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The dual threats posed by the COVID-19 pandemic and hospital-acquired infections

(HAIs) have emphasized the urgent need for self-disinfecting materials for infection

control. Despite their highly potent antimicrobial activity, the adoption of photoactive

materials to reduce infection transmission in hospitals and related healthcare facilities

has been severely hampered by the lack of scalable and cost-effective manufacturing,

in which case high-volume production methods for fabricating aPDI-based materials

are needed. To address this issue here, we examined the antimicrobial efficacy

of a simple bicomponent spray coating composed of the commercially-available

UV-photocrosslinkable polymer N-methyl-4(4’-formyl-styryl)pyridinium methosulfate

acetal poly(vinyl alcohol) (SbQ-PVA) and one of three aPDI photosensitizers (PSs):

zinc-tetra(4-N-methylpyridyl)porphine (ZnTMPyP4+), methylene blue (MB), and Rose

Bengal (RB). We applied these photodynamic coatings, collectively termed SbQ-PVA/PS,

to a variety of commercially available materials. Scanning electron microscopy (SEM)

and time-of-flight secondary ion mass spectrometry (ToF-SIMS) confirmed the

successful application of the coatings, while inductively coupled plasma-optical

emission spectroscopy (ICP-OES) revealed a photosensitizer loading of 0.09-0.78 nmol

PS/mg material. The antimicrobial efficacy of the coated materials was evaluated against

methicillin-susceptible Staphylococcus aureus ATCC-29213 and human coronavirus

strain HCoV-229E. Upon illumination with visible light (60min, 400-700 nm, 65 ± 5

mW/cm2), the coated materials inactivated S. aureus by 97-99.999% and HCoV-229E

by 92-99.999%, depending on the material and PS employed. Photobleaching studies

employing HCoV-229E demonstrated detection limit inactivation (99.999%) even after

exposure for 4 weeks to indoor ambient room lighting. Taken together, these results

demonstrate the potential for photodynamic SbQ-PVA/PS coatings to be universally

applied to a wide range of materials for effectively reducing pathogen transmission.
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FIGURE 3 | Corresponding coordinate positions of the Vescom materials in

CIELab color space for a* and b*. The L* values (white/black) were not plotted

for simplicity. The superscripts U and C denote uncoated and coated

(SbQ-PVA/ZnTMPyP4+ ) materials, respectively. Labels are as follows: C, Capri;

D, Deans; H, Husk; P, PRU-86364; W, Wolin.

FIGURE 4 | SEM images of uncoated and coated (SbQ-PVA/ZnTMPyP4+ )

Vescom materials at low (left) and high (right) magnifications.

the uncoated materials. The concentration of the ZnTMPyP4+

PS varied ∼nine-fold across all materials as follows: Husk (0.78
nmol/mg) > Wolin (0.62 nmol/mg) > PRU (0.20 nmol/mg) >

Deans (0.13 nmol/mg) > Capri (0.09 nmol/mg).

FIGURE 5 | ToF-SIMS images of C2H3O
−

2 ions representative of the SbQ-PVA

coating acquired for the uncoated (left) and coated (right) Vescom materials

with SbQ-PVA/ZnTMPyP4+.

Antimicrobial Behavior
Employing ZnTMPyP4+/SbQ-PVA
Unless otherwise noted, all in vitro aPDI assays were performed
under fixed illumination conditions (60min, 400-700 nm, 65
± 5 mW/cm2). These illumination conditions were chosen
on the basis of our prior works, and we note that we
have previously reported that illumination alone (e.g., light-
only control) at the aforementioned intensity and duration
is not sufficient to inactivate pathogens without the presence
of a PS (30, 43, 44); this was again confirmed here as
light-only controls did not show any statistically significant
pathogen inactivation (Supplementary Figure 2). As displayed
in Figure 6A, neither the SbQ-PVA-only coated materials (PS-
free) nor the non-illuminated SbQ-PVA/ZnTMPyP4+ coated
samples (dark controls) exhibited any statistically significant
antibacterial activity against methicillin-susceptible S. aureus
ATCC-29213, thereby confirming the requirement for both
light and addition of PS for photodynamic inactivation of
this pathogen (in an oxygen-containing environment). Upon
illumination, however, a significant photodynamic effect was
observed for all SbQ-PVA/ZnTMPyP4+ coated samples, ranging
from 97 to 99.999% CFU/ml reduction, as follows: Husk
(99.999%, 5 log units, P < 0.001) > PRU (99.98%, ∼3.9 log
units, P = 0.002) > Capri (99.75%, ∼2.9 log units, P <

0.001) > Deans (98.3%, ∼1.9 log units, P = 0.009) ≈ Wolin
(97.3%, ∼1.8 log units, P = 0.002). These results confirm our
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expectations that the SbQ-PVA/ZnTMPyP4+ spray coating can
mediate the antibacterial photodynamic inactivation of MSSA
upon illumination regardless of the base material used.

Antiviral photodynamic inactivation studies employing
SbQ-PVA/ZnTMPyP4+-coated samples against HCov-229E
are included in Figure 6B. Due to its infectivity and facile
transmission, the SARS-CoV-2 virus requires at least biosafety
level 3 (BSL-3) containment, which was not available for this
study. For this reason, we chose to examine the HCoV-229E
virus as a less pathogenic surrogate that has been documented
(3, 45, 46) to possess similar environmental stability as the
more pathogenic coronaviruses (SARS-CoV, MERS-CoV, and
SARS-CoV-2). Similar to the antibacterial studies described
above, neither the SbQ-PVA-coated materials (PS-free) nor
the non-illuminated SbQ-PVA/ZnTMPyP4+-coated samples

FIGURE 6 | Antimicrobial photodynamic inactivation efficacy of Vescom

materials coated with SbQ-PVA/ZnTMPyP4+ for (A) methicillin-susceptible S.

aureus ATCC-29213 (MSSA) and (B) human coronavirus 229E (HCoV-229E).

Assays were performed under fixed illumination conditions (60min,

400-700 nm, 65 ± 5 mW/cm2 ). The gray shaded regions represent the

minimum detection limit for each study. Error bars correspond to the standard

deviation (n = 3).

(dark controls) exhibited any statistically significant antiviral
inactivation. In marked contrast, a substantial reduction in
virus infectivity after exposure to light was observed for all
spray-coated samples (these inactivation values are relative to
the dark controls): Husk (99.991%, ∼4 log units, P < 0.001) >

Capri (99.995%, ∼4.1 log units, P = 0.001) > PRU (99.8%, ∼2.5
log units, P= 0.03) > Deans (98.3.1%,∼1.8 log units, P= 0.007)
≈ Wolin (96.3%, ∼1.4 log units, P = 0.02). With the exception
of the Capri and Deans specimens that switched their order,
the level of antiviral activity of the coated samples mirrors that
observed above in the antibacterial study.

Employing Other PS/SbQ-PVA Coatings
To examine the versatility of SbQ-PVA for accommodating a
wide range of photosensitizers, we formulated two additional
spray coatings for the Husk material, SbQ-PVA/methylene

FIGURE 7 | Antimicrobial photodynamic inactivation efficacy of Vescom

materials coated with SbQ-PVA/MB and SbQ-PVA/RB for (A)

methicillin-susceptible S. aureus ATCC-29213 (MSSA) and (B) human

coronavirus 229E (HCoV-229E). Experimental conditions were the same as

those listed in Figure 6. The results for SbQ-PVA/ZnTMPyP4+ are included for

ease of comparison.
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blue (MB) and SbQ-PVA/Rose Bengal (RB), at the identical 1
wt% PS loading level employed for SbQ-PVA/ZnTMPyP4+ and
evaluated their aPDI efficacies against methicillin-susceptible S.
aureus (MSSA) and HCoV-229E (Figure 7). The Husk specimen
was selected as the base material as it was highly effective
against both pathogens in the studies above (section Employing
ZnTMPyP4+/SbQ-PVA). Against MSSA, an inactivation of
99.94% (3.4 log units, P < 0.001) was gratifyingly observed for
SbQ-PVA/MB, but a lower efficacy of 98.75% (1.9 log units, P
< 0.001) was ascertained for SbQ-PVA/RB (Figure 7A). This
was not unexpected, however, as the anionic RB photosensitizer
is likely to have a comparatively poorer aPDI efficacy due
to electrostatic repulsion with the negatively-charged cell wall
of the bacterium when compared to the cationic methylene
blue PS (47–53). The comparatively lower efficacy of the MB
and RB coatings vs. that employing ZnTMPyP4+ is consistent

FIGURE 8 | Antiviral photodynamic inactivation efficacy of Vescom materials

coated with SbQ-PVA/ZnTMPyP4+, SbQ-PVA/MB, and SbQ-PVA/RB for (A)

feline calicivirus (FCV) and (B) adenovirus. Experimental conditions were the

same as those listed in Figure 6.

with previous solution studies employing these photosensitizers
(42, 54). In contrast to the differential antibacterial results
between these three photosensitizer coatings, both SbQ-PVA/MB
(99.992%,∼4.1 log units, P < 0.001) and SbQ-PVA/RB (99.979%,
∼3.8 log units, P < 0.001) were able to promote photodynamic
inactivation of HCoV-229E (Figure 7B) as effectively as SbQ-
PVA/ZnTMPyP4+.

To determine the antiviral efficacy of the coatings against
non-enveloped viruses, materials were likewise tested against
feline calicivirus (FCV) and human adenovirus (Figure 8). SbQ-
PVA/MB was was found to inactivate FCV by 99.998% (∼5.4 log
units, P = 0.001) relative to PS-free controls. Similar to when
tested against HCoV-229E, SbQ-PVA/ZnTMPyP4+ and SbQ-
PVA/RB had lower levels of FCV inactivation (99.8%, ∼2.8 log
units, P = 0.001; and 99.0%, 2 log units, P = 0.014, respectively).
A similar trend in inactivation by these materials was apparent
when examined against human adenovirus-5, with the SbQ-
PVA/MB coating demonstrating the highest efficacy (>99.98%,
>3.9 log units, P < 0.001), followed by SbQ-PVA/ZnTMPyP4+

(99.8%, ∼3.4 log units, P = 0.014) and finally SbQ-PVA/RB
(91.8%, ∼1 log units, P = 0.04). The overall antiviral efficacy
of the coated materials was lower for non-enveloped viruses
compared to those that are enveloped. This is not unexpected
as enveloped viruses have been shown to be more susceptible to
ROS damage than non-enveloped viruses. Specifically, the lipids
present on enveloped viruses are thought to act as major binding
sites for PS, leading to an increase in oxidative damage and their
higher susceptibility (55, 56).

Photobleaching and Repeatability Studies
To examine the longevity of the SbQ-PVA/PS coatings with
respect to photobleaching, aging experiments were performed
where the coatings described in section

Employing other PS/SbQ-PVA Coatings were exposed to
ambient laboratory room light for 1-4 weeks, and then
examined for antiviral photodynamic inactivation against HCoV-
229E using our established aPDI protocol. All three spray
coatings (SbQ-PVA/ZnTMPyP4+, SbQ-PVA/MB, and SbQ-
PVA/RB), were found to inactivate HCoV-229E to the MDL
regardless of their photobleaching age (data not shown). To
assess repeatability, the same photobleached samples were first
washed to remove traces of the initial assay, and the aPDI study
against HCoV-229E was repeated a second time. Once more, all
three coatings consistently exhibited inactivation to the MDL of
99.998% for these studies (data not shown). Repetition of the
washing procedure followed by a third aPDI study against HCoV-
229E once more yielded inactivation to the MDL (Figure 9). The
results shown here confirm the longevity of the SbQ-PVA/PS
coatings with respect to ambient room light photobleaching, and
suggest that such coatings would remain effective over multiple
pathogen exposures.

DISCUSSION

Both the COVID-19 pandemic and the chronic problem of HAIs
illustrate that the transmission of viruses and drug-resistant
bacteria from contaminated surfaces to new hosts constitutes a
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FIGURE 9 | Antiviral photodynamic inactivation studies of Vescom materials

coated with SbQ-PVA/ZnTMPyP4+ (green), SbQ-PVA/MB (blue) and

SbQ-PVA/RB (red) against human coronavirus 229E (HCoV-229E). Samples

were exposed to ambient room light conditions as indicated in the figure,

followed by evaluation for antiviral efficacy. Results shown are for samples that

had been repeatedly subjected to the aPDI assay a total of three times.

Illumination conditions were the same as those listed in Figure 6.

major threat to global healthcare, especially for elderly, injured
and immune-compromised patients. Accordingly, effective
preventative measures that include both surface disinfection
methods and increased production of PPE must be identified
and put into place. To this latter point, however, the pandemic
has repeatedly highlighted critical gaps in existing healthcare
and manufacturing infrastructures, especially with regard to PPE
availability. With supply chains impacted by a combination of
worker illness, as well as shortfalls in common raw material
sources (e.g., polypropylene) due to dramatically heightened
demand, medical personnel and the general population have
faced critical shortages of PPE, including N95 face masks, during
the COVID-19 pandemic. In fact, they have resorted to reusing
disposable PPE despite the apparently underestimated threat
posed by the survival of the virus on surgical masks (3). Thus,
there is a critical need for re-usable and self-disinfecting PPE
(SD-PPE) that is capable of affording patients and medical
personnel with broad protection (against bacteria, viruses, and
fungi) for prolonged periods of time, and which are cost effective
and facile to manufacture. Accordingly, the results obtained both

previously (30) and now here with SbQ-PVA/PS demonstrate
the potential for photodynamic coatings to be more universally
deployed for infection control. Spray-coating procedures (e.g.,
UV inks) can be easily integrated into PPE manufacturing lines;
polymers such as SbQ-PVA are relatively eco-friendly (using
water as the main solvent); and PSs such as MB (commercialized
as ProvayblueTM) with extensive FDA safety information can be
selected, thereby minimizing regulatory issues.

As PSs are often the highest cost component in a
photodynamic coating, the efficiency of PS use is a significant
consideration: PSs buried deep within a polymer beyond the
diffusion limit of the ROS, e.g., <250 nm for 1O2 (57–59), will
contribute to coating cost, but not to antimicrobial efficacy.
We have previously established that photodynamic materials
employing cellulose-based scaffolds (cellulose nanocrystals,
nanofibrillated cellulose and macrofibers/paper) generally
contained PS loading levels in the range of 10-400 nmol/mg
material (34, 38, 43, 44, 60–62), traditionally-dyed fabrics were
in the range of 10-80 nmol PS/mg material (54, 60, 63, 64), and
electrospun non-woven materials employing polyacrylonitrile
and nylon scaffolds were loaded in the range of 3.4-35 nmol
PS/mgmaterial (35, 40). Themajority of these modifiedmaterials
had the photosensitizer incorporated during fabrication, with
the PS distributed throughout the material. Here, the overall PS
loading via spray coating was found to be 0.09-0.78 nmol/mg
material, significantly lower, by as much as 10,000x than observed
in the aforementioned studies. We therefore surmise that spray
coating as a surface-only application is an efficient method for
producing photodynamic materials, akin to core-sheath fibers
that utilize the outer sheath for conferring specific properties
without the need to incorporate functional agents throughout
the core (65).

Despite the lower photosensitizer loadings compared to
previous materials, the results of the in vitro aPDI assays
demonstrated that SbQ-PVA/PS coatings are effective at
conferring antimicrobial activity to commercially available
materials, with inactivation of S. aureus, HCoV-229E, FCV,
and adenovirus by ∼2-5 log units depending on the base
material employed. The decrease in antiviral efficacy of materials
against non-enveloped viruses (FCV and adenovirus) relative
to enveloped viruses (HCoV-229E) can be attributed to the
higher tolerance of non-enveloped viruses to ROS (55, 56).
While some differences in efficacy between the materials can
be explained in part by PS loading (e.g., the high inactivation
of Husk against both pathogens correlates well to its high PS
loading), this alone fails to explain why theWolin (second highest
PS loading) material consistently shows the lowest antimicrobial
activity, or why the Capri specimen has relatively good antiviral
efficacy despite possessing the lowest amount of PS. Such
differences in efficacy likely stem from the different surface
characteristics of the Vescom materials, such as hydrophobicity,
porosity and thickness. Thicker and more fibrous materials
(Wolin and Deans) were generally less effective at mediating
both antibacterial and antiviral photodynamic inactivation, most
likely due to the inability of the SbQ-PVA/PS coating to penetrate
into the interior of the fiber mats where pathogens could
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reside beyond the diffusion distance of 1O2 produced by the
surface coating. Conversely, SEM images showed that the coated
Husk and PRU materials possess lower porosity, and likely
minimize the penetration of the pathogens into the PS-free
interior of the fiber mats. While these are the most likely factors,
additional studies that more systematically control fiber/material
properties are needed to obtain a better understanding of how
such material characteristics affect the antimicrobial character
of the SbQ-PVA/PS coatings. Although only two pathogens
were tested in this work, we expect consistent results found
in the current study to translate to other pathogens from the
ESKAPE HAI bacterial family based on our previous findings
(30, 34–36, 38, 40).

While all three spray coatings (SbQ-PVA/ZnTMPyP4+,
SbQ-PVA/MB and SbQ-PVA/RB) exhibited comparable antiviral
activity against HCoV-229E, more significant differences
in their antibacterial and non-enveloped antiviral activity
were noted. We interpret these differences in light of the
electrostatic properties of the photosensitizers relative to those
of bacterial pathogens. Specifically, the cationic photosensitizers
ZnTMPyP4+ and MB are expected to promote antimicrobial
photodynamic inactivation via their electrostatic attraction
to the negatively charged cell membrane wall of bacteria,
helping to facilitate pathogen:coating interactions that overcome
the limited diffusion distance of 1O2 from a photodynamic
surface (47–53). Conversely, the anionic RB photosensitizer
would disfavor such an interaction owing to electrostatic
repulsion. No such electrostatic-dependent mechanism
between the PS and the pathogen has been identified for
antiviral photodynamic inactivation, which is consistent
with our results, but we recognize that the mechanisms
of aPDI against viruses are comparatively less understood
than for bacteria. In light of our promising results with
HCoV-229E, we also investigated the long-term viability of
the SbQ-PVA/PS coatings with respect to photobleaching
against this pathogen. Even after 4 weeks of ambient room
light exposure, all three SbQ-PVA/PS coatings were able to
promote detection-limit inactivation of HCoV-229E. Those
materials also remained active through a wash and assay repeat
cycle. While our previous studies (34, 35, 40) have confirmed
that photobleaching is decreased when a PS is embedded
within a polymer matrix, it should be noted, however, that
these studies were never performed for such an extended
period of time, thus further emphasizing the efficacy of
SbQ-PVA/PS coatings.

In conclusion, the results here further confirm that
photodynamic spray coatings afford a largely unexplored
route to accelerated, effective and comprehensive antimicrobial
materials, particularly for their application in reusable SD-PPE.
To-date, and despite their highly potent antimicrobial activity,
the adoption of such photoactive materials to reduce infection
transmission in hospitals and related healthcare facilities has
been hampered by the lack of a scalable and cost-effective
means to manufacture them, and high-production methods
for producing aPDI-based materials are needed. Here, we

have demonstrated that a simple bicomponent spray coating
comprised of a photocrosslinkable polymer and a photosensitizer
can be applied to a range of commercially available materials
used in the public sector. Not only is the spray coating method
facile, inexpensive and scalable through the use of off-the-shelf
components, it is well-suited for expedient integration into
existing manufacturing lines that already employ similar UV-
curable inks. While further studies examining the launderability
and durability of such coatings are needed (as are studies on a
wider scope of materials, e.g., polypropylene, more commonly
used in PPE), these and other studies suggest that photodynamic
spray coatings may be a simple but effective tool for reducing the
transmission of pathogens in healthcare settings, thereby adding
to the infection-prevention toolbox available to healthcare
workers and the general public.
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