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Acute kidney injury (AKI) is one of the most severe consequences of kidney injury, and

it will also cause or aggravate the complications by the fast decline of kidney excretory

function. Accurate AKI prediction, including the AKI case, AKI stage, and AKI onset time

interval, can provide adequate support for effective interventions. Besides, discovering

how the medical features affect the AKI result may also provide supporting information for

disease treatment. An attention-based temporal neural network approach was employed

in this study for AKI prediction and for the analysis of the impact of medical features from

temporal electronic health record (EHR) data of patients before AKI diagnosis. We used

the publicly available dataset provided by the Medical Information Mart for Intensive Care

(MIMIC) for model training, validation, and testing, and then the model was applied in

clinical practice. The improvement of AKI case prediction is around 5% AUC (area under

the receiver operating characteristic curve), and the AUC value of AKI stage prediction

on AKI stage 3 is over 82%. We also analyzed the data by two steps: the associations

between the medical features and the AKI case (positive or inverse) and the extent of

the impact of medical features on AKI prediction result. It shows that features, such

as lactate, glucose, creatinine, blood urea nitrogen (BUN), prothrombin time (PT), and

partial thromboplastin time (PTT), are positively associated with the AKI case, while

there are inverse associations between the AKI case and features such as platelet,

hemoglobin, hematocrit, urine, and international normalized ratio (INR). The laboratory

test features such as urine, glucose, creatinine, sodium, and blood urea nitrogen and

the medication features such as nonsteroidal anti-inflammatory drugs, agents acting on
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the renin–angiotensin system, and lipid-lowering medication were detected to have

higher weights than other features in the proposed model, which may imply that these

features have a great impact on the AKI case.

Keywords: acute kidney injury, medical features impact, electronic health record data, temporal convolutional

network, attention based neural network

INTRODUCTION

Acute kidney injury (AKI) refers to a sudden or sustained
decline in renal function, clinically manifested as azotemia,
water electrolyte and acid–base balance disorders, and systemic
symptoms, accompanied by oliguria or anuria (1). AKI is very
common among hospitalized patients in the intensive care unit
(ICU), with an incidence of up to 57.3% (2). Once AKI occurs,
the length of hospital stay, medical burden, incidence of chronic
kidney disease, and mortality increase significantly (3). Early
identification and intervention are the keys to improve the
prognosis of AKI patients. Since the factors that lead to AKI
are complex, statistical, or machine learning algorithms are
used to analyze the important pathogenic factors and build risk
assessment models based on various electronic health record
(EHR) data, which is currently an important approach for the
early detection and prognosis analysis of AKI (4).

Studies of training EHR data with machine learning
technologies have shown great potential on clinical research,
clinical decision-making, and disease prediction. Rough et al.
(5) used the long short-term memory (LSTM) model to
predict inpatient medication orders from EHRs. Yang et al.
(6) predicted discharge medications at admission time based
on the convolutional neural network (CNN). Miotto et al. (7)
considered comprehensive data of patient and predicted the
future patients from EHR data using the random forest model.
Darabi et al. (8) proposed a time-aware patient representation
method from EHR data based on the feedforward neural
network (FNN). Choi et al. (9) extracted clinical diagnosis
codes as base data and used recurrent neural network models
for early detection of heart failure onset. Nguyen et al. (10)
constructed a convolutional net to represent patient features
from medical records.

There are also some studies using data-driven technologies
on AKI prediction. For example, Li et al. (11) applied NLP
(12) to clinical notes and extracted meaningful features on early
prediction on AKI. Tomašev et al. (13) used clinical data to
predict a time course of the probability that a patient will
develop AKI based on recurrent neural network (RNN). Xu
et al. (14) identified sub-phenotypes of AKI using structured
and unstructured data with memory network. Koyner et al.
(15) developed a machine learning inpatient acute kidney injury
prediction model by EHR data.

However, these methods focus on building a neural network
model to predict the AKI case since admission to the hospital,
but little about the prediction of the AKI stage and accurate onset
time interval of AKI and analysis about how the medical features
affect the AKI result.

In our study, we propose a temporal convolutional network to
predict the future value of the temporal data such as lab test and
vital sign from EHR data, and then we use an attention-based
model which combines these predicted future values with other
features of the patient, such as demographic data, admission
diagnosis code, and medication codes, as the input of the model,
to make the AKI prediction and analyze the impact of each
selected medical feature.

The main contributions of our work can be summarized
as follows:

• An attention-based neural network model is proposed to
improve the prediction performance of the AKI case with
improvement of around 5% AUC, compared with the recent
AKI prediction approaches—memory networks (MN) and
hierarchical LSTM (HieLSTM) (14).

• The proposedmodel is capable of predicting the AKI stage and
onset time interval which are meaningful in clinical practice.

• We explore the associations between medical features and the
AKI case and the impact of medical features to AKI prediction
result, which may help improve treatment.

• The proposed model has been applied in clinical practice, and
its performance has been remarkable.

MATERIALS AND METHODS

AKI Definition
AKI Criteria
There are four criteria used for AKI diagnosis: the Risk-
Injury-Failure-Loss-End (RIFLE) criteria (16), the pediatric
RIFLE (pRIFLE) criteria (17), the Acute Kidney Injury Network
(AKIN) criteria (18), and the Kidney Disease: Improving Global
Outcomes (KDIGO) criteria (19), and these diagnosis criteria are
all based on patients’ serum creatinine (SCr) and urine volume.
Because KDIGO is widely used for both AKI research and clinical
diagnosis, we take the KDIGO criteria to define the AKI case
and stages.

AKI Case
Based on the definition provided by the KDIGO criteria, an AKI
case can be identified by any one of the following conditions:

• SCr increases by ≥0.3 mg/dl (26.5 mol/L) within 48 h.
• SCr increases ≥1.5 times from the baseline that comes from

the first SCr value measured during hospitalization within
7 days.

• Urine volume is <0.5 ml/kg/h for 6 h.
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AKI Stages
We used the definition provided by the KDIGO criteria for AKI
stages (19) described as follows:

• Stage 1: SCr is 1.5–1.9 times from the baseline, which comes
from the first SCr value measured during hospitalization
within the prior 7 days; or SCr increases by ≥0.3 mg/dl
(26.5 mol/L) within 48 h; or urine volume is <0.5 ml/kg/h
for 6–12 h.

• Stage 2: SCr increases to ≥2.0–2.9 times from the baseline,
which comes from the first SCr value measured during
hospitalization within the prior 7 days, or urine volume is<0.5
ml/kg/h for ≥12 h.

• Stage 3: SCr increases to ≥3.0 times from the baseline,
which comes from the first SCr value measured during
hospitalization within the prior 7 days; or SCr increases by
≥4.0 mg/dl (353.6 mol/L) within 48 h; or initiation of renal
replacement therapy; or urine volume is <0.3 ml/kg/h for
≥24 h; or anuria for≥12 h; or in patients<18 years, a decrease
in eGFR (20) to <35 ml/min per 1.73 m2.

AKI Onset Time Interval
We define the observation interval as the duration elapsed from
the entrance time of the ICU to a certain time point Tobserv_end
(this time point is referred to as the end time of the observation
interval), and the prediction interval is defined as the duration
elapsed from the end time of the observation interval to a certain
time point Tpredict_end (this time point is referred to as the end
time of the prediction interval). The prediction interval will be
divided into several subintervals, and each subinterval has the
same time length. We name this subinterval as the onset interval
which is referred to as the AKI onset time interval, and our model
tries to predict the accurate AKI onset interval in patients.

Data Preparation
Data Source
We use the Medical Information Mart for Intensive Care III
(MIMIC-III) database (21) for model training, validation, and
testing. There were 46,520 patients, 58,976 admission records,
and 61,532 records of intensive care unit (ICU) stay from 2001
to 2012. The patient information contained in this database
includes patient demographics, vital signs, laboratory test results,
procedures, medications, clinical notes, imaging reports, and
patient mortality.

Patient Features
The patient features we considered into the proposed model can
be classified as follows:

• Demographics: gender, age, and ethnicity of the patients.
• Body mass index (BMI) data: mass (in kilograms), height (in

meters), BMI value (calculated by mass/height2).
• Vital signs: in this group, we take the following features

in the proposed model: blood pressure (including diastolic
blood pressure, systolic blood pressure, and mean arterial
blood pressure), blood oxygen saturation value, heart rate,
respiration rate, glucose (both lab and fingerstick), and
body temperature.

• Laboratory test results: as an important part of the patients’
features, the following biochemical criteria are considered
as the model input: serum creatinine, total urine volume
in the first 24 h of ICU stay, anion gap, albumin, bands,
bilirubin, hematocrit, lactate, sodium, bicarbonate, blood urea
nitrogen (BUN), calcium, chloride, creatinine, hemoglobin,
international normalized ratio (INR), platelet, potassium,
prothrombin time (PT), partial thromboplastin time (PTT),
and white blood count (WBC).

• Medications: patients’ medication records during the
admission. In our study, according to the Anatomical
Therapeutic Chemical (ATC) Classification System (22),
we focus mainly on the following categories: drugs used in
diabetes, antithrombotic agents, antihypertensives, diuretics,
agents acting on the renin–angiotensin system, lipid-lowering
medication, non-steroidal anti-inflammatory drugs (NSAIDs),
and contrast media.

• Comorbidities: for comorbidities of the patients that may
affect the AKI result, we get the comorbidity information
from the admission diagnosis notes since we cannot use the
data after the prediction time, and the following keywords are
used to retrieve information from patients’ admission notes:
congestive heart failure, peripheral vascular, hypertension,
diabetes, liver disease, myocardial infarction, coronary artery
disease (CAD), cirrhosis, jaundice, sleep apnea, and urinary
tract infection.

Experimental Setup
In our study, each ICU stay record is considered as a data sample,
and we take the KDIGO criteria to define the AKI case and AKI
stages for the records.

Patients’ data in the observation interval will be considered
as the training data of the proposed model, and the data in the
prediction interval are used to get the AKI results, including the
AKI case, AKI stage, and AKI onset interval, according to the
KDIGO criteria, as the output label of the model.

Our model is applied to three experimental cases by setting
different elapsed times of observation interval, prediction
interval, and onset interval as follows:

• Experimental case 1: we use patients’ data during the first
24 h of ICU stay (the time length of observation interval is
24 h) to predict the AKI case, AKI stage, and AKI onset time
interval in the next 24 h (the time length of prediction interval
is 24 h), and we set the time length of onset interval to 12 h for
our predictions.

• Experimental case 2: we use patients’ data during the first 24 h
of ICU stay (the time length of observation interval is 24 h)
to predict the AKI case, AKI stage, and AKI onset interval
in the next 6 days (the time length of prediction interval is 6
days), and we set the time length of onset interval to 24 h for
our predictions.

• Experimental case 3: we use patients’ data during the first 48 h
of ICU stay (the time length of observation interval is 24 h)
to predict the AKI case, AKI stage, and AKI onset interval
in the next 5 days (the time length of prediction interval is 5
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days), and we set the time length of onset interval to 24 h for
our predictions.

We provide more information about our experiment setup in
Figure 1.

Data Filter
Since our main task is to predict the future AKI case, AKI stage,
and AKI onset time interval for patients who are not AKI cases
during the observation interval, and because patients’ medical
data are necessary for effective prediction, the following patient
cases will be excluded from the dataset:

• Patients who had AKI diagnosis in their admission notes,
• Patients who did not have laboratory test results during the

ICU stay,
• Patients who did not have the admission notes, and
• Patients who were admitted as AKI cases during the

observation interval.

Data Preprocessing
Before the data training, we preprocess the data by the
following ways:

1) Drug code mapping: the drug information provided in the
MIMIC-III dataset was indexed by the National Drug Code
(NDC) (23) which serves as a universal product identifier
for drugs, published by the Food and Drug Administration
(FDA) (24). Since we need to classify the drugs by their
clinical usage, we map the NDC code to ATC code, and with
the help of the ATC code, we retrieve the information of
the categories.

2) Absent value process: for the missing values of the
patients’ features that we consider as the training
data of the proposed model during the whole
observation interval, we impute them by the default
normal values.

3) Normalization process of medical results: to ensure the model
training to be effective, we need to normalize the values. For
the discrete values, such as gender, medication code, and
comorbidities, the one-hot or multi-hot vector is employed
for the representation (shown in Figure 2); for the continuous
values, such as the laboratory test results and vital signs, we
use the linear normalization function to do the normalization:
n is the size of the dataset, x is the original value that
needs to be normalized, and x̂ is the normalized value

FIGURE 1 | Illustration of the experiment setup in our study, and the relationship between observation interval, prediction interval, and onset interval. We set the time

length of observation interval to 24 or 48 h; the time length of prediction interval to 24 h, 5 days, or 6 days; and the time length of onset interval to 12 or 24 h.

FIGURE 2 | Illustration of the multi-hot vector representation for patients’ comorbidities. For example, the comorbidity of patient 1 is diabetes, then vector V1 is the

multi-hot vector representation for patient 1; the comorbidities of patient 2 are hypertension, CAD (coronary artery disease), and jaundice, then vector V2 is the

multi-hot vector representation for patient 2.
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according to x .

x̂ =

x − min
0≤j≤n

{xj}

max
0≤j≤n

{xj} − min
0≤j≤n

{xj}
(1)

4) Temporal value process of the medical results: for a specified
feature, there may be multiple check values during the
observation interval, which are meaningful to the prediction
of the future value, and we create the vector to represent
temporal value order by the checking time.

The Predictive Models
The tasks of our study are the prediction of the AKI case,
AKI stage, and AKI onset time interval by patients’ temporal
medical data during the ICU stay.We build the predictive models
which take the patients’ features that we described above as
the input data to get an output vector which contains one or
multiple probability value(s). For each value in the vector, we
compare it with a chosen threshold: if the value in the vector
exceeds the threshold, then it will be reset to 1, which means a
positive prediction; otherwise, it will be reset to 0, which means a
negative prediction.

We classify the patients’ feature data into two categories:
constant features such as demographics and temporal features
such as the laboratory test results and the vital signs. We
get the future values of the temporal features by a temporal
convolutional network (TCN) model (25) and combine the
constant features with these future values as the input sequence
of the proposed models after the normalization process. With the

AKI prediction model, we get the final results. The framework of
the prediction models is shown in Figure 3.

Prediction of Future Values
The values of the temporal features play important roles in
our AKI prediction, especially the laboratory test results and
vital signs. The future value of each feature may help improve
the prediction performance, and TCN is employed to predict
the future values according to historical data for its superior
performance on the prediction of time series data and the variable
length of the input sequence.

TCN is a convolutional network which convolves over the
time domain (26), and it is trained to predict the future values
for the input time series. There are two main principles of TCN:
the output of the network should have the same length as its
input, and the network can only use the information from past
time steps (27). Suppose the input sequence of the model is
x0, x1, . . . , xT , and with the TCN model network F, we get the
output sequence y0, y1, ..., yT :

y0, y1, . . . , yT = F (x0, x1, . . . , xT) (2)

The length of the output sequence is the same as that of the
input sequence, and the value yt only depends on the sequence
x0, x1, . . . , xt , which satisfies the two principles mentioned above.

TCN uses causal convolutions, which make an output at time
t to convolve only with elements from time t and earlier in the
previous layer (28). However, a simple causal convolution is only
able to look back at history with size linear in the depth of the
network (28), which makes causal convolution to have a poor
performance on the prediction of sequence tasks that require long

FIGURE 3 | The framework of the prediction models. Both the temporal features and the constant features are preprocessed before training, and we get the future

values for the temporal features by their historical data; then, the two parts of the input data, values of constant features and the future values of temporal features, are

combined together as the input data of the AKI prediction model to get the result.
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history. To resolve the issue, dilated convolutions are employed
in TCN. Suppose X is the input sequence, and X ∈ R

n, where n is
the length of the input sequence, and we have a filter: f :{0, ..., k−
1}→ R, then the process of the dilated convolution function Fv
on element v of the input sequence X can be defined as:

Fv =

k−1
∑

i=0

f (i) · Xv−d·i (3)

Where d is the dilation factor, k is the size of filter, while v− d · i
gets the past index of the input sequence. The illustration about
the architecture of the dilated causal convolution is shown in
Figure 4.

In our study, the temporal values of each feature of the patients
during the ICU stay are sorted by check time in ascending order
after the normalization process, and these temporal values are
considered as the input sequence of the TCN model. We get the
last value of the output sequence as the predicted future value
which will be used later in the AKI prediction model.

The AKI Prediction Model
Since the future AKI prediction results depend on patients’
features data during the observation interval, and each feature
has a different degree of influence on the AKI result, we
employ the attention-based neural network (29) model as our
AKI prediction model in our study. The prediction model
is composed of three components: the encoder model, the
attention function, and the decoder model (the architecture of
the prediction model is shown in Figure 5).

Encoder Model

The encoder model is composed of several recurrent units to
embed the input sequence. The LSTM (30) network is employed

as the recurrent unit to process the input sequence, and the
elements in the input sequence represent the last states (or the
predicted future values) of the patient’s selected features, such
as demographics, vital signs, laboratory test results, medications,
and comorbidities mentioned above. Each element of the input
sequence Xi is processed by a LSTM unit to get the hidden state
vector hi which will be considered as the input of the next LSTM
unit. After the process of the encoder model, we get a matrix H
which is composed of all the hidden states. Suppose there are
t + 1 recurrent units in the encoder model, then matrix H can
be presented as follows:

H =
[

h0, h1, . . . . . . , ht
]

(4)

Attention Function

In our attention function, each hidden state hi (0 ≤ i ≤ t, t+ 1 is
the number of hidden states) from the LSTM units of the encoder
model is used to calculate the similarity score with the last hidden
state ht by the following formula:

f _score
(

ht , hi
)

= ht · hi (5)

The function f _score computes the dot product of ht with hi as
the similarity score si, and then the Softmax function is employed
to get the weight value wi for each score si (the detail of the
formula is shown as follows).

wi = Softmax (si) =
exp (si)

∑t
j=0 exp

(

sj
) (6)

The attention context vector cv is generated by the sum of each
hidden state hi with their weight wi,

cv =

t
∑

i=0

w∗
i hi (7)

FIGURE 4 | A dilated casual convolution with dilated factors d = 1, 2, 4 and filter size k = 3. X0, X1, …, Xt are the elements of the input sequence, and Y0, Y1, …, Yt

are the elements of the output result of the model.
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FIGURE 5 | The architecture of the AKI prediction model. The encoder model is used to embed the input sequence X0, X1, …, Xt and get the hidden state in each

recurrent unit by LSTM. All the hidden states are taken as the input of the attention function to create the context vector; finally, with the input context vector, the

decoder model gets the prediction result.

The context vector cv is finally concatenated with the last hidden
state ht as the output of the attention function av:

av = concatenate
(

cv, ht
)

(8)

With the attention function, we transform the relationship
between the patient’s features and AKI into the vector
representation av which will be applied as the input data of the
decoder model.

Decoder Model

The decodermodel is used for the AKI prediction by a three-layer
neural network with the attention output vector av as the model
input sequence. The first hidden layer is a full connected layer
that transfers the feature information from the input sequence to
the next layer. The dropout layer is employed in the second layer
to improve the generalization of the model by randomly setting
the output of a given neuron to 0 at each update of the training
phase (31). In the output layer, because of the different prediction
tasks, we consider the following situations:

1) AKI case prediction: since the AKI case prediction is a binary
classification task that detects if the given sample is an AKI
case, we employ the function sigmoid as the active function
to get the prediction value that is in the interval [0,1]:

Sigmoid (x) =
1

1+ exp (−x)
(9)

2) AKI stage prediction: according to the AKI stage definition,
there are three AKI stages, and we employ the function
Softmax as the active function (details about the Softmax
function are described in Equation 7). The output is a three-
dimensional vector, and each value in the vector represents
the probability of the corresponding AKI stage.

3) AKI onset time interval prediction: the AKI onset time
interval prediction is a multi-class classification task that
detects the accuracy time interval of the AKI case, similar
with the AKI stage prediction, and the function Softmax is
used as the active function of this layer to get the result. As
mentioned above, we have three experimental cases, and the

Frontiers in Medicine | www.frontiersin.org 7 June 2021 | Volume 8 | Article 658665

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Chen et al. Acute Kidney Injury Prediction Approach

dimension of the output vector is set to be the number of the
onset intervals in each experimental case.

Parameter Settings
1) In the TCN model, we employ a three-layer neural network

for the data training. The value of the dilation factor in the
first hidden layer is set to be 1, while it is 2 in the second
hidden layer, and 4 in the output layer. The size of the filter is
set to 3 and the hidden units are set to 16. The function ReLU
(32) is used as the active function, and the Adam optimization
scheme (33) is used as the optimizer of the model. The
learning rate is set to 0.001, and we have 100 epochs for the
model training.

2) In the AKI prediction model, the dimension of the input
sequence is 50 according to the patient features we selected, so
there are 50 recurrent units in the encoder model. We set the
output dimension of each unit to 64; therefore, the dimension
of the context vector is 64, and the dimension of the attention
function is 128 after the concatenation of the context vector
with the last hidden state of the encodermodel. In the decoder
model, there are 128 hidden units in the first hidden layer.
The dropout value is set to 0.2 in the second hidden layer,
while it has the same hidden units as the first layer. The initial
learning rate is 0.001 with a decay factor of 0.9, and we use the
Adam optimization scheme as the optimizer during the data
training. There are 1,000 epochs and the batch size is 128 in
each epoch.

Baseline Methods
To validate the performance of the proposedmodel, we employed
the gradient boosted trees (GBTs) (34), logistic regression
(LR) (35), random forest (RF) (36), and LSTM (37) as the
AKI case prediction methods to compare with the proposed
model. Besides, we also had a comparison between the AKI
prediction with future predicted values and that without future
predicted values. We implemented these methods in the three
experimental cases mentioned above to get their performances
on AKI case prediction, AKI stage prediction, and AKI onset
time interval prediction. As the input data of the model, we
considered demographics data, laboratory test results, vital signs,
medications, and comorbidities. For the continuous data, we
used the linear normalization function to ensure them in [0, 1],
and for the discrete data, we used one-hot or multi-hot to map
them into a vector. To avoid leaking future information to the
models, we only took the features data during the observation
interval, without any data in the prediction interval.

The proposed model was implemented in Python 3.6, with
TensorFlow 2.3.0 (38) as the deep learning library, and the code
was running on a server with NVIDIA Tesla P10 GPU. The
machine learning library scikit-learn (39) was employed for LR,
RF, and GBT implementations.

RESULTS

Prediction Results on MIMIC-III Dataset
In our study, we created three experimental cases, and the
dataset in each case was divided into three sets, namely, training,

validation, and testing sets, according to the ratio of 8:1:1.
In order to achieve robust performances on the predictions
of AKI case, AKI stage, and AKI onset time interval, each
of the following ratios remained consistent in the three sets:
ratio of AKI cases to not AKI cases, ratio of patients’ number
in each AKI stage, and ratio of patients’ number in each
onset interval.

In each of the three experimental cases, we firstly applied
our models together with the baseline models mentioned in
Baseline methods to get the performance of AKI case prediction
by specificity, sensitivity, and AUC (area under the receiver
operating characteristic curve), and then the proposedmodel was
implemented to get the performances of AKI stage prediction
and AKI onset time interval prediction. The performance of each
prediction task is shown as average ± standard deviation (the
results of the experimental cases are shown in Tables 1–3).

From these results, we observe that:

1) The performances of the deep learning models were better
than the machine learning algorithms on the AKI case
prediction, and this result may be explained by the fact
that the deep learning model can better obtain the feature
dependencies among the EHR data, which could be beneficial
to the AKI case prediction.

2) Compared with the LSTM model, our proposed model
improved the performance on the AKI case prediction by
around 7% AUC, and this discrepancy could be attributed
to the attention mechanism that we employ in the proposed
model, which can learn the influence degree of each feature to
the AKI case in the model.

3) Compared with the recent AKI case prediction approaches,
such as MN and HieLSTM (14) which achieved 77.53%
AUC by 24-h observation interval and 77.98% AUC by 48-
h observation interval, our model improved the prediction
performance to 82.60% AUC by 24-h observation interval
and 85.75% AUC by 48-h observation interval (shown
in Table 1).

4) In the proposed model, we compared the attention-based
model with predicted future values (AM with PFV) to that
without predicted future values (AM without PFV), and the
improvement of the AKI case prediction performances by
AM with PFV was around 4% AUC. The difference between
the two models was the temporal feature value of the input
sequence: for each temporal feature, the model AM with PFV
used the predicted future value, which was provided by the
TCN model, as the element value of the input sequence,
while the model AM without PFV chose the last value
from historical data. Since the predicted future value can be
interpreted as the combination of the last value and the value
variation in the future, it may better reflect the health trend of
the patient than the last value of the historical data, and this
may be the response for the different performances between
the two models.

5) The performance of the AKI case prediction with the
proposed model in experimental case 2 was around 82%
AUC, while it was around 85% AUC in experimental case 3.
Since the observation interval in case 2 was 24 h and that in
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TABLE 1 | Acute kidney injury (AKI) case prediction: the performance of the methods applied in the experimental cases.

Experimental case Methods Specificity Sensitivity AUC

Case 1 AM with PFV 0.7612 ± 0.0121 0.7401 ± 0.0117 0.8320 ± 0.0128

Case 1 AM without PFV 0.6987 ± 0.0109 0.7242 ± 0.0134 0.8109 ± 0.0103

Case 1 LSTM 0.6237 ± 0.0112 0.6808 ± 0.0129 0.7586 ± 0.0154

Case 1 GBTs 0.5631 ± 0.0093 0.6591 ± 0.0107 0.7323 ± 0.0140

Case 1 RF 0.4909 ± 0.0145 0.6214 ± 0.0178 0.7190 ± 0.0167

Case 1 LR 0.4012 ± 0.0119 0.6022 ± 0.0201 0.7078 ± 0.0198

Case 2 AM with PFV 0.7261 ± 0.0130 0.7527 ± 0.0190 0.8260 ± 0.0108

Case 2 AM without PFV 0.6704 ± 0.0145 0.7358 ± 0.0125 0.8045 ± 0.0110

Case 2 LSTM 0.5409 ± 0.0119 0.7167 ± 0.0140 0.7591 ± 0.0169

Case 2 GBTs 0.5033 ± 0.0121 0.6559 ± 0.0138 0.7183 ± 0.0136

Case 2 RF 0.4597 ± 0.0172 0.6371 ± 0.0117 0.6992 ± 0.0171

Case 2 LR 0.4143 ± 0.0131 0.6120 ± 0.0193 0.6790 ± 0.0126

Case 3 AM with PFV 0.7921 ± 0.0112 0.76231 ± 0.0127 0.85751 ± 0.0153

Case 3 AM without PFV 0.7528 ± 0.0177 0.7367 ± 0.0116 0.8229 ± 0.0199

Case 3 LSTM 0.6268 ± 0.0105 0.7019 ± 0.0182 0.7783 ± 0.0165

Case 3 GBTs 0.5775 ± 0.0165 0.6644 ± 0.0155 0.7408 ± 0.0106

Case 3 RF 0.5101 ± 0.0109 0.6499 ± 0.0181 0.7387 ± 0.0101

Case 3 LR 0.4243 ± 0.0113 0.6231 ± 0.0130 0.7199 ± 0.0160

AM, attention model; PFV, predicted future values by TCN; LTSM, long short-term memory; GBTs, gradient boosted trees; RL, logistic regression; RF, random forest.

TABLE 2 | AKI stage prediction: the AKI stage prediction performance of the attention-based model with predicted future values in the experimental cases.

Experimental case AKI stage Specificity Sensitivity AUC

Case 1 Stage 1 0.5235 ± 0.0143 0.7928 ± 0.0180 0.7309 ± 0.0144

Case 1 Stage 2 0.5563 ± 0.0115 0.8066 ± 0.0109 0.7874 ± 0.0129

Case 1 Stage 3 0.7720 ± 0.0118 0.7991 ± 0.0203 0.8671 ± 0.0107

Case 2 Stage 1 0.5057 ± 0.0161 0.7651 ± 0.0145 0.6964 ± 0.0126

Case 2 Stage 2 0.5387 ± 0.0124 0.7703 ± 0.0172 0.7387 ± 0.0174

Case 2 Stage 3 0.6992 ± 0.0181 0.7914 ± 0.0188 0.8264 ± 0.0152

Case 3 Stage 1 0.5416 ± 0.0119 0.7139 ± 0.0107 0.6742 ± 0.0097

Case 3 Stage 2 0.5837 ± 0.0143 0.8083 ± 0.0128 0.7655 ± 0.0130

Case 3 Stage 3 0.7302 ± 0.0149 0.7751 ± 0.0139 0.8279 ± 0.0081

TABLE 3 | AKI onset time interval prediction: the AKI onset time interval prediction performance of the attention-based model with predicted future values in the

experimental cases.

Experimental case AKI onset interval Specificity Sensitivity AUC

Case 1 0–12 h 0.5266 ± 0.0097 0.5937 ± 0.0113 0.6891 ± 0.0104

Case 1 12–24 h 0.5049 ± 0.0131 0.5791 ± 0.0099 0.6750 ± 0.0119

Case 2 0–24 h (day 1) 0.5681 ± 0.0109 0.7197 ± 0.0122 0.7318 ± 0.0141

Case 2 24–48 h (day 2) 0.5373 ± 0.0138 0.6786 ± 0.0108 0.7035 ± 0.0159

Case 2 48–72 h (day 3) 0.3928 ± 0.0101 0.6090 ± 0.0137 0.6271 ± 0.0190

Case 2 72–96 h (day 4) 0.2049 ± 0.0113 0.5182 ± 0.0109 0.5319 ± 0.0138

Case 2 96–120 h (day 5) 0.1828 ± 0.0122 0.4901 ± 0.0117 0.5193 ± 0.0112

Case 2 120–144 h (day 6) 0.1528 ± 0.0140 0.4123 ± 0.0159 0.5042 ± 0.0112

Case 3 0–24 h (day 1) 0.5865 ± 0.0116 0.7291 ± 0.0091 0.7518 ± 0.0131

Case 3 24–48 h (day 2) 0.5448 ± 0.0128 0.6890 ± 0.0085 0.7091 ± 0.0106

Case 3 48–72 h (day 3) 0.4028 ± 0.0079 0.6190 ± 0.0167 0.6371 ± 0.0159

Case 3 72–96 h (day 4) 0.2019 ± 0.0108 0.5149 ± 0.0149 0.5279 ± 0.0171

Case 3 96–120 h (day 5) 0.1799 ± 0.0113 0.5011 ± 0.0132 0.5128 ± 0.0110
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case 3 was 48 h, more temporal features data in case 3 were
considered into the proposed model to better learn the trend
of the AKI risk.

6) For the AKI onset time interval prediction, we found that in
experimental case 2 and case 3, the prediction performance
of the proposed model was around 70% AUC in the first two
onset intervals (the length of each onset interval is 24 h) of
the prediction interval, but it came to around 52% AUC in
the remaining onset intervals.

Performance in Clinical Practice
The proposed model was applied to clinical AKI prediction for
ICU patients, and we took the value of the selected features
during the first 24 h of the patients’ ICU stay, to predict the AKI
risk in the next 6 days, including the prediction of the AKI case,
AKI stage, and AKI onset time interval (24 h as the length of each
onset interval).

Before we apply the model for AKI prediction, we processed
the clinical data as follows:

1) The data structure transform: the initial clinical data were
exported from the hospital’s information system and saved in
an Excel file. We designed a script to parse the data in the
exported file, and data were imported to our database by a
structure that is compatible with the model’s data loader.

2) Comorbidity label design: since the admission diagnosis
notes in clinical data were recorded in Chinese, to get the
comorbidity information, lists of Chinese keywords were
provided to retrieve the information.

3) Data verification: the filter conditions (details in sections Data
Filter and Experimental Setup) were implemented on the data
to exclude invalid patients’ data.

4) Detail preprocessing: like the data preprocessing on MIMIC-
III data (details in the section Data Preprocessing), we also
applied it on clinical data, to preprocess the details.

There were 226 patients tested by the model, and details of the
dataset are shown in Figure 6. The comparison of the model
performance between experimental case 2 and clinical practice
is shown in Figure 7 and summarized as follows:

1) The prediction performance of AKI case in clinical practice
was around 3.5% less on specificity, while it was around
2.6% less on sensitivity and 3.6% less on AUC (shown in
Figure 7A).

2) The prediction performance of AKI stage 1 in clinical practice
was around 4% less on AUC, while it was around 3.6% less on
AUC for stage 2 and 2.4% less on AUC for stage 3 (shown in
Figures 7B–D).

3) The prediction performance of AKI onset time interval in
clinical practice was around 3% less on AUC in the first onset
interval (0–24 h), while it was around 6.3% AUC less in the
second onset interval (24–48 h) and 7.6% AUC less in the
third one (48–72 h). The details are shown in Figure 8.

Analysis of the Impact of Medical Features
on AKI
To further discover how the medical features in our study impact
on AKI, we analyzed the selected features data in our study,

FIGURE 6 | The analysis of the clinical dataset. (A) AKI case: the total number of the patients who developed AKI and that of the not AKI case; (B) AKI stage: the total

number of the AKI patients in each stage; (C) onset interval: the total number of AKI patients in each onset interval.
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FIGURE 7 | The comparison between experimental case 2 and clinical practice, at AKI case prediction and AKI stage prediction. (A) AKI case prediction, (B) AKI

stage 1 prediction, (C) AKI stage 2 prediction, (D) AKI stage 3 prediction.

FIGURE 8 | The comparison between experimental case 2 and clinical practice, at AKI onset time interval prediction. (A) Prediction in 0–24 h, (B) prediction in

24–48 h, (C) prediction in 48–72 h, (D) comparison between the onset time intervals.

including laboratory test results, vital signs, medications, and
comorbidities, to identify their different representations between
AKI cases and not AKI cases. The analysis was composed of two

steps: firstly, we analyzed the association between the selected
medical features and the AKI results; secondly, we detected the
impact of weights of each medical feature with the help of the
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attention-based neural network. The analysis was based on the
dataset of experimental case 1, which included 46,385 patients,
consisting of 13,935 AKI cases and 32,450 not AKI cases.

Association Analysis
We firstly analyzed the laboratory test results and vital signs
between the AKI case and not AKI case (the analysis result
is shown in Table 4) to discover the association between each
feature and the AKI result, positive or inverse. From the table,
we find that several values in the last column are higher than
15%, such as lactate, glucose, creatinine, blood urea nitrogen,
prothrombin time, and partial thromboplastin time, which may
show that there are positive associations between the AKI case
and these features; besides, there are also some values in the
last column which are lower than −15%, such as platelet,
hemoglobin, hematocrit, urine, and INR, which may reflect that
they are inversely associated with the AKI case.

Patients’ comorbidities and medications data were also
analyzed by AKI case and not AKI case. From Table 5, we find
that with comorbidities such as cirrhosis, coronary artery disease
(CAD), or congestive heart failure, the AKI percentage is more

than 50%, while it is near to 50% with liver disease and diabetes.
These comorbidities may affect patients to develop AKI.

For medication, more than 50% patients who had the
medications such as drugs used in diabetes or diuretics developed
AKI (shown in Table 6), which may show the probable positive
association between AKI and these features. For medications
such as lipid-lowering medication, antithrombotic agents, and
agents acting on the renin–angiotensin system, <50% of the
patients developed AKI, which may mean that these medications
can prevent AKI onset to some extent.

Impact Weight Analysis
To explore how the features in our model impact the AKI
prediction result, we employed attention function as one part of
the prediction model. We got the weight parameters produced by
attention function which may refer to the impact of the features
to AKI result, and the weight data are shown in Figure 9 (we
chose the top impact features by weight from largest to smallest in
each group: comorbidity, medication, and lab test and vital sign).

From the figure, we find that:

TABLE 4 | Analysis of laboratory test results and vital signs by AKI case.

Feature name AKI Not AKI Delta: AKI–not AKI Ratio: Delta/AKI (%)

Lactate 0.0436 0.0235 0.0201 46.12

Creatinine 0.0683 0.0412 0.0271 39.69

BUN 0.1076 0.0755 0.0321 29.85

PT 0.0515 0.0365 0.015 29.17

PTT 0.1676 0.1256 0.042 25.08

Glucose 0.9883 0.8164 0.1719 17.39

Anion gap 0.2427 0.227 0.0158 6.50

Potassium 0.186 0.1774 0.0086 4.63

Bilirubin 0.0213 0.0205 0.0008 3.72

WBC 0.0199 0.0193 0.0007 3.28

Chloride 0.7187 0.713 0.0058 0.80

SpO2 0.968 0.9653 0.0027 0.28

Temperature 0.8281 0.8266 0.0015 0.18

Sodium 0.7522 0.7551 −0.0029 −0.38

SBP 0.4373 0.4462 −0.0089 −2.04

Bicarbonate 0.3947 0.4048 −0.0101 −2.57

Albumin 0.4383 0.4594 −0.021 −4.80

RR 0.2919 0.3065 −0.0146 −4.99

MBP 0.2513 0.2706 −0.0194 −7.70

Heart rate 0.3574 0.3892 −0.0318 −8.89

DBP 0.3221 0.3611 −0.0389 −12.08

Platelet 0.1189 0.1394 −0.0205 −17.25

Hemoglobin 0.3692 0.4411 −0.0719 −19.47

Hematocrit 0.3731 0.4458 −0.0728 −19.51

Urine 0.655 0.7905 −0.1355 −20.68

INR 0.0266 0.0351 −0.0085 −32.14

The value in the column “AKI” represents the mean of each normalized feature value by AKI patients, while it is the mean of each normalized feature value by not AKI patients in the

column “not AKI.” We show the subtracted result in column “Delta” from column “AKI” to “not AKI.” PTT, partial thromboplastin time; INR, international normalized ratio; PT, prothrombin

time; BUN, blood urea nitrogen; WBC, white blood count; SpO2, blood oxygen saturation; SBP, systolic blood pressure; DBP, diastolic blood pressure; RR, respiration rate; MBP, mean

arterial blood pressure.
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1) The weight of feature urine is the largest, which is consistent
with previous research results (40), suggesting that clinicians
should pay more attention to the urine volume value of
patients during treatment to detect AKI as early as possible.

2) The risk of AKI is significantly correlated with blood glucose
value, which is consistent with a study on the influence
of perioperative blood glucose level on the prognosis
of hospitalization in patients undergoing coronary bypass
surgery in Imran (41). Hyperglycemia may induce the
accumulation of oxidative products at the mitochondrial
level, which may damage the renal endothelial cells (42).
Therefore, blood glucose control in severe patients is
important in the prevention and treatment of AKI.

3) Creatinine and BUN are traditional indicators of renal
function. In the proposed model, the weights of creatinine
and BUN are also relatively high, suggesting that these
features aremeaningful to AKI prediction, which is consistent
with the results in previous studies (43).

TABLE 5 | Analysis of the comorbidities data.

Comorbidity AKI Not AKI Ratio:

AKI/(AKI+not

AKI) (%)

Ratio: not

AKI/(AKI+not

AKI) (%)

Cirrhosis 70 49 58.82 41.18

CAD 1,325 931 58.73 41.27

CHF 602 567 51.5 48.5

Liver disease 20 21 48.78 51.22

Diabetes 24 28 46.15 53.85

MI 457 653 41.17 58.83

Hypertension 51 83 38.06 61.94

Jaundice 24 42 36.36 63.64

PV 15 30 33.33 66.67

UTI 87 183 32.22 67.78

Sleep apnea 1 7 12.5 87.5

The value in column “AKI” is the total number of the patients who developed AKI with

the specified comorbidity, while the “not AKI” column shows the total number of patients

without the AKI case. CAD, coronary artery disease; CHF, congestive heart failure; MI,

myocardial infarction; PV, peripheral vascular; UTI, urinary tract infection.

4) The feature sodiummay also become an important parameter
for the prediction according to its high weight in the
prediction, which is consistent with Lombardi’s research
results (44). The change in sodium level leads to a change of
osmotic pressure and AKI may develop finally.

5) Since non-steroidal anti-inflammatory drugs (NSAIDs) can
inhibit prostaglandin synthesis, which may develop renal
arteriole contraction, renal blood perfusion reduction, and
AKI (45), it gets the highest weight in the “medication” group.

6) Lipid-lowering medication may be an important indicator
of AKI prediction according to its weight on the figure. It
has been reported that these medications can prevent AKI
onset in coronary bypass surgery (46), so AKI risk may be
reduced among those ICU patients who have lipid-lowering
medications during treatment.

7) In the group “comorbidity,” congestive heart failure,
peripheral vascular, hypertension, and diabetes are the top
four comorbidities that impact AKI prediction, which may
demonstrate that these comorbidities affect renal function.

DISCUSSION

In our study, an attention-based neural network approach was
proposed for the prediction of AKI risk and for the analysis of
the impact of medical features. The approach was trained by the
MIMIC-III dataset and applied in clinical practice.

Since AKI is one of the high-incidence diseases among
hospitalized patients in the ICU, AKI case information is
important for clinicians to make preliminary diagnosis and
decision. Besides, because an increase in the severity of AKI is
related to an increase in mortality (2), AKI stage information
may help to better learn about AKI severity and provide
intervention that may be prompt and effective, to reduce
mortality. Furthermore, since the KDIGO criteria are referred to
define the AKI case and stages in our study, there are several time
points used for the definition, such as 24, 48 h, and 7 days, and
the onset time interval is set up according to these points. All
these factors impel us to provide an approach that can predict the
information of AKI case, AKI stage, and AKI onset time interval.

In the AKI prediction approach, we firstly developed a
temporal convolutional network for future value prediction

TABLE 6 | Analysis of the medications data.

Medication AKI Not AKI Ratio: AKI/(AKI+not AKI) (%) Ratio: not AKI/(AKI+not AKI) (%)

A10 3,667 3,064 54.48 45.52

C03 4,249 3,780 52.92 47.08

C02 2,092 2,396 46.61 53.39

M01 1,147 1,342 46.08 53.92

C10 2,994 3,635 45.17 54.83

B01 7,180 10,288 41.10 58.90

C09 1,067 2,038 34.36 65.64

The value in column “AKI” is the total number of the patients who developed AKI with the specified medication, while the “not AKI” column shows the total number of patients without

AKI case. C03, diuretics; M01, nonsteroidal anti-inflammatory drugs; V08, contrast media; C09, agents acting on the renin–angiotensin system; C02, antihypertensives; A10, drugs

used in diabetes; B01, antithrombotic agents; C10, lipid-lowering medication.
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FIGURE 9 | The attention weight of the features. (A) The attention weight of each comorbidity to AKI case. CHF, congestive heart failure; MI, myocardial infarction;

CAD, coronary artery disease. (B) The attention weight of each item in the lab tests and vital signs to AKI case. BUN, blood urea nitrogen; INR, international

normalized ratio; PT, prothrombin time; PTT, partial thromboplastin time; WBC, white blood count. (C) The attention weight of each medication to AKI case. M01,

nonsteroidal anti-inflammatory drugs; C09, agents acting on the renin–angiotensin system; C10, lipid-lowering medication; C03, diuretics; C02, antihypertensives;

B01, antithrombotic agents; A10, drugs used in diabetes.

of the temporal features by their historical records, such as
laboratory test results and vital signs, during the ICU stay; then
we employed the attention-based neural network model which
combines the predicted future data together with the patients’
other selected features data, such as demographics, medications,
and comorbidities, as the input sequence, to predict AKI case,
AKI stage, and AKI onset time interval. Compared with the
traditional machine learning algorithms, the LSTM model, and
the recent AKI prediction models such as MN+HieLSTM (14),
our approach improved the performance of AKI case prediction
on MIMIC-III dataset by around 5% AUC.

We also had a comparison between the two methods—
attention-based neural network with predicted future value and
that without predicted future value—in the three experimental
cases of our study. The results reflected that the model with
predicted future value improved the prediction performance by
around 4% AUC. The possible explanation is that the temporal
features play important roles in the prediction and the predicted
future value of each temporal feature can better represent the
trend of the patient’s AKI risk than its historical value.

For the AKI stage prediction in three experimental cases, the
AUC value increased with the AKI stage, which means that the
higher the AKI stage, the better the model performance. This
result is likely to be related to AKI stage definition by the KDIGO
criteria (details in section AKI Definition): the stage depends on
the value of serum creatinine and that of urine volume mainly.
The higher the serum creatinine value, the higher the AKI stage,
and there may be positive associations between serum creatinine

and other features, such as the laboratory test results and vital
signs, which make the features of the high AKI stage easier to be
recognized by the proposed model.

From the results of AKI onset time interval prediction, we
found that the model performance in the first two intervals
was better than in the other intervals, and this may indicate
that with our model, the patients’ selected features data can
only affect the prediction result within the next 48 h, and
the influence may consistently decline over time. To make a
more accurate onset interval prediction, we set the length of
each onset interval to 12 h and focus on the first 24 h of the
prediction interval in experimental case 1. The performance
in the first onset interval was better than in the second
one (68.9% AUC compared with 67.5% AUC), but they were
both lower than the performance in the first onset interval
of case 2 and case 3 (around 73% AUC), which may show
that prediction performance decreases as the length of onset
interval decreases.

To validate the performance of our approach, we applied it in
a real clinical AKI prediction. During the model implementation
in clinical practice, the prediction performance decreased by a
varying degree. The decline may due to a discrepancy of the
medical feature values made by different physicians, such as
the diagnosis of comorbidities; besides, the values produced by
different medical equipment may also be different.

From the analysis result of the association between
medical features and AKI case, we found that features,
such as lactate, glucose, creatinine, blood urea nitrogen,
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prothrombin time, and partial thromboplastin time, may
have positive associations with the AKI case, while another
group, such as platelet, hemoglobin, hematocrit, urine,
and INR, may potentially be inversely associated with the
AKI case.

Furthermore, with the help of the attention function in
the prediction model, we identified the impact weights of
the selected medical features in our study. The features were
classified into three groups: “medication,” “comorbidity,”
and “lab test and vital sign.” From the attention weights
in Figure 9, we found that features in the group “lab
test and vital sign” played more important roles in AKI
prediction than features in the other two groups, especially
the features urine, glucose, creatinine, sodium, and blood
urea nitrogen. Moreover, the influence of features in the
group “medication” to AKI cannot be ignored according to
their high attention weights. As the top three impact features
in the group “medication,” non-steroidal anti-inflammatory
drugs, agents acting on the renin–angiotensin system, and
lipid-lowering medication show their importance to the
AKI results.

There are two main limitations in our study:

1) The data we used for the model training were the EHR
records during the first 24 (48) h of the new admitted ICU
patients, which may lose some significant information that
can help improve the performance of AKI prediction, such
as past medical history, past laboratory test results, and past
medications of the patients before their ICU admission.

2) We did not consider the intervention data as the input of
the model during the observation interval, and this could
potentially bias the prediction results since the interventions
taken for patients during their ICU stays may affect the
clinical outcomes.

In conclusion, we proposed an end-to-end AKI prediction
approach in our study. The model takes the patients’ EHR
data during their ICU admission as the input and the AKI
prediction result as the output, which provides a convenient and
efficient means for the clinicians to evaluate the comprehensive
AKI information, including the AKI risk, the possible severity,
and onset time interval, for the new admitted ICU patients by
their clinical data and take the appropriate interventions before
the onset of AKI. Besides, we further explore the association
between the features and the AKI onset and the impact of each
feature to the AKI result, which may help clinicians to better
observe the features that have a great influence on AKI risk,
and take targeted treatments to keep values of the features in
normal ranges.

AKI is a dangerous and complicated disease with a potentially
life-threatening condition. To avoid physical injury caused by
AKI, in the future, we may improve our approach from the
following aspects:

1) More training data for the prediction model: patients’
medical imaging data, such as the color ultrasound of the

kidney, will be included in the training dataset, to get more
medical information.

2) AKI prediction model for a specific disease group: since the
roles of medical features may vary in different disease groups,
and a general AKI predictionmodel may not fit well for all the
groups, we may develop a new AKI prediction model which
is based on the proposed approach and is integrated with the
knowledge ontology of the targeted disease group.

3) Develop efficient methods to identify the abnormal renal
decline as early as possible: to detect the AKI risk of patients
before they are admitted to the ICU, we will consider more
medical data from the patients, including their outpatient
data, inpatient data, and physical examination data, to
track the temporal values of the features which have a
great influence on AKI risk and explore patterns predictive
of renal decline that may make detection of early AKI
risk feasible.
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