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Mesenchymal stem cell (MSC) transplantation is a novel treatment for liver diseases

due to the roles of MSCs in regeneration, fibrosis inhibition and immune regulation.

However, the mechanisms are still not completely understood. Despite the significant

efficacy of MSC therapy in animal models and preliminary clinical trials, issues remain.

The efficacy and safety of MSC-based therapy in the treatment of liver diseases remains

a challenging issue that requires more investigation. This article reviews recent studies on

the mechanisms of MSCs in liver diseases and the associated challenges and suggests

potential future applications.
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INTRODUCTION

After Friedenstein et al. (1) first isolated and identified stromal cells from bone marrow in 1966,
mesenchymal stem cells (MSCs) were isolated from various tissues, such as the umbilical cord (2, 3),
placenta (4), adipose tissue (5, 6), amniotic fluid (7, 8), menstrual blood (9, 10), and dental pulp (11).
The immunomodulatory properties, limited self-renewal capacity, and multi-lineage development
of MSCs make these cells ideal candidates for clinical applications in different diseases (12). The
low inherent immunogenicity of MSCs guarantees transplant safety (13). Even HLA-mismatched
MSCs could be used for many clinical applications, especially for stem cell-based therapies (14).
Moreover, the ability of these cells to home to specific organs and lesions is the key to the curative
effect ofMSC transplantation (13). MSC surface chemokine receptors, such as CCR1, CCR4, CCR7,
CXCR5, and CCR10, are involved in the migration of MSCs into injured tissues along chemokine
gradients (15). MSCs are administered to patients by various routes, such as intravascular injection
and local transplantation, to alleviate diseases (16–18).

Liver diseases are a global health issue that cause a large number of deaths every year (19, 20).
Liver transplantation, which is recommended as the only effective treatment method available
for advanced liver diseases, is limited by high costs and a shortage of donor livers (21). MSC
transplantation brings new hope to the treatment of liver diseases. Despite their different etiologies,
symptoms and physiological processes, multiple kinds of life-threating liver diseases can be
effectively treated by cell-based therapy, as three decades of clinical and preclinical studies proved.
Among the most used source of cells for allogenic/autologous transplantation, the two most
largely clinically infused cells are undoubtedly primary hepatocyte and MSCs. MSCs have been
administered in hundreds of clinical trials during the past decades, and for a plethora of indications
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(Table 1). Although many laboratory and clinical trials have
confirmed the efficacy of MSCs in a variety of diseases, there are
still no guidelines to regulate MSC clinical applications (29–31).

The purpose of this review is to summarize and critically
discuss the therapeutic effects and related mechanisms of MSCs
derived from different sources in the treatment of liver diseases,
as well as indicate present issues including efficacy, safety and
available routes of administration in clinical MSC therapy trials.
We hope this review will provide a reference for future clinical
trials and applications.

ROLE OF MSC IN TISSUE REPAIR AND
REGENERATION

MSCs can be induced to differentiate into a variety of cell
lineages, including adipocytes, osteoblasts, chondroblasts, and
hepatocyte-like cells (HLCs), in vitro (32). This characteristic
initially gave hope to regenerative medicine. Previous studies
have shown that MSCs derived from different tissues, such as
bone marrow (BM-MSCs) (33), adipose tissue (AT-MSCs) (34),
menstrual blood (MenSCs) (35), and amniotic fluid (AF-MSCs)
(34), can differentiate into HLCs in vitro. Clinical and laboratory
trials suggested that MSCs could significantly improve liver cell
regeneration in different kinds of liver diseases. Despeyroux et al.
(36) showed that AF-MSCs improved liver regeneration and
survival after 80% hepatectomy in mice. However, by tracking
green fluorescent protein-expressing MenSCs, Chen et al. (37)
showed that transplanted cells were recruited to injured liver
sites in carbon tetrachloride (CCl4)-induced liver fibrosis mouse
models, but few cells differentiated into HLCs. According to Shi
et al. (38) human-derived hepatocytes constituted only 4.5% of
total pig hepatocytes after intraportal vein infusion of BM-MSCs
(3 × 106 cells/kg) in D-galactosamine (D-gal)-induced model
pigs. von Bahr et al. (39) demonstrated that even minimally
expanded BM-MSCs showed limited long-term engraftment
and no ectopic tissue formation upon intravascular infusion.
This means that MSCs may mainly promote liver regeneration
through mechanisms other than differentiation into HLCs.

Several groups have showed that bone marrow transplants
in mice led to the generation of liver cells bearing the donor
marker, and demonstrated that this event might not due to
transdifferentiation of MSCs into hepatic lineage cells. Moreover,
this suggest is challenged by the scientists who were unable to
reproduce the transdifferentiation of not only MSCs, but also
hematological cells into non-hematological ones. Willenbring
et al. (40) found that the transplantation into Fah(–/–) mice of
lineage-committed granulocyte-macrophage progenitors or bone
marrow-derived macrophages resulted in the robust production
of bone marrow-derived hepatocytes by cell fusion, which
provides potential for organ regeneration. Wang et al. (41)
concluded that bone marrow-derived hepatocytes arised from
cell fusion and rather than differentiation of hematopoietic
stem cells. According to Camargo et al. (42), hematopoietic
myelomonocytic cells are the major source of hepatocyte fusion
partners. Such melting event is not occurring only to bone
marrow derived cells. Other types of cells, such as perinatal

MSCs, have also been reported to fuse with hepatocytes (43).
Okamura et al. (44) found that developing monkey embryonic
stem cells could repopulate injured mouse liver by fusing with
recipient mouse hepatocytes.

Studies have demonstrated that MSCs can stimulate liver cell
proliferation and inhibit hepatocyte apoptosis. In a trial that used
D-gal-induced rat models of acute liver injury, MSC therapy
resulted in a 90% reduction in apoptotic hepatocellular death and
a three-fold increase in the number of proliferating hepatocytes
(45). Efimenko et al. (46) showed that MSC-conditioned
medium (MSC-CM) attenuated CCl4-induced early apoptosis
in C57/BL6 mouse hepatocytes through activation of FGL1.
According to Chen et al., MSC-conditioned medium injection
could prevent radiation-induced liver injury by protecting
sinusoidal endothelial cells (47). These results indicated that
MSCs protect liver injury and stimulated hepatocyte proliferation
by paracrine effects.

Different liver diseases display unique pathophysiological
manifestations according to their etiology (48). MSCs may
promote liver regeneration through different mechanisms in
different disease models.

Accumulating evidence supports that MSCs play therapeutic
roles in a paracrine manner, especially through trophic
factors (49–52). Hepatocyte growth factor (HGF) and vascular
endothelial growth factor (VEGF) are the most widely reported
trophic factors secreted by MSCs (46). Antibody array results
showed that MSC-derived exosomes (MSC-EXs) contain
measurable HGF (53). HGF is widely known to be a crucial
factor in the positive regulation of hepatocyte proliferation
(54). VEGF secreted by MSCs contributes to the recovery of
liver damage (55). Recent studies have also demonstrated the
role of miRNAs in MSC-induced liver regeneration. According
to Kim et al. (56), rno-miR-122-5p is closely related to the
therapeutic efficacy of placenta-derived mesenchymal stem cells
(PD-MSCs) in liver tissues. PD-MSCs stimulate hepatocyte
proliferation by activating the interleukin 6 (IL-6) signaling
pathway through the regulation of rno-miR-21-5p. Hyun et al.
(57) showed that microRNA125b-mediated regulation of Hh
signaling contributed to liver regeneration that was promoted by
chorionic plate-derived mesenchymal stem cells (CP-MSCs) in
CCl4-induced rats.

MECHANISM OF THE ANTIFIBROTIC
EFFECT OF MSC

Liver fibrosis is characterized by the deposition of extracellular
matrix (ECM), including collagen I, collagen III and collagen
IV (58). The activation of hepatic stellate cells (HSCs) plays
a crucial role in this process (55). Activated HSCs proliferate
and transform into myofibroblasts (59, 60). Myofibroblasts
synthesize ECM and release large amounts of TIMPs, which can
reduce ECM degradation by inhibiting interstitial collagenase
activity and ultimately induce ECM accumulation (61). Multiple
signaling pathways, such as TGF-β/Smad, Ras/ERK, Notch, and
Wnt/β-catenin, are involved in HSC activation (62–65). Kupffer
cell activation is an important factor that induces HSC activation
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TABLE 1 | Clinical trials of MSCs in liver diseases.

Liver disease MSC source Follow-up Clinical results Possible related mechanisms References

Chronic hepatitis B

cirrhosis

UC-MSC 48 weeks Improve liver function and

reduce ascites

Regulate HSC activation; reduce

resistance to portal flow

(22)

Acute liver allograft

rejection

UC-MSC 12 weeks Decrease ALT levels;

improve allograft histology

Increase Treg/Th17 ratio and

downregulate CD41 T-cell

(23)

Hepatitis B

virus-related

Acute-on-chronic

liver failure

BM-MSC 24 weeks Increases survival rate;

improve liver function;

decrease severe infections

incidence

Immunomodulation and

anti-inflammation effect

(24)

HCV positive

end-stage liver

disease

BM-MSC 6 months Improve liver functions

and ascites; improve

Child-Pugh and

performance score

Downregulate collagen matrix

formation; increase serum

S-albumin level

(25)

Alcoholic cirrhosis BM-MSC 12 months Improved histologic

fibrosis and liver function;

improve ascites and

encephalopathy

Mechanism for fibrosis reduction

is not elucidated

(26)

Decompensated

cirrhosis

BM-MSC 12 months Improvement in MELD

score and liver function;

no obvious effect in

improving histologic

fibrosis

MSCs transplantation is probably

not effective in decompensated

cirrhosis

(27)

Ischemic-type biliary

lesion

UC-MSC 2 years Improve liver

performance; reduce need

for interventional therapies

The related mechanism is not

elucidated

(28)

during chronic liver injury (66). Kupffer cells are resident
macrophages in the liver. Activated Kupffer cells release large
amounts of soluble mediators, such as oxidants, cytokines, and
proteinases, which can affect HSC proliferation, migration, and
differentiation (67).

Epithelial-to-mesenchymal transition (EMT) and
mesenchymal-to-epithelial transition (MET) are important
contributors to liver cirrhosis (68). Epithelial cells in the chronic
injured liver undergo EMT, which makes these cells exhibit
fibroblastic features and move into the hepatic mesenchyme.
Then, these cells undergo MET to differentiate into hepatocytes
or cholangiocytes to repair injured tissue. However, the
microenvironment of the injured liver may upregulate the EMT,
which stimulates fibrogenic repair and causes liver fibrosis (69).

MSCs have significant effects on liver fibrosis. In vitro and
in vivo experiments demonstrated that MSCs mainly exert
antifibrotic effects by paracrine mechanisms (70). Secretomes or
the culture medium of MSCs could also significantly suppress
liver fibrosis (71). MSC transplantation could alleviate liver
fibrosis and reduce the expression of transforming growth
factor-β1 (TGF-β1), Smad2, collagen type I, and α-SMA, and
pathological examination showed reduced liver fibrosis areas
(72). According to Jang et al. (73), BM-MSCs could reduce
hepatic collagen distribution by suppressing the TGF-β/Smad
signaling pathway in TAA-induced cirrhosis rat models. An
et al. (74) found that the secretomes of UC-MSCs contained
high levels of milk fat globule-EGF factor 8 (MFGE8). This
factor could downregulate TGF-β1 receptor levels by binding
to αβ integrin on hepatic stellate cells (HSCs), thereby strongly
inhibiting the activation of primary human HSCs. MSCs can

also exert antifibrotic effects through theWnt/β-catenin pathway.
According to Rong et al., BM-MSC-derived exosomes (BM-
MSCs-Exs) could suppress HSC activation by inhibiting the
expression of Wnt/β-catenin pathway components, including
peroxisome proliferator activated receptor γ (PPARγ), Wnt3a,
Wnt10b, β-catenin, WISP1, and Cyclin D1 (75).

Chai et al. (76) transfused UC-MSCs into
dimethylnitrosamine (DMN)-induced liver fibrosis model
rats and found that UC-MSCs alleviated liver fibrosis by
increasing IL-4 levels and promoting the mobilization of
Kupffer cells. UC-MSC-mediated regulation of Kupffer
cells was demonstrated in an in vitro coculture system.
According to Ohara et al. (77), amnion-derived mesenchymal
stem cell-derived EVs (AMCS-EVs) could significantly
inhibit HSC activation and decrease the number of Kupffer
cells (KCs) in the livers of rats with liver fibrosis induced
by CCl4.

On the other hand, MSCs can regulate the EMT-MET balance
in fibrogenic liver tissue. According to Li et al., UC-MSC-Ex
transplantation reduced the expression levels of collagen types I
and III, TGF-β1 and phosphorylated Smad2 by inhibiting EMT
activation in CCl4-induced liver fibrosis models (78). TGF-β has
been demonstrated to activate fibrogenic EMT through the RAS
andmitogen-activated protein kinase (MAPK) pathways (79, 80).
To date, RAS-responsive element binding protein 1 (RREB1)
has been identified as a key partner of TGF-β-activated SMAD
transcription factors associated with the EMT in liver fibrosis
(75). Considering the inhibitory effects of MSCs on TGF-β,
MSCs may inhibit the EMT by regulating TGF-β activity, which
requires further examination.
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Besides, MSC applications are reported to improve liver
fibrosis related complications, which are the mainly causes
of death in clinic. According to Zhang et al. (22), UC-MSC
transplantation could not only lead to the regression of liver
fibrosis in patients, but also reduce related ascites. A meta-
analysis showed that BM-MSC transplantation could improve
ascites and encephalopathy in patients with chronic liver disease
especially liver fibrosis (22). As to Pietrosi et al. (81), human
amniotic membrane-derived mesenchymal stromal (hAMSCs)
could improve hepatic microvascular dysfunction and portal
hypertension, which are responsible for the complications
defining clinical decompensation. Vitro experiment revealed
that sinusoidal cell phenotype ameliorated when co-cultured
with hAMSCs. However, the related mechanisms still need
further explorations.

MECHANISM OF THE
IMMUNOMODULATORY EFFECTS OF MSC

Inflammatory reactions are widely detected in injured liver
tissues and are considered the primary causes of fibrosis and
hepatic function failure (82–84). Recent studies have shown that
MSC therapy can reduce inflammation in liver diseases through
different mechanisms. Some published studies have indicated
that the effects of MSC treatment on various acute and chronic
liver diseases are mainly mediated by their immunomodulatory
properties (Figure 1) (15).

MSCs exhibit immunomodulatory functions through
paracrine mechanisms (85). MSCs can release multiple
immunosuppressive factors, such as IL-10, VEGF, and TGF-β
(86–88). Winkler et al. identified the factors secreted by BM-
MSCs and AT-MSCs through protein arrays and identified
related pathways through biomathematical analyses. The results
showed that many cytokines are involved in innate immunity
and inflammatory pathways, including the JAK-STAT signaling
pathway and Toll-like receptor pathway (89). On the other
hand, MSCs can modulate the inflammatory microenvironment
by suppressing the expression of inflammatory factors such
as IFN, IL-1 and TNF-α (90). Furthermore, MSCs exhibit
immunoregulatory activities by balancing the functions of
different innate and adaptive immune cells, including natural
killer cells (NK cells), T regulatory cells (Tregs), T lymphocytes,
B lymphocytes, macrophages and dendritic cells (DCs).

According to DelaRosa et al., AT-MSCs and BM-MSCs inhibit
IL-2- and IL-15-induced NK cell proliferation, as well as PGE-
2- and IDO-induced NK cell activation. In vitro experiments
showed that MSCs could modulate the secretion of IFN-γ by NK
cells through the action of soluble factors such as indoleamine
2,3-dioxygenase (91).

Tregs play an important role in fulminant hepatitis. Tregs
are necessary for the suppression of immune cell-mediated
hepatocyte damage during fulminant hepatitis (92). MSCs
significantly promote the regeneration of Tregs both in vivo
and in vitro, thereby inhibiting immune cell activation (93).
According to Qu et al., BM-MSC transplantation significantly
attenuated immune-mediated liver injury and controlled virus

levels in hepatitis B virus (HBV)-infected mice. Their study
showed that BM-MSC-derived TGF-β suppressed the expression
of natural killer group 2 member D (NKG2D), an important
receptor required for NK cell activation in the liver in HBV-
infected mice, thereby influencing innate immunity and limiting
immune-mediated liver injury (94).

MSCs suppress T lymphocyte proliferation induced by
mitogens, and CD3 and CD28 antibodies, as well as allogeneic
antigens, both in vitro and in vivo. T lymphocytes can be arrested
in the G0/G1 phase of the cell cycle by MSCs through the
downregulation of cyclin D2 (95). Wang et al. (96) demonstrated
that MSC treatment could reverse nonalcoholic fatty liver
disease (NAFLD) by suppressing the activation of cluster of
differentiation (CD) 4+ T lymphocytes in mouse spleens. MSCs
have been shown to suppress B lymphocyte proliferation and
terminal differentiation. According to Yi and Song MSCs inhibit
B lymphocytes by arresting these cells in the G0/G1 phase of the
cell cycle (92).

DCs play an important role in the initiation, maintenance and
regulation of immune reactions by stimulating antigen-specific T
cell activation (14). According to Ramasamy et al. (97), human
BM-MSCs inhibit the differentiation of DCs by blocking the
synthesis of cyclin D2 in monocytes, thereby arresting DCs in
the G0/G1 phase of the cell cycle. Zhang et al. showed that
MSCs effectively attenuated Propionibacterium acnes (P. acnes)-
primed and lipopolysaccharide (LPS)-induced liver injury in
mice and increased the survival rates of the animals by regulating
DC differentiation. MSCs induced the differentiation of a
distinct, functional CD11c1MHCIIhi CD80loCD86lo regulatory
DC population from CD11c1B2202 DC precursors by secreting
PGE2 through a PI3K-dependent pathway. This group of DCs
suppressed Th1 cells while inducing Treg proliferation (98).

Two kinds of macrophages participate in the immune
response during liver injury, local macrophages (Kupffer
cells) and circulating macrophages. As a response to various
inflammatory signals during the progression of liver injury,
macrophages undergo classic activation (proinflammatory M1)
and alternative activation (anti-inflammatory M2) (99). MSCs
can regulate M1/M2 balance in macrophages. According to
Cho et al., in bone marrow-derived macrophages co-cultured
with MSCs, the M1 markers significantly reduced while the
M2 markers increased. The result suggested that MSCs could
promote the shift of the macrophage phenotype from M1
to M2 (100). Li et al. (101) suggested that MSCs exhibit
therapeutic effect in liver sterile inflammatory injury by
leading to reprograming macrophage polarization toward anti-
inflammatory M2 phenotype through Hippo pathway. UC-
MSC-Exs were shown to inhibit the expression of NLRP3,
caspase-1, IL-1β, and IL-6 in LPS-stimulated RAW 264.7
macrophages (102).

Liver transplantation is considered the only effective
treatment for end-stage liver diseases; however, subsequent
rejection, especially acute graft-vs.-host disease (aGVHD), is
the leading cause of surgical failure and postoperative death in
patients (103). Various immune cells, including T cells, DCs,
Tregs, and NK cells, mediate the occurrence and development
of rejection (104). Accumulating evidence has demonstrated
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FIGURE 1 | The immunomodulatory properties of MSC and related mechanisms.

that MSC transplantation can significantly attenuate the severity
of aGVHD due to the immunomodulatory effects of MSCs
(104–106). However, the cytological and molecular mechanisms
still require further exploration.

IMPROVED MSC TREATMENT EFFICACY
(FACTORS INFLUENCING THE EFFICACY
OF MSC)

Although MSC treatment has shown significant effects in liver
diseases, researchers are still exploring ways to increase the
efficacy of MSC applications. According to previous studies,
many factors can influence the efficacy of MSCs. Regardless
of expansion protocol, MSCs undergo replicative senescence
in culture, with obvious repercussion on therapeutical effects.
Based on the study of telomere length, Baxter et al. (107) found
that even protocols that involve minimal expansion induce a
rapid aging of MSCs, which may influence MSC phenotype
and paracrine potential. In AD-MSCs, the expression of the
anti-inflammatory cytokine IL-10 showed substantial differences
between P7 and P9, with a consistent decrease in mRNA
expression (77). In BM-MSCs, compared with those of P1,
the expression levels of IL-6 and VEGF were much higher in
P5 (108). According to Choi et al., gradual decreases in IL-
6 and VEGF expression levels during the long-term culture
of MSCs may be related to reductions in the differentiation
potential and proliferation of MSCs. The authors suggested that
MSCs at earlier passages were more suitable for therapy due
to their stability and more potent anti-inflammatory properties
than cells at later passages (109). Another study stated that

age reduced human MSC-mediated T cell suppression (110).
Although the mechanisms of the impact of senescence on the
immunomodulatory activity of MSCs are still not clear, multiple
studies have demonstrated that senescence due to both donor age
or multiple passages impacts the immunomodulatory properties
of MSCs (111, 112). These results indicated that optimizing the
criteria for the selection of MSC donors and low-passage MSCs
could enhance the cell transplantation efficacy.

Pretreatment before application is the most common method
to improve the therapeutic efficacy of MSCs in vitro and in vivo.
Culture conditions significantly influence MSC phenotype. A
hypoxic culture environment can contribute to the maintenance
of MSC proliferation, differentiation and metabolic balance
(113). According to Kojima et al., compared with those cultured
in normal conditions, BM-MSCs cultured under hypoxic
conditions showed greater therapeutic effects in mice with liver
cirrhosis (114). Yu et al. found that hypoxia preconditioning
enhanced the expression of VEGF in BM-MSCs in vitro. These
pretreated MSCs exhibited improved regenerative effects in rat
massive hepatectomy models (115).

Melatonin is an endogenous indoleamine produced and
released into the blood circulation by the pineal gland (116).
In addition to regulating biorhythms, melatonin can also play
an antiaging role due to its antioxidant effects (117). Mohsin
et al. (118) found that pretreating MSCs with injured liver
tissue resulted in high expression of albumin, cytokeratin 8,
18, TAT and HNF1α, thereby improving the antifibrotic effect
of MSCs in CCl4-induced mice. Fang et al. (119) showed
that AD-MSCs pretreated with melatonin showed enhanced
beneficial effects in canine acute liver injury. In vitro experiments
showed that melatonin pretreatment improved the survival of
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AD-MSCs by activating Nrf2 through the MT1/MT2 receptor
pathway, stimulating ERAD, inhibiting NF-κB and ERS, and
alleviating AD-MSC senescence (120). Another study indicated
that melatonin pretreatment enhanced the homing capacity of
BM-MSCs in a rat model of liver fibrosis (121).

Recently, an increasing number of studies have focused on
the role of polymer materials in promoting the efficacy of MSCs
in liver diseases. Salem et al. (122) reported that pretreatment
with growth factors in the presence of nanofibers promoted
the homing, repopulation and hepatic differentiation abilities
of MSCs, thereby increasing the efficacy of MSCs in liver
fibrosis. As the most frequently used polymer combinations for
cell microencapsulation, hybrid poly (ethylene glycol)-alginate
hydrogels have been chosen to pretreat MSCs to protect cells
against larger compounds such as circulating antibodies, as well
as immune and inflammatory cells, without blocking nutrient
and metabolite exchange (123). Studies have shown that hybrid
poly (ethylene glycol)-alginate hydrogel microencapsulation
significantly improved MSC efficacy in ALF and liver fibrosis
(124, 125).

In addition to MSC pretreatment, gene modification is also
widely used to improve the therapeutic effects of MSCs in
liver diseases. Overexpression of c-Met in BM-MSCs could
improve the homing of BM-MSCs to injured liver tissue, thereby
promoting the efficacy of BM-MSC therapy for ALF repair
in rats (126). Various studies have demonstrated that HGF-
overexpressing MSCs present an increased ability to treat liver
injuries by promoting liver regeneration (127–129). On the other
hand, HGF-overexpressing MSCs have longer telomeres, as well
as increased mtDNA replication, which leads to increased ATP
generation (130).

Presently, various routes of MSC transplantation have been
proven to be curative in different liver injuries (Figure 2).
Intravascular infusion is the most popular route for MSC
transplantation in animal models and clinical trials (131).
Intravascular infusion of MSCs typically proceeds via portal
vein injection, hepatic artery injection or peripheral vein
injection (132). In addition, local transplantation methods
such as intraperitoneal injection, intrasplenic injection and
intrahepatic injection are also widely used inMSC efficacy studies
(16, 133–135).

To date, there have been few comparative studies on different
methods of MSC transplantation. Sun et al. (132) assessed the
efficacy of four BM-MSC transplantationmethods (hepatic artery
injection, portal vein injection, vena caudalis injection, and
intraperitoneal injection) in a rat model of D-galactosamine (D-
gal)/lipopolysaccharide (LPS)-induced ALF. The results showed
that intravascular infusion was significantly more effective than
intraperitoneal injection, while the selection of blood vessels
as the implantation pathway did not affect the transplantation
outcomes. Idriss et al. (16) compared the efficacy of intravenous
and intrasplenic BM-MSC transplantation in CCl4-induced liver
fibrosis model rats. The authors found that the intravenous route
was more effective than the intrasplenic route in suppressing
the gene expression levels of IL-1β, IL-6, and INF-γ. This result
indicated that compared with the intrasplenic route, intravenous
BM-MSC injection was an efficient and appropriate route for

BM-MSC transplantation in liver fibrosis. Zhao et al. showed
that compared with the intrahepatic and intraperitoneal injection
groups, the BM-MSC intravenous injection group had the highest
number of MSCs that migrated into liver lobules in CCl4-
induced fibrosis model rats. IL-10 levels were highest in the
intravenous group, whereas IL-1β, IL-6, TNF-α, and TGF-β
were significantly lower than those in the other groups (136).
These studies indicated that intravascular infusion was very
suitable for BM-MSC transplantation. According to a study
of UC-MSCs, UC-MSC transplantation via the tail vein had
similar therapeutic efficacy compared with that of intrahepatic
injection (137). The present study on MSC transplantation
routes has some potential limitations. Further explorations are
needed to determine the optimal application routes of MSCs
from different sources, and the related mechanisms are still not
completely understood.

Although various methods have been demonstrated to
successfully improve MSC efficacy in liver diseases in animal
models, current culture conditions (both in term of medium
composition and supplements, adhesion to ECM selective
proteins, and exposure to inflammatory signals) significantly
influence MSC phenotype and paracrine potential. That’s why
further explorations are still needed for clinical applications in
the future.

SAFETY ISSUES ASSOCIATED WITH MSC
TRANSPLANTATION

Large numbers of in vitro and in vivo trials have demonstrated
the capacity of MSCs to promote regeneration, antifibrosis,
and immunomodulation, as well as the significant effects of
MSCs in various liver injury models. These findings opened
up possibilities for the clinical application of MSCs in liver
diseases. A growing number of clinical trials have demonstrated
the therapeutic effect of MSCs in patients with liver diseases,
especially ALF, cirrhosis, and GVHD (23, 138, 139). However,
safety is still the most concerning issue in MSC clinical
applications. Despite rash and fever (37–38◦C) in several cases
that resolved without additional treatment (24), no significant
adverse effects were reported in most clinical trials. A series of
meta-analysis results also proved the therapeutic efficacy and
safety of MSCs from different sources in patients with ALF, liver
cirrhosis and end-stage liver disease associated with HBV and
HCV (22, 140–142).

MSCs have been shown to have the ability to migrate
and integrate into tumor tissue (143), but the effect of
MSCs on hepatocellular carcinoma cells in vitro and in vivo
is still controversial. According to Zhao et al. (144), AD-
MSC-CM inhibited proliferation and promoted cell death in
a hepatocellular carcinoma cell line in vitro. Some studies
have indicated that BM-MSCs can promote the migration and
invasion of hepatocellular carcinoma cells (145, 146). Moreover,
investigators have documented the influence of MSC culture on
genetic instability and tumorigenicity (147). Rosland et al. (148)
found that malignant transformation occurred in 45.8% of the
human MSCs after long-term cultures (5–106 weeks). According
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FIGURE 2 | Various routes of MSC transplantation in animal models and clinical trials.

to Ren et al. (149), MSCs derived from adult cynomolgus
monkeys could transform spontaneously into highly tumorigenic
transformed mesenchymal cells (TMCs) after cultured in vitro.
Althoughmany researchers announced thatMSC transplantation
was not likely to cause tumors after following up with patients
for up to 11 years and 5 months (150), it is still not
clear how MSCs influence tumorigenesis and development
in patients.

Some researchers also indicated the risk of thrombosis
and embolization that occurred during intravascular MSC
administration due to the incompatibility of MSCs with the
innate immune cascade systems of the blood. During a clinical
trial of 11 patients with liver-based metabolic disorders, one
patient exhibited a thrombogenic event after MSC infusion,
and four patients were observed to have significant decreases
in platelet and increases in D-dimer levels at the end of MSC
infusion, which spontaneously normalized after 7 days. So
Coppin et al. recommend anticoagulants combined with MSC
infusion to limit infusion-related thrombogenesis to subclinical
levels in patients (151). Moll et al. suggested that all cellular

therapies should be subjected to hemocompatibility screening
before intravascular infusion to ensure patient safety (152).

These studies emphasize that the regulation of MSC clinical
applications still needs further exploration, evaluation and
optimization. Moll et al. (131) indicated that comprehensive
safety evaluations were essential before use in humans, and
new clinical guidelines were needed to standardize MSC clinical
treatment strategies.

CONCLUSIONS

A large number of studies have demonstrated that MSCs exert
therapeutic effects in liver diseases by promoting regeneration,
regulating immunity, and inhibiting fibrosis. Further studies
are ongoing to determine the related mechanisms and
explore strategies to enhance MSC efficacy. In addition to
pretreatment and gene modification of MSCs, the extraction
and applications of MSC-CM and MSC-EV are also under
intense study.
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Although the application of MSCs from various tissue
sources have entered clinical trials, several concerns
remain, such as the low MSC survival rate, as well as
the risk of carcinogenesis, thrombosis, and embolization.
Furthermore, strict standards are needed to regulate MSC
source selection, culture medium composition, culture
conditions, delivery routes, doses, course of treatment,
indications of application, and so on. In this review, we
suggest that formulating and following treatment guidelines is
the most effective way to avoid treatment risks and improve
treatment efficacy.
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