
Based on the neuroprotective effect of SCFA and ghrelin,
reduced Lactobacillaceae can also affect intestinal inflammation,
correlating with disease severity (207). Jointly, overlaps between
dysbiosis profiles in IBD and PD might contribute to the
associated barrier function alterations.

Changes in the gut microbiota composition might lead
to aSyn accumulation in the gut, originating oxidative
stress and mucosal inflammation. However, it is not clear
whether changes in the microbiota composition, PD associated

symptoms (constipation) or PD pharmacological treatment are
a consequence of aSyn proteinopathy. Supporting a causative
role of microbiota and/or microbiota-derived factors, a recent
study shows induction of motor symptoms in mice upon
fecal transplantation from human PD patients, due to aSyn
pathology and neuroinflammation engendered by microbiota
metabolites, such as SCFA. Furthermore, aSyn overexpressing
mice (under the Thy1-promoter) show less motor symptoms in
germ-free conditions, as well as upon antibiotic-treatment; while
colonization with healthy or, in particular, PD patient-derived
microbiota, lead to worsening of motor symptoms (192).

Beyond commensal bacteria, also pathogens in the lumen
interact with the ENS, mostly via non-neuronal cells, such
as EECs within the intestinal epithelium. On the other
hand, local gut infections can impact on affective state and
emotional responsiveness. This communication occurs via toxins
promoting secretion and therefore, diarrhea, as observed in
the case of Vibrio cholera, Clostriiodes difficile; or toxins
promoting emesis, including Staphyloccoccus aureus or Bacillus
cereus. However, not only bacteria, also viruses and parasites
demonstrate an interplay with the ENS and CNS. The viremic
hit hypothesis defends that PD occurs upon Influenza and HSV1
infections (dual-hit theory), leading to the aSyn aggregation
in peripheral nervous tissues, and subsequently propagation
to the brain (208–210). Interestingly, HIV targets the ENS,
since it activates glial cells, which can then be propagated
to the CNS. Furthermore, HIV Tat peptide can synergize
with LPS by interfering with TLR4, inducing the release of
cytokines, and promoting the proinflamamtory effect of LPS
(211). ENS infection by HSV-1 leads to macrophage recruitment,
releasing ROS and causing ENS neuroplasticity and destruction
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FIGURE 2 | Mechanisms, molecules, and cell types involved in PD/IBD pathology and gut-brain communication. In the gastrointestinal tract (GIT) the intestinal

epithelium functions as barrier and separates the GIT lumen from the surrounding enteric nervous system (ENS), which not only contains enteric neurons, but also

enteroglial cells. Within the GIT lumen microbiota and microbiota-derived factors like polysaccharides, short chain fatty acids, and curli (bacterial amyloid protein) can

be found, but also nutritions, possible pathogens and toxins. When integrity of the intestinal epithelium consisting of epithelial cells including enteroendocrine cells

(IECs and EECs) is disturbed, molecules within the GIT lumen get in contact with cells of the ENS. Tight junctions and Piezo channels have been shown to play an

important role in mechanosensation, peristalsis, and intestinal barrier function. Within the brain, the blood-brain barrier (BBB) separates the CNS (including neurons

and glial cells) from the blood vessel lumen. Potential gut-brain axis routes on which aSyn and molecules like cytokines could be transferred are for instance the vagus

nerve or exosomes [via the blood stream or cerebrospinal fluid (CSF)]. The figure contains modified components of Servier Medical Art, licensed under the Creative

Commons Attribution 3.0 Unported License (CC BY 3.0) https://smart.servier.com.

of enteric ganglia as well as GI dysmotility (212). Finally, parasites
modulate 5-HT secretion, the release of enzymes degrading NTs,
such as acetylcholinesterases (Anisakis or Schistosome), and NT
secretion, while they are tightly linked to the immune system
function (213).

Intestinal Epithelium and “Leaky Gut”
The intestine is in charge of nutrition and water/ion absorption,
but represents also a fundamental immunological organ,
harboring the most extended immune cell population in the
body. On its part, the intestinal epithelium together with the
attached mucus constitute a physical and immunological barrier

segregating the environment (intestinal lumen) and the human
body. The gut epithelium consists of a monolayer of columnar
epithelial cells allowing trans- and para-cellular transport
required for nutrition, however, simultaneously impairing the
invasion of potentially harmful pathogens. Thus, sealing of the
epithelium has to be tightly maintained, in order to prevent
transmucosal passage of microbiota-derived factors, which can
then get in contact with the plethora of immune cells present
in the sub-epithelial space. This is achieved via intercellular
junctions (tight junctions, adherens junctions, and desmosomes)
(214), as well as a tight regulation of cell architecture and polarity,
mostly regulated by the function of the actin-myosin cytoskeleton
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(12, 215). Together, the intestinal epithelium accounts for the
intestinal barrier function, which has been critically involved
in the pathogenesis of intestinal disorders, such as chronic
intestinal inflammation (including IBD) (216). This barrier
function is challenged during the renewal or turnover of the
epithelial layer. Lgr5+ stem cells located at the crypt bottom
proliferate and give rise to pluripotent daughter cells located in
the transient-amplifying area, which, in turn, differentiate into
five IEC subtypes [enterocytes, goblet cells, paneth cells, EECs,
and tuft cells (217)]. All differentiated IECs, except paneth cells
which remain at the crypt, migrate upwards to the villus tip
(small intestine) or the crypt surface (colon), where aged cells
will be extruded to the lumen (cell shedding) and finally die.
Temporary leakage occurring at the villus tip is tightly regulated
by rearrangement of tight junctions and the so-called zipper
effect of neighboring cells (218, 219), which allows resealing of
the epithelium.

As mentioned above, the maintenance of epithelial integrity
plays a fundamental role to keep tissue homeostasis in the gut,
and therefore, avoid inflammation (220). Loss of epithelial sealing
and leakage of the intestinal layer has been associated with
chronic inflammatory disorders, such as IBD (221). Indeed, some
observations claim that epithelial-intrinsic alterations can play
a causative role in the disease. For instance, increased intestinal
permeability appears in non-diagnosed relatives of IBD patients
(222), and precedes flares in patients with an IBD diagnosis (223),
suggesting that epithelial leakage heads the activation of the
inflammatory response. Moreover, based on immune-epithelial
communication in the gut, epithelial architecture and function
can also be modified due to the effect of pro-inflammatory
mediators present in the gut mucosa upon activation of an
immune response, such as immune-cell derived cytokines (TNF,
IL-6, IL-1β , IL-13, etc.). These cytokines affect mainly tight
junction assembly (224), activation of different cell death
pathways or cell shedding (225), as well as IEC damage (226).
Altogether, via epithelial intrinsic and extrinsic mechanisms,
epithelial barrier function is challenged in the context of IBD, and
this correlates with pathogenesis of the disease. A proof of this
association are recently introduced epithelial restoration therapy
strategies, which indeed show promising results in the context of
IBD pharmacological management (227, 228).

Beyond being a pure physical fence against components
present in the lumen, the intestinal epithelium displays
innate immune responses based on the expression of pattern-
recognition receptors (PRRs), allowing them to recognize
pathogen-associated molecular patterns (PAMPs) from diverse
microorganisms in the lumen, amplify the initial immune
response, and finally prime the adaptive immune system.
PRRs also recognize endogenous molecules produced in stress
conditions, so called DAMPs. Membrane-bound [TLRs and
C-type lectin receptors (CLRs)] and cytoplasmic Nucleotide-
binding oligomerization domain-like receptors or NOD-like
receptors (NLRs), retinoic acid-inducible gene-I-like receptor
(RLRs), absent-in-melanoma 2 (AIM2)-like receptors, and cyclic
GMP-AMP synthase (cGAS) receptors act together in order to
detect pathogens in multiple cellular compartments. Although
TLRs are the best characterized PRRs, they are not unique in

the context of IECs and IBD; others relevant receptors comprise
CLRs (229) and NLRs (NOD2) (230, 231).

Focusing on the well-studied TLRs, deficiency of TLR2 is
associated with aggravated colitis in DSS-treated mice (232)
and multidrug resistance colitis (233). Similarly, poly(I:C)-
mediated TLR3 activation protects epithelial barrier function and
ameliorate DSS-induced colitis (234, 235). In contrast, several
strategies based on TLR4 blocking show promising results in
the context of epithelial restoration in IBD (not in the case of
necrotizing enterocolitis), while constitutively activated TLR4
predisposes for DSS-colitis and colitis-induced neoplasia (236–
238). Mechanistically, this is based on impaired NF-kB-mediated
cytokine production and migration of epithelial cells. Although
TLR5 was identified as one of the first IBD loci and its deletion
triggers spontaneous colitis (239), controversial results regarding
flagellin-mediated activation implies the need of future studies in
this context (240). Another important candidate is TLR7, since its
activation leads to production of antimicrobial peptides (AMPs)
and protects against DSS (241) or TNBS colitis. Interestingly,
as already mentioned in section Neuroinflammation in PD,
recent studies suggest aSyn as a DAMP-activating TLRs on
the surface of microglia (108, 109). This opens the hypothesis
of a TLR-mediated recognition of aSyn in the gut, even via
specific stimulation of intestinal epithelium or IEC subtypes. As
mentioned above, it is important to consider potential specificity
of TLR activation based on the conformation of the different aSyn
aggregates in this context (242).

Intestinal Permeability in PD
PD pathogenesis is associated with “leaky gut” (Figure 1) and
increased intestinal permeability (243), correlating with aSyn and
LPS levels in the mucosa (190). Elevated intestinal permeability
in turn promotes subsequent inflammation, and therefore, aSyn
accumulation and aggregation in the ENS (192). In fact, increased
expression of pro-inflammatory cytokines and glial markers, also
in the gut, positively correlated with disease progression and
severity. Mechanistically, recent studies have suggested that PD
patients (123) and animal models of PD show altered expression
and distribution of tight junction proteins, such as ZO-1, E-
cadherin (244), and claudin-1 (245).

aSyn and Intestinal Epithelial Cells
Beyond the association between PD and decreased expression
of tight junction proteins within the intestinal epithelium
(123), the current knowledge about a potential interaction
between aSyn and the intestinal epithelium is still scarce. The
fact that EECs express aSyn make them attractive candidate
players in this context [see chapter Enteroendocrine Cells
(EECs)]. aSyn can be transmitted in a prion-like manner from
epithelial cells to enteric neurons (30). Enteric glia is a crucial
communication tool between the intestinal epithelium and the
ENS. Thus, intestinal pathological conditions associated with
alterations of epithelial permeability might trigger alterations
of the EGCs as the declutching event for a local immune
response and neuroinflammation affecting the ENS (see chapter
Neuroinflammation in PD). In order to get in contact with IECs,
aSyn should translocate across the mucus barrier protecting the
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monolayer of epithelial cells. A recent study has shown that,
despite mucoadhesive properties, aSyn penetrates the mucus by
inducing rearrangement of the mucinmatrix (246). Other studies
suggest that rather than aSyn itself, other phenomena associated
with alterations of the microbiota, such as increased levels of LPS
are responsible for epithelial alterations, including redistribution
of ZO1 and E-cadherin (244). Enteric biofilms are produced by
bacteria in the gut in order to promote their survival, and can
in turn, activate local immune response, since some of their
components act as DAMPs activating TLRs, for instance. Curli-
containing biofilms in several experimental infection models
caused alterations of the epithelial layer; the mechanism behind
includes the fibrillization of aSyn (247). Undoubtedly, further
research on the impact of aSyn on IECs, as well as other
mechanisms explaining epithelial alterations in the context of PD
pathogenesis are required.

The use of brain organoids derived from PD patient iPSCs has
been extended in the last years. Recently, technical development
in the field, such as co-culture of neuronal cells with astrocytes
(248) and the use of assembloids have permitted modeling of
cellular crosstalk between different areas of the brain (249).
However, controversial opinions about the ability of these in
vitro models to mimic complexity of the human brain still
exist. In the context of PD, midbrain organoids containing
dopamine-related neurons, astrocytes and oligodendrocytes
(250) have demonstrated to recapitulate pathological hallmarks
upon appropriate conditions (e.g., LRRK2 mutations), such
as neurotoxic damage, endosomal phosphorylated aSyn, and
increased mitophagy (27). Future advances regarding midbrain
organoids may be the inclusion of other cell types, such as
microglia, which enables to study the relevance of innate
immunity in PD. Therefore, two strategies have been proposed:
on one hand, the development of brain organoids including
microglia (251); and on the other hand, exogenously add
iPSC-derived microglia to brain organoids (252). Moreover,
in order to model the BBB and the potential immune cell
trafficking, neurovascular communication has been developed
and implemented via organ-on-chip technology (endothelial-like
cells, astrocytes, and neurons) (253).

The relevance of the gut-brain axis in PD opens the
path for exploiting intestinal organoids as in vitro models of
PD. Described in 2009, intestinal organoids or enteroids are
3D structures developed from intestinal stem cells cultures
allowing the intricate differentiation of IECs, and mimicking
the complex architecture of the intestinal epithelium (254).
Although extremely useful in the context of of epithelial-intrinsic
phenomenon, two aspects of intestinal organoids limit their use
in studies dealing with microbial-epithelial communication. On
one hand, the apical side of the polarized epithelium is projected
toward the inside of the organoid (lumen) and makes microbial
stimulation highly challenging; and on the other hand, culture
conditions with high oxygen concentrations are not optimal for
the growth of a vast majority of anaerobic intestinal microbiota.
Moreover, some limitations also accounted in the case of co-
culture settings with immune cells, for instance, the lack of
nutrient support and mechanical constrains to immune cells
mediated by blood flow and circulation. Thus, organ on a chip

cultures mimicking the inter-organ communication and allowing
the interaction with the microbiota as well, appear as suitable
alternative. Highly challenging tissue engineering approaches
combined with transplantation intomice have tried to implement
in vitro systems including the ENS to co-cultures of intestinal
organoids and smooth muscle cells; however, these strategies
have not been successful until now, based on the lack of maturity
of neuronal cells (255). More advances have been achieved
in the context of immune-epithelial and microbiota-epithelial
communication in organoid cultures. Addition of macrophages
affected epithelial barrier function and maturity (256); while
neutrophils in combination with pathological bacteria cause loss
of epithelial integrity (257) and epithelial development and/or
maturation is promoted by TNF-producing CD4+ T cells (258).

A step further in the field of PD research will be the
combination of gut and brain organoids. Recent advances
have focused on “patient-on-chip” models, such as the
combination of separately developed multiorgan organoids
(259); or the use of gut organ-chip models fluidically coupled to
vascular endothelium lined channels (260), such as MINERVA
(MIcroboita-Gut-BraiN EngineeRed platform to eVAluate
intestinal microflora impact on brain functionality) (261).
Experimental setups based on intestinal organoids and
multiorgan organoids might provide important knowledge
of the communication between the gut and the brain.

Enteroendocrine Cells (EECs)
Considered sensory cells within the secretory lineage of IECs,
EECs represent the largest source of hormones in the body and
play vital roles in many physiological processes like appetite
control, sensing of gut microbiota, GI immunity, motility, barrier
function, insulin and growth hormone secretion (262). Upon
sensing of nutrients, EECs produce neuropeptides and hormones
to the basal space. In the gut epithelium, enterochromaffin cells
(ECs)—a subtype of EECs, react to mechanical forces during
gut peristalsis by secreting 5-HT, accounting for 95% of body
5-HT (263). For decades, 5-HT is known as an important
neurotransmitter signaling molecule, holding a key role in gut
motility, secretion and pain sensation. Many studies indeed
showed the link between abnormal regulation of 5-HT and GI
disorders, such as IBD and irritable bowel syndrome (IBS) as well
as in many CNS disorders (264, 265), suggesting a significant
role of 5-HT in gut-brain-gut communication. Recently, EECs
have been proposed as an alternative source for Notch ligands,
supporting the stem cell population in Paneth-deficient mice
(266). Therefore, it is predictable that many gut dysfunction
diseases, including IBD, are associated with EECs alterations.

EECs possess a tightly organized apical brush border, and basal
membrane projections (neuropods) allowing the intercellular
communication with nerves and neurons (267). Interestingly,
EECs show a certain overlapping expression profile with
neuronal cells, such as neurotrophin receptors, pre- and post-
synaptic proteins including aSyn, neurofilaments mimicking
axons and their functions (neuropods), and dopamine synthesis
machinery (268). Indeed, EECs not only synapse with enteric
nerves (29) but also establish a direct contact with enteric
glia (269). Thus, EECs can serve as a connection between the
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intestinal lumen and the ENS, and represents a key population
in the context of gut-brain axis in neurodegenerative diseases
(267). Besides direct cellular contact, EECs communicate with
the ENS via the release of NT and hormones; or even act as the
entry pathway for pathogens, which can then act on neurons in
the gut. Most importantly, based on their neuron-like features,
they can serve as niche for proteinopathy upon luminal signals,
which is further supported by the expression of aSyn from these
cells (30). Hence, the question arises, whether EECs may be the
starting point or declutching event for aSyn pathology in the gut,
which is then further transmitted to the CNS.

The fact that EECs express aSyn opens the path for the study
of proteinopathy specifically in these cells. An important aspect
in this context is the exposure of EECs to the lumen, which make
them accessible via endoscopy, as a future early diagnostic tool
of premotor PD (270). Interestingly, different TLRs (TLR1, 2,
and 4) are expressed in EEC cell lines (271); while TLR4, -5, and
-9 ligands induced secretion of EECs hormones in mice (272).
On the other hand, Bacteroides thetaiotaomicron contributes
to neurogenic colon activity via a TLR2- and EEC-dependent
mechanism (273). Interestingly, TLR overstimulation has also
been suggested in PD pathology (274). Another mechanism
by which EECs contribute to the barrier function might be
mediated by the expression of SCFA receptors, such as FFAR2
and FFAR3 (275–277).

Interestingly, qualitative and quantitative alterations of EECs
have been associated with GI dysfunctions also observed in PD,
such as constipation or alterations of transit times. Rotavirus
infection courses with EEC-mediated 5-HT secretion, which
activates the ENS and the extrinsic vagal afferent to the brain
causing nausea, vomiting, and diarrhea (278). In contrast,
increased 5-HT secretion protects intestinal barrier function due
to the production of neutropic factors (279). Similar EECs-5-
HT-dependent mechanisms operate also in diarrhea upon viral
infections, such as Adenovirus infection (280) and even COVID-
19 patients (281).

Mechanosensations in the Gut
Mechanosensation is vital for proper function of electrically
excitable organs, those constantly exposed to and/or generating
mechanical forces (heart, bladder, and GI). Physiologically, all
cells in the gut epithelial layer are mechanosensitive, they need
to sense the static forces (e.g., stretching, crowding) to adjust
cell numbers and maintain epithelial integrity. Among them, so-
called mechanosensitive cells, develop specific ion channels to
sense acute mechanical forces (e.g., pressure from luminal food
content); these cells are important to maintain gut functions
like food digestion and peristalsis. Beyond peristalsis, mechanical
issues are also crucial for maintenance of epithelial architecture.
It is well-known that stem cell proliferation is important to
maintain tissue homeostasis and avoid pathological conditions.
Interestingly, in Drosophila, the strict regulation of stem cells
is indeed associated with food digestion via gut epithelial
stretching. Changes in mechanical properties upon ingestion
(gut distension), lead to the decrease of misshapen (a Hippo
pathway regulator) membrane association and phosphorylation,
which then stimulates stem cell activity and contributes to control

intestine adaptive growth (282). During epithelial turnover,
aged or damaged cells are shed into the lumen in order to
leave space for newly generated cells. This process must be
tightly governed to maintain epithelial integrity, and therefore
requires intercellular sensing communication between shedding
and neighboring cells to finally extrude the dying cell. In general,
little is known about biochemical pathways governing sensing
and responses to mechanical forces.

Although several membrane ion channels have been
revealed as important players in this context, the recently
identified Piezo channels show their notable roles in many
cellular mechanosensitive processes, from light-touch sensing,
controlling red blood cell volume to muscular shear stress
(283). In Drosophila midgut, the unique Piezo isoform is
expressed in low division precursor cells differentiating into
EECs. Adult Piezo mutant fly showed decreased number of
EECs compared to WT fly. Moreover, Piezo overexpression or
increasing Ca2+ level in fly intestinal stem cells induced both
cell proliferation and EEC differentiation (284). In zebrafish,
Piezo1 ion channel is reported to participate in live cell extrusion
(285) and cell division (286), in response to crowding and
stretching, respectively. Disturbing cell extrusion via Piezo1
channel lead to formation of cell masses, which hypothetically
can lead to tumorigenesis. Gudipaty et al. have proposed a model
on how Piezo1 acts as a regulator of epithelial cell number by
shifting its localization between nuclear envelope and cytoplasm/
plasma membrane in order to control cell division and extrusion
(286). Altogether, these studies suggested that investigating
Piezo-mediated mechanosensations will give us insights into
intracellular pathways regulating cell numbers and epithelial
integrity, and therefore, be relevant in the context of intestinal
inflammation and tumorigenesis.

Peristalsis
Peristalsis, or the impulsion of food based on muscle contraction
and relaxation, is regulated by sensation of mechanical forces,
but the molecular mechanism behind remains elusive. Generally,
peristaltic waves in small intestine consist of weak and infrequent
contractions around the bolus, while they continuous and
gradually increased toward the anus in the colon. Under specific
circumstances, for example diarrhea, an intense and powerful
peristaltic wave is triggered in the whole small intestine, which
quickly relieves mucosa irritation or unusual gut distension. In
the small intestine, peristalsis helps driving food against intestinal
wall for nutrient absorption and persistently push it toward the
large intestine. In the large intestine, peristalsis is important for
feces elimination and mechanical removal of gas and bacteria.
At a cellular level, when food particles are formed, EECs are
stimulated to secrete 5-HT, while mechanosensory neurons in
circular and longitudinal muscles are activated to declutch gut
motility (287).

The muscle contraction depends on signals received from
ENS or CNS, such as substance P, neuropeptide Y or inhibitory
neurotransmitters including nitric oxide (NO) and vasoactive
intestinal polypeptide (VIP) (288). How the excitatory and
inhibitory motor neurons are activated is still a controversy,
however, a population of sensory neurons in the distal colon of
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guinea-pig are believed to be stretch-sensitive rather than muscle
tone or contraction sensitive (289).

In order to respond to mechanical stimulations, the intestinal
tract contains various mechanosensitive cell types carrying
membrane mechanically gated ion channels such as ECs within
the epithelial layer, smooth muscles, interstitial cells of Cajal or
different types of sensory neurons in the lamina propria. They
sense and respond to mechanical changes in different ways; for
instance, by 5-HT secretion in the case of ECs. Even though
the molecular mechanism behind mechanically induced 5-HT-
release in ECs is unknown, recent evidence revealed that Piezo2
ion channel is specifically expressed in human and mouse 5-
HT positive ECs, and Piezo2 activation by mechanical forces is
necessary for 5-HT release and mucosal secretion (290). Another
study suggests that Piezo2 is selectively expressed in a large
number of NeuroD1+ cells—a subset of EC cell, and mechanical
stimulation of NeuroD1+ cells leads to Piezo2-dependent, but
not Piezo1-dependent Ca2+ increase inducing 5-HT production
(291). Paradoxically, a newly published study showed that 5-HT
release is crucially regulated upon detection of bacterial derived
single-stranded RNA by Piezo1 channel in the gut epithelium,
indicative of a new potential pathway for gut and bone disorder
therapies. Even though the function of the Piezo family in EECs is
not clear, Piezo1 was found to regulate gut peristalsis positively in
vivo and the lack of Piezo1 in epithelial caused whole gut transit
time delay (292). Considering mentioned evidences, Piezo1 and
Piezo2 channels in gut epithelium could be possible key elements
to uncover the mechanism behind EECs-related mechanisms
operating behind constipation and altering transit time in PD
(Figure 2). This knowledge might even elucidate the phenomena
explaining misfolded aSyn-EECs and reveal the initiation of
PD origin.

Constipation and PD
The abnormal defecation and reduced peristalsis can lead
to constipation. Physically, constipation occurs when there is
a decrease of bowel movement frequency, due to primary
(idiopathic or functional) or secondary reasons (diet or
medication). Approximately 52.48% PD patients experience
constipation (293), making it the most common and distressing
PD gastrointestinal symptoms (Figure 1). Indeed, a study with
551.324 volunteers in Taiwan showed that participants with mild
to severe constipation symptoms tended to develop PD within
5.5 years and the constipation severity correlated with the risk of
having PD (294).

Targeting the Gut for PD Treatment
Current pharmacological treatment for PD patients is based
on the principle of escalating DA brain concentration, by (1)
increasing/replacing DA levels; or (2) impairing its degradation.
Since DA does not cross the BBB, the most commonly
used drug is based on the action of Carbidopa/levodopa,
a precursor of DA, which crosses the BBB and is believed
to convert to DA in the brain. Other available medicines
include DA agonists, monoamine oxidase type B (MAO B)
inhibitors, catechol-O-methyltransferase (COMT) inhibitors,
anticholinergics, Amantadine or Creatine (295). Pharmacological

treatment can be also combined with surgery (deep brain
stimulation) (296), gene therapy (297), immunotherapy (e.g.,
antibodies against aSyn) (298), or cell transplantation (299).
However, none of the available therapeutic options is actually
curative, nor able to stop disease progression (300, 301).
Together, the need of alternative therapy strategies in PD
is patent, which opens avenues for the identification of
innovative strategies.

Considering gut-brain axis in the context of PD, nowadays
it is suggested that PD can be, not only diagnosed based
on GI manifestations, but even treated “from the gut.” This
principle has been also exploited in the context of innovative
strategies for levopoda therapy (302). For instance, currently
used duopa therapy is based on the application of gels enabling
the release of carbidopa/levodopa directly in the gut, allowing
slow absorption and, therefore, impairing motion fluctuations
and movement disorders. Tightly linked to intestinal function
and microbiota, increasing attention has been paid to PD clinical
management based on the diet, especially dietary fat. However,
conflicting results do not permit drawing conclusive remarks in
this context (303, 304); except for the fact that polyunsaturated
fatty acid consumption has been associated with lower risk
of PD (305). In accordance with the role of the microbiota
in the pathogenesis of PD, several strategies modulating the
microbiota demonstrated the potential in the context of PD.
Antibiotics treatment ameliorate signs of PD, such as IL-1β
and, TNF-α at the CNS and dopamine neuron loss (306, 307).
Both pre- and pro-biotics have an effect on aSyn proteinopathy.
Thus, butyrate activates aSyn autophagy and promotes barrier
function of the intestinal epithelium (308). On the other hand,
Bifidobacterium and Lactobacillus are able to reverse PD and
PD-related constipation (309); while Lactobacillus promotes
production of L-DOPA from L-tyrosine (310). The use of
probiotics has been found to be beneficial in PD patients (311,
312) and experimental PD models (313, 314). Regarding fecal
transplantation, there are controversial results; it is suggested
that FMT not only improves GI symptoms (constipation) but
also neuroinflammation in PD patients (315, 316); however,
safety and efficacy are not clear. Experimentally, FMT lead to
further decreased of Lachnospiraceae and Ruminococcaceae, and
worsening of dyskinesia (191); while FMT from PD patients lead
to worsening on motor symptoms in a PD model (192), but
motor impairment was also observed in normal mice. FMT can
impair TLR4 activation, improve gut dysbiosis, reduce activation
of microglia, change NT secretion and the destruction of the
substantia nigra (315). FMT can also ameliorate comorbidity
in PD patients related to the GI tract, including ulcerative
colitis (317).

ANIMAL MODELS OF PD AND GI
SYMPTOMS

As mentioned above, the interplay between neurological and
GI symptoms in PD is also nicely demonstrated in animal
models. Thus, here we provide a summary of currently used
experimental in vivomodels of Parkinsonism, and the occurrence
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of GI pathological features, as well as aSyn propagation
mechanisms supported by experimental observations using
corresponding models.

Classical PD models are based on toxin-induced motor
manifestations. Intragastric injection of rotenone causes
Parkinsonism in mice, without increased systemic rotenone
levels (133). The presence of aSyn in the GI tract or ENS
depends on factors such as the administration route, dose
or length of exposure. Thus, chronic exposure of rotenone
involves non-motor GI symptoms (318), however, did not
delay gastric emptying (319). Interestingly, rotenone toxicity is
associated with changes in the microbiota composition, such
as decreased Bifidobacterium and increased Rikenellaceae or
Allobaculum (320); while severity of the symptoms is associated
with decreased Lactobacillus and increased reactivity to LPS
(245). In addition, cell toxicity is induced by the prodrug
MPTP and the neurotoxin MPP+, causing dopaminergic
neurons/tyrosine hydroxylase + (TH) neuron destruction
in the brain and in the colonic ENS (321, 322). However,
controversial data exists about the outcome of this GI affectation,
and it is not clear if this is associated with increased intestinal
motility (323) or constipation (322, 324). Strikingly, recent
publications support a MPTP-mediated intestinal immune
response, which might be provoked by activation of monocytes
(325). Furthermore, direct brain injection of 6-OHDA induces
PD-like constipation, delayed gastric emptying, and enteric
inflammation (326, 327). Last but not least, paraquat injection
into rats also demonstrated the relevance of the gut-brain axis,
since it evokes reduced gastric motility tone and increased aSyn
immunoreactivity in the DMV, which is blocked upon vagotomy
(328, 329).

Most experimental genetic models are based on the induced
expression of aSyn or mutations on the gene encoding for
aSyn. These models recapitulate aSyn aggregation, similar to
PD patients, however, require more time for pathological
manifestations. In accordance with the gut-brain axis hypothesis,
these models confirm that GI dysfunction and non-motor
symptoms might represent early pathological features. The
most commonly used model is the Thy1-aSyn overexpression
model, which presents GI manifestations, delayed colon transit
time and defecation accompanied by aSyn accumulation
in colonic myenteric plexus (330, 331). CNS pathology in
Thy1-aSyn mice is reduced upon microbial depletion, while
FMT from PD causes worsening of the phenotype (192).
However, a recent study claims that levels of LPS rather
than microbiota alterations in Thy1-aSyn mice are responsible
for colon intestinal permeability dysfunction and early motor
manifestations (244). Other genetic models taking advantage
of mutations on the aSyn gene, show aSyn accumulation
in the olfactory bulb, myenteric plexus and adrenal neurons
(aSyn-A53T) or accumulation of phospho-aSyn, slower transit
time, abnormal stool and neuroinflammation at the ENS
(PrP-A53T-aSyn) (332, 333). Even unique GI affectations,
without motor dysfunction can be observed (BAC-A53T-
aSyn) (334).

Mutations in PINK1 and PARK2 are associated with
PD and activation of immune responses via modulation of

mitophagy/autophagy (335). Interestingly, immune response
in the context of PINK1 knockout mice is regulated by the
microbiota, since colonization with bacteria leads to T cell
mediated destruction of dopaminergic neurons in the periphery
and the brain (336). On the other hand, the MitoPark model
represents a noticeable example of experimental recapitulation
of GI dysfunction and dysbiosis in PD Non-motor symptoms in
this model include decreased motility and gradual progression of
colon transit times, reduced fecal water content and activation
of glial cells in the myenteric plexus. Disease progression in this
model goes along with loss of TH+ neurons, reduction of central
and intestinal DA levels, as well as changes in the microbiota
composition (337).

As mentioned above, another important aspect within the
gut-brain axis concept is the propagation route for aSyn. Thus,
researchers in the field have concentrated on the development
of experimental models based on the injection of aSyn.
Therefore, pathological aSyn can be isolated from post-mortem
human tissue; or recombinant aSyn preformed fibrils (PFF)
are experimentally prepared. It has been demonstrated that
the injection of patient-derived pathological aSyn directly into
the gut leads to deposition of aSyn in myenteric neurons
and intestinal inflammation in A53T transgenic mice (338).
Intragastric aSyn can be transmitted to the brain in rats (142).
Moreover, the injection of recombinant PFF in the olfactory
bulb in WT mice caused the spread of aSyn to distant areas
of the brain (339). While spreading of aSyn occurred only
in aSyn transgenic mice upon injection into gastric wall and
not in WT mice (340). Inoculation of PFFs in the duodenum
of mice led to GI deficits and physiological changes of the
ENS in addition to changes of aSyn histopathology in the
midbrain and subsequent motor defects in elder, but not in young
mice (28).

CONCLUSION

As outlined in our review, the disease mechanisms of PD
are complex and exhibit a variety of pathological facets.
GI manifestations are the most significant symptoms in
the prodromal phase of PD (115), suggesting the direct
communication of gut and brain. Recent studies have shown
that pathogenic aSyn found within the GI system are able to
spread and reach the CNS (28, 142, 339). In addition, the
role of constipation in PD seems to support the hypothesis
that the pathological pathway of PD spreads from the intestine
to the brain. Besides, EECs were found to express aSyn and
link directly to aSyn-containing nerves, creating neural circuit
between the gut and nervous system. This raised an interesting
hypothesis that the root of PD might start from misfolded
aSyn in EECs, which is transmitted to the nervous system
(30). Moreover, constipation is the most troublesome PD-
gastrointestinal symptom and likely regulated by abnormal gut
peristalsis (293). Accordingly, investigating the roles of EEC-
mechanosensitive ion channels, which indeed was proven to be
associated to peristalsis, could explain the reasonwhy aSyn in ECs
is misfolded, and reveal the mechanism behind PD origin.
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Correspondingly, gut inflammation is a main pathological
feature occurring in PD and IBD. Inflammatory processes and
aSyn pathology appear to be extraordinarily linked to each other.
In connection with inflammation, aSyn and its aggregated forms
seem to mediate inflammatory responses by TLR activation (108,
109). This indicates the possibility of TLR-mediated release of
proinflammatory cytokines in the gut by specific stimulation of
IEC. Furthermore, IECs appear as key factor in inflammatory
response, as they create a protective barrier against luminal
antigens and microbes, helping to preserve gut homeostasis.
IEC alterations, for example cytoskeletal rearrangement (12) or
cell-to-cell adherens junction reorganization (341) could disturb
the epithelial integrity and lead to intestinal permeability as
seen in CD patients (342). In addition, PD pathogenesis is
also associated with an increased intestinal permeability (243)
along with impaired BBB function (97), promoting bidirectional
inflammation cascades between the gut and the brain.

Many different routes for transmission between neuronal
networks and intestinal cells are described to propagate aSyn
pathology. Of interest, extracellular exosomes found in blood
and CSF of PD patients have been described to spread pathology
(151). Moreover, the vagus nerve is considered to be the most
important bidirectional connection between these two organs

(141). However, within this context, clinical studies investigating
the origin of PD progression are still elusive.

Lastly, it is interesting that dysbiosis is a common feature
in PD and IBD (168, 169). In order to affect ENS-specific
pathways and spreading to the CNS, a connection between
the GI lumen and the neurons/enteroglia is necessary. The
intestinal epithelium is in direct contact with luminal content
and therefore, acts as a physical and immunological barrier in
the gut. Hence, a disturbance of the intestinal sealing allows
direct contact of pathological factors and cells of the ENS.
Interestingly, IBD (221) as well as PD (243) patients can suffer
from intestinal inflammation concomitantly exhibiting a leaky
gut. The disturbance of intestinal barrier function has been

suggested to promote aSyn aggregation in the ENS, which is
further able to spread to the CNS (30, 304), along the so-called
gut-brain axis.

In recent years, numerous studies have been addressing
the role of the gut-brain axis in neurodegenerative disorders,
like PD. However, there are still open questions regarding
the understanding about its impact in disease progression
and regulation. Further studies and comparisons of disease
mechanisms of PD and IBD, as presented in this review, might
help to connect missing dots and shed light into the role of aSyn
aggregation within the intestine as well as intestinal inflammation
in PD. A detailed comprehension of the mechanisms and
regulation of the gut-brain axis is essential to establish novel
disease biomarkers, clinical read-outs and identify novel targets
for (early) treatment strategies.
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GLOSSARY

6-OHDA, 6-Hydroxydopamine; AIEC, Adherent invasive
Escherichia coli; AMPs, Antimicrobial peptides; aSyn, alpha-
Synuclein; BBB, Blood-brain barrier; BDNF, Brain-derived
neurotrophic factor; CD, Crohn’s disease; cGAS, cyclic GMP-
AMP synthase; CLR, C-type lectin receptor; CNS, Central
nervous system; COMT, Catechol-O-methyltransferase; CSF,
Cerebrospinal fluid; CXCL, Chemokine C-X-X- motif ligand;
DA, Dopamine; DAMP, Damage-associated molecular pattern;
DLB, Dementia with Lewy Bodies; DMV, Dorsal motor
nucleus of the vagus nerve; DSS, Dextran sodium sulfate; EC,
Enterochromaffin cells; EEC, Enteroendocrine cells; EGC,
Enteroglial cells; EGF, Epidermal growth factor; ENS, Enteric
nervous system; FFAR, Free fatty acid receptor; FMT, Fecal
Microbiota Transplantation; GABA, γ-Amicobutyric acid;
GDNF, Glial cell-line derived neurotrophic factor; GFAP,
Glial fibrillary acidic protein; GI, gastrointestinal; GMP-
AMP, Guanosin monophosphate-adenosine monophosphate;
GPCRS, G-Protein coupled receptors; GWAS, Genome-Wide-
Association studies; HSV1, Herpes simplex virus type 1; IBD,
Inflammatory bowel disease; IEC, Intestinal epithelial cells; IF,
Interferon; IL, Interleukin; iPSC, Induced pluripotent stem cells;
LB, Lewy Bodies; L-DOPA, L-3,4-dihydroxy-L-phenylalanine;
LN, Lewy neuritis; LRRK2, Leucin-rich repeat kinase 2; LP,
Lamina propria; LPS, Lipopolysaccharide; MAO-B, Monoamine
oxidase type B; MINERVA, MIcroboita-gut-braiN EngineeRed
platform to eVAluate intestinal microflora impact on brain
functionality; MPP, 1-Methyl-4-phenylpyridinium; MPTP,
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridin; MSA, Multiple
system atrophy; MWAS, Metagenome-wide association studies;
NAC, Non-amyloid-β component; NF-kB, Nuclear factor
“kappa-light-chain-enhancer” of activated B-cells; NLR, NOD-
like receptor; NO, Nitric oxide; NOD, Nucleotide-binding
oligomerization domain; NT, Neurotransmitter; PAMPs,
Pathogen-associated molecular patterns; PD, Parkinson’s disease;
PFF, Preformed fibrils; PNS, Peripheral nervous system; PRRs,
Pattern-recognition receptors; PSD-95, postsynaptic density
protein 95; RLR, Retinoic acid-inducible gene-like receptor;
SCFA, Short-chain fatty acids; SNpc, Substantia nigra pars
compacta; TGFα, Transforming growth factor α; TH, Tyrosine
hydroxylase; Th, T helper cells; TLR, Toll-like receptor; TNBS,
Trinitrobenzene sulfate; TNF, Tumor necrosis factor; UC,
Ulcerative colitis; VIP, Vasoactive intestinal polypeptide; ZO,
Zonula occludens.
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