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Chronic kidney disease (CKD) is increasing in most countries and kidney transplantation

is the best option for those patients requiring renal replacement therapy. Therefore, there

is a significant number of patients living with a functioning kidney allograft. However,

progressive kidney allograft functional deterioration remains unchanged despite of major

advances in the field. After the first post-transplant year, it has been estimated that

this chronic allograft damage may cause a 5% graft loss per year. Most studies

focused on mechanisms of kidney graft damage, especially on ischemia-reperfusion

injury, alloimmunity, nephrotoxicity, infection and disease recurrence. Thus, therapeutic

interventions focus on those modifiable factors associated with chronic kidney allograft

disease (CKaD). There are strategies to reduce ischemia-reperfusion injury, to improve the

immunologic risk stratification and monitoring, to reduce calcineurin-inhibitor exposure

and to identify recurrence of primary renal disease early. On the other hand, control

of risk factors for chronic disease progression are particularly relevant as kidney

transplantation is inherently associated with renal mass reduction. However, despite

progress in pathophysiology and interventions, clinical advances in terms of long-term

kidney allograft survival have been subtle. New approaches are needed and probably a

holistic view can help. Chronic kidney allograft deterioration is probably the consequence

of damage from various etiologies but can be attenuated by kidney repair mechanisms.

Thus, besides immunological and other mechanisms of damage, the intrinsic repair

kidney graft capacity should be considered to generate new hypothesis and potential

therapeutic targets. In this review, the critical risk factors that define CKaD will be

discussed but also how the renal mechanisms of regeneration could contribute to a

change chronic kidney allograft disease paradigm.
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INTRODUCTION

CKD is and will be one of the biggest threats for health systems worldwide due to its prevalence
and cost, especially when referring to kidney replacement therapy (1). Nowadays, kidney
transplantation is the treatment of choice since it has shown its superiority at improving survival
and quality of life and reducing costs and comorbidity (2). The incidence of this technique has
increased in recent years reaching a median rate of 33 pmp in Europe (3). Therefore, there
is a significant number of patients living with a functioning kidney allograft, particularly in
high-income countries. On the other side, progressive allograft function loss has become one of the
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most important causes of KRT requirement. Looking back,
kidney allograft survival has undoubtedly improved.While in the
90’s the median survival for kidney grafts was nearly 6.6 years,
the current expected lifespan is about 8.8 years (4). However,
this gain in allografts expected lifetime is mostly due to the
improvement in short time graft survival (4). After the first
post-transplant year, it has been estimated that chronic allograft
damage may cause a 5% graft loss per year and this rate has seen
very little decline in recent years (5). As a result, while short-term
graft survival is relatively ensured, the tendency to improve long-
term graft survival seems to have slowed down if we compare
recent cohorts (3, 5).

From a clinical point of view, there is a wide spectrum of
etiologies that explain graft damage (6). Currently, therapeutic
interventions target those modifiable factors associated with
kidney allograft attrition: reduce ischemia-reperfusion injury,
minimize calcineurin-inhibitor exposure, control of classical risk
factors or early identification of recurrence of primary renal
disease. In addition, a lot of efforts are focused on improving
immunologic risk stratification and on the development of new
therapeutic strategies against kidney’s rejection (7). Separately,
all these etiologies can contribute in a major or minor form
to the loss of renal mass that will end in chronic graft disease
progression (8, 9).

Histologically, chronic graft damage means almost always
fibrosis. Fibrosis develops in many patients during the first
year after transplantation, especially in the first 3 months (10).
Because most of the knowledge we have in this field is based on
protocol biopsies, it is difficult to precisely titter the prevalence
of fibrosis in allograft, but it varies from 17 to 66% according to
the series (11, 12). However, fibrosis will continue to grow in the
following years, especially in those patients with more fibrosis
in former biopsies (12–14). This progression happens despite
the absence or minimization of risk factors (13). Currently,
alloimmunological damage is thought to be the main cause of
kidney allograft fibrosis (15).

In short, a set of insults from different etiologies are capable
of harming the kidney graft and altogether contribute to one
common outcome. In this review, we will use the terminology
chronic kidney allograft disease (CKaD) to refer to that global
damage. We prefer the term CKaD in spite of other formulas
(i.e., chronic allograft nephropathy) to emphasize CKaD as a
global entity that summarizes the sum of all the damages of
each etiology, not only immunological. In addition, we like the
similarity with the term CKD as it helps to understand CKaD as
a chronic, progressive, multifactorial disease, and above all, as a
disease that requires a specific approach with nephroprotective
strategies. In fact, despite the progress made in each area,
clinical advances in terms of long-term kidney graft survival
have been subtle (3) so new approaches are needed and the
concept CKaD aims to provide a more holistic point of view. It
is important to understand that chronic allograft deterioration is
the consequence not only of the damage from various etiologies
but also of the imbalance of kidney’s own repair mechanisms
(16). Based on recent investigations, it can be hypothesized that
besides immunological and other mechanisms of damage, the
graft’s intrinsic capacity to repair could attenuate kidney damage

and should be considered in new therapeutic approaches. In this
review, the critical risk factors that define CKaD will be discussed
but also how the knowledge on kidney mechanisms of repair
could contribute to change the CKaD paradigm.

THE HARMS

There are several mechanisms of kidney allograft damage and
the most relevant will be described in this part (Table 1).
Individually, all of them cause nephron loss on a solitary
kidney and potentially activate the key mechanism of kidney
disease progression by producing glomerular hypertension
and hyperfiltration. Renin angiotensin blockade and SGTL-2
inhibitors could alleviate this common mechanism of CKD
progression in native and transplanted kidneys. However, this
topic is beyond the scope of this revision.

Anti-body Mediated Rejection (ABMR)
Antibody-mediated rejection (ABMR) has been recognized as
a major cause of organ-transplant failure during the past two
decades (17). Nowadays, it is widely accepted that ABMR is the
major risk factor for the development of CKaD and it can explain
more than half of graft losses (18). Although there is some lack
of knowledge about its natural history yet, understanding about
ABMR has drastically increased in last years.

ABMR clinical impact increases poor graft and patient
survival outcomes (19). In a large cohort of 885 kidney transplant
recipients who underwent biopsies for graft dysfunction, patients
with ABMR morphology showed an 8-year graft survival of
53% in C4d-positive and 66% in C4d-negative. This rate was
significantly lower than the 81% seen in patients without any
rejection features (20). To notice, the presence of complement-
fixing antibodies, the extent of graft dysfunction at baseline
and the presence of chronic lesions (capillary multilayering,
arterial intimal fibrosis, glomerular basement membrane double
contours) are associated with the poorest outcomes (21, 22). The
main risk factor known for ABMR development is the number of
HLA mismatches and poor adherence to medications.

Briefly, its pathogenesis is explained by the existence
or de novo apparition of donor-specific antibodies (DSA).
DSAs recognize some molecules expressed on the recipient’s
endothelium and this initiates an inflammatory cascade that leads
to tissue damage. Among others, the classical pathway of the
complement has been identified as an important way for antibody
mediated damage (23). This simplistic explanation was the basis
for the first definition of ABMR in the Banff classification
from 1997 and allowed to stablish three standardized criteria
for its diagnosis: First, identification of DSA. Second, evidence
of endothelial damage. Third, proof of complement mediated
damage through Cd4 staining.

Though, ABMR pathogenesis is more complex and further
information has forced to readapt its definition until the actual
one (24). Due to its predominant role in ABMR, DSA against
HLA antigens are commonly screened in clinical practice,
especially if rejection is suspected. However, DSA are not always
targeted to HLA antigens but to other endothelial antigens (23).
Thus, the current definition of ABMR accepts the diagnostic
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TABLE 1 | Harms from different etiology contribute to CKaD.

HARMS Current therapeutic strategy Future strategies

ABMR Plasma exchange + IvIg Bortezomib (NCT01399593, NCT01567085)

C1 esterase inhibitor

Tocilizumab

Mollecular matching organ allocation

CNI toxicity CNI minimization strategies Personalized CNI dosing

GN Recurrence FSGS Plasma exchange + Rituximab Rituximab

MN Cyclophosphamide / Rituximab Rituximab

IgA Nephropathy Reduce proteinuria

BP control

MPGN Eculizumab/Rituximab Eculizumab/Rituximab

Diabetic nephropathy recurrence Insulin iSGLT2

Reduce proteinuria

Infection CMV Therapeutic personalized strategy

Viremia monitoring

Donor/Rcipient serology screening

BK virus Stepwise drug adjust BK virus IVIG

imTOR + tacrolimus Cidofovir, Leflunomide, others

IRI Minimize cold ischemia time C1 esterase inhibitor

Perfusion machine CNI delayed introduction

Others

even without an identified DSA as long as evidence of antibody
mediated damage exists (24). In addition, although complement
activation is the most deleterious mechanism of allograft
injury (25), antibody mediated harm also occurs through other
pathways (26). Consequently, ABMR can also be diagnosed in
C4d negative cases if DSA are present or in chronic ABMR.

No therapeutic strategy has received FDA approval for the
treatment of antibody-mediated rejection. Based on ABMR
pathogenesis, plasma exchange plus IVIG to remove circulant
DSAs is considered the current standard of care despite low
quality evidence (27, 28). Two trials were designed to test the
effect of Rituximab plus plasmapheresis and/or IVIG on ABMR
in order to decrease the production of DSA. Both trials ended
with underpowered results showing no benefit on short graft
survival nor on GFR loss prevention (29, 30). Furthermore,
targeting plasmatic cells has not shown the desired effect.
The BORTEJECT trial was based on the anti-proteosome drug
Bortezomib. No differences in GFR attrition were observed but
more gastrointestinal and hematological adverse events were
observed in the Bortezomib group (31). Two more randomized
clinical trials are currently active and will test Bortezomib
(ClinicalTrials.gov numbers, NCT01399593 and NCT01567085).
The aforementioned impact of the complement cascade in
ABMR has been another therapeutic approach. To that end, the
anti-C5 antibody Eculizumab, has been used both for ABMR
treatment and for ABMR prevention in desensitization protocols.
Despite some trends suggesting marginal beneficial effects (32),
at this point of time Eculizumab has also failed to prevent
graft damage secondary to ABMR (33, 34). Instead of targeting
the end of the cascade, another valid strategy could be point
to the top through C1 esterase inhibitors. In a phase II study
with plasma derived C1 esterase inhibitor, Montgomery et al.

(35) showed a secure profile of the treatment and described
that no transplant glomerulopathy was found in the treatment
group whereas transplant glomerulopathy were present in 3 of 7
patients in the control group. Another therapeutic approach with
promising result is the use of the anti-IL-6 antibody Tocilizumab,
which in a French cohort of KTR with refractory cABMR
showed a graft survival of 80% at 6 years, with a reduction
in glomerulitis, peritubular capilaritis and C4d deposition in
allograft biopsies after treatment (36). RCTs are currently going
on to confirm these therapeutic options. Other new strategies
tested in ongoing registered trials are corticotropin or double
filtration plasmapheresis (13). However, it should be pointed out
that there is a surprising discrepancy between the theoretic high
ABMR prevalence and the lack of power of interventional clinical
trials on chronic ABMR due to the lack of patients fulfilling
inclusion criteria.

Due to the lack of a solid therapeutic approach, prevention
of ABMR occurrence may be crucial. Nowadays, to talk
about ABMR prevention means improvement of compatibility.
Scientific literature is full of evidence showing the correlation
with more HLA matches and better graft outcomes (37).
However, HLA incompatible transplantations cannot be avoided
in current health systems. The study of these HLA miss-matched
transplants has identified that some of these miss-matches
confers more risk (Unacceptable miss-match) while others are
better tolerated (acceptable mismatches) (38, 39). Differences in
permissibility between HLA-mismatched combinations may be
explained by a different impact of amino-acid polymorphisms
on peptide-binding features. Some tools have been developed
to calculate this binding-site or epitope miss-match to further
compatibility stratification. In a Dutch multi-center study, 2,918
donor–recipient couples were retrospectively stratified using
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one of these tools (Predicted Indirectly ReCognizable HLA
Epitopes presented by recipient HLA class II: PIRCHE-II) (40).
For these donors–recipients couples, PIRCHE-II numbers were
related to graft survival in univariate and multivariable analyses.
Recently, DQ-antibody verified eplet miss-match has showed
to be associated with an increased risk of dnDSA formation,
kidney rejection, decline of graft function and graft failure (41).
However, no study has reported benefits of these tools in a
decision-making prospective protocol.

In short, ABMR is the main cause of long-term graft loss
and so far, we have failed to dramatically improve its outcomes.
In the absence of effective therapeutic approaches, prevention
of ABMR occurrence plays a key role. Probably, molecular
matching techniques will be included in organ allocation schemes
in the next years. Early treatment and avoiding fibrosis could be
essential to prevent long-term allograft attrition.

Calcineurin Inhibitor (CNI) Toxicity
The importance of CNI toxicity on CKaD has drastically
decreased over the decades (42). Putting on some perspective,
CNI toxicity leading to chronic damage was pointed out after
Myers et al. (43) published a case-control study of cardiac
transplant recipients under treatment with Cyclosporine for at
least 12 months. In this study, 2 patients developed ESKD and
the median eGFR of patients treated with CNI presented an
important attrition in comparison with controls. Since then,
CNI related toxicity leading to ESKD has been observed in
other solid organ transplantation cases. Nevertheless, more than
three decades have passed and there have been some changes in
CNI paradigm: first, the better knowledge of antibody mediated
damage and the development of new diagnostic techniques has
brought out the important role of alloimmunity in CKaD (see
above). Second, CNI levels have been taken to the minimum
necessary to ensure safety for both patient and graft survival.
Third, Tacrolimus more than Cyclosporine is the current CNI of
choice in many cases reducing associated adverse events (44, 45).
After all these changes, CNI toxicity has been displaced as a cause
of CKaD by some authors. In 2012 Sellarés et al. (18) tried to find
a diagnostic explanation beyond “chronic graft nephropathy” for
every graft loss in a cohort of 315 patients. In that cohort, no graft
failure was attributed to CNI toxicity.

How can CNI toxicity as cause of CKaD have gone from
all to nothing? Probably, there are a set of characteristics that
make CNI toxicity something like Santa: “you can only see if you
believe in it”:

a) On one hand, existence of CNI toxicity should be beyond
doubt. Its damage mechanisms have been characterized, with
an acute reversible damage related to an imbalance between
vasodilators and vasoconstrictors and tubular vacuolization;
and a chronic damage secondary to reduced glomerular
blood flow with ischemic-reperfusion mediated injury (46).
In the other hand, when large sparing CNI clinical trials
were performed, differences in graft function seemed to be
more related to the introduction of IL-2 antibody and MMF
optimization than to CNI dosage (7, 47, 48).

b) CNI toxicity is dose-dependent (49, 50). However, the range of
tacrolimus levels in those studies were between 5 and 25 ng/ml
and the actual recommended target levels are much narrower,
conferring less significant differences (51).

c) Histologically, chronic damage due to CNI toxicity shows
arteriolar hyalinosis, interstitial fibrosis, tubular atrophy,
juxtaglomerular apparatus hyperplasia, glomerular capsular
fibrosis and global glomerulosclerosis. Unfortunately, none
of these findings are pathognomonic, have not any specific
marker and its presence can be explained by other common
graft comorbidities.

d) Finally, some factors which are not measured in clinical
practice could explain important differences in CNI
susceptibility. For example, local concentration of
Cyclosporine in kidney is associated with more susceptibility
to toxicity and chronic damage (52). However, local
concentration does not correlate with systemic blood levels
and has a great interindividual variation due to genetic
differences and drug interactions. Similarly, while some
authors have described the presence of DNA SNPs that
confers and increased risk of CNI toxicity (53), personalized
CNI dosing according to genetic SNPs exists but is not
globally extended.

In conclusion, CNI toxicity is an exclusion diagnosis without any
specific marker. From a pragmatic point of view, while in other
solid organ transplants chronic kidney damage could reasonably
be attributed to CNI toxicity (54); in kidney transplantation
is hard to find a situation in which graft loss occurs without
any other comorbidity that could contribute to chronic renal
damage. Thus, isolated chronic CNI toxicity diagnostic is always
controversial and should be performed with caution. However,
beyond a categorical diagnostic, CNI effects on renal function
and chronic damage through fibrosis are probably always present,
contributing to global graft attrition and therefore to CKaD.

Glomerulonephritis (GN) Recurrence
GN recurrence accounts for a large amount of kidney graft
recipients evolving to end stage kidney disease. Its exact
proportion varies from 3 to 18% of graft losses according to the
series (55, 56) but probably, GN recurrence is under diagnosed
in transplant recipients (57). There are four main entities that
explain the majority of cases of GN recurrence: focal segmental
glomerulosclerosis (FSGS), membranous nephropathy (MN),
membranoproliferative GN (MPGN), and IgA nephropathy
(IgAN). In 2017, Cosio and Cattran (58) published an
outstanding review on this topic. So, in this paper we will focused
on the key points and actualize the issue with current evidence
(Table 2).

Recurrent FSGS
FSGS is a common cause of recurrence reaching 30% in 3
years. Of these, nearly 30% will advance to graft loss (58). FSGS
recurrence occurs early after transplantation. Genetic forms of
FSGS are less probable to appear in the allograft except for
podocin mutations (NPHS2) (59). Clinical predictors of GN
recurrence are those signs of disease severity in the primary
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TABLE 2 | Recurrence profile of the main Glomerulonephritis (GN).

GN Recurrence Risk Factors Graft loss Treatment

FSGS 30 % - Aggressive primary disease

- Recurrence in former graft

- Non-genetic (except NPH2 mutation)

30% Plasmapheresis

Rituximab

MN 30-75% - Anti-PLA2R + at diagnostic

- Elevated Anti-PlA2R titter at transplant or after

- HLA-D and PLA2R specific mutations

50% of recurrence

when graft loss occurs

Rituximab or

Cyclophosphamide

IgA Nephropathy 30%

Late recurrence

- Not well-defined

- Steroid withdrawal

10% Avoid steroid withdrawal

MPGN Polyclonal Ig 30% - Low C3/C4 blood levels 10% Rituximab

Monoclonal Ig 70% 50%

C3GN 70% - alterations in the regulation of the alternative pathway

of the complement cascade

Eculizumab (?)

DDD 80–90% 25%

FSGS, Focal segmental glomerulosclerosis; MN, Membranous nephropathy; MPGN, Membranoproliferative glomerulonephritis; C3GN, C3 glomerulonephritis; DDD, Dense

deposit disease. The symbol (?) pretend to express that evidence is scarce.

episode: evolution to dialysis in <3 years after the diagnosis
and high levels of proteinuria after transplantation. Classically,
young age is associated with more recurrence though some new
evidence contradicts this idea (60). Unfortunately, these factors
are imprecise and the most reliable predictor of GN recurrence is
the recurrence itself in a former graft.

Although the pathogenesis of primary FSGS remains
unknown, the clinical profile after transplantation hardly
suggests the presence of a circulating factor (61). In a blind
attempt to remove this factor, plasmapheresis is commonly
used to treat GN recurrence. The TANGO project aims to
create an international collaborative data sharing network about
GN recurrence in order to generate stronger evidence on the
field (62). As a result of this project, Uffing et al. (60) showed
that in current clinical practice the therapeutic response after
plasmapheresis was nearly 50%. The second most common
pharmacological approach seen in this study was the use of
Rituximab. Whether the beneficial effect of Rituximab is through
targeting B lymphocyte or directly to podocyte SMPDL-3b
protein is currently under discussion (63). Curiously, in the
TANGO study there is an almost despicable use of Cyclosporine
despite previous data suggested a potentially beneficial effect
combined with Plasmapheresis (64).

Recurrent MN
Globally, recurrence of MN is about 50%. However, its range
varies from 30 to 75%. This variation is in close relationship
with anti-PLA2R titter profile. Thus, primary MN anti-PLA2R
mediated has more risk of recurrence than no antibody mediated
disease (58, 65, 66). In addition, the presence of persistent
elevated titters of antibodies after transplantation carries a higher
risk of recurrence. Also, genetic factors have been associated
to MN risk of recurrence. For example, the presence of SNP
mutations on HLA-D and PLA2R loci confer more risk of
recurrence when presented by the donor (67). Most recipients
with recurrent MN are under CNI treatment, an effective therapy
in native kidneys. Another line of treatment is the use of

alkylating agents such as cyclophosphamide, but it has a high
risk of medullar toxicity specially if treatment with MMF is not
stopped. Current evidence suggest that the use of Rituximab is an
effective and safe strategy for these patients, with the additional
advantage that do not precise the adjustment of the other
immunosuppressors (66, 68) though further studies are needed.

Recurrent IgA Nephropathy
Prevalence of recurrent IgA Nephropathy is 30% according to
clinical reports (69). However, two major considerations must be
made: first, unlike other primary diseases, IgA recurrence occurs
later, even 10 years after transplantation, so some series may
underestimate real prevalence due to short follow-up. Second,
the histological immunofluorescence pattern characteristic of the
disease appears in a very large proportion of patients much before
clinical manifestation (70). Though, it should be noticed that
some apparently normal donors (living or deceased) may have
latent IgA deposits in the kidney (71). Currently, there is no
way to know which latent IgA will evolve to clinical recurrence
or will otherwise disappear. No robust evidence about other
risk factors for IgA recurrence exists, although some authors
suggest that primary disease’s activity (presence of crescents,
rapid evolution to ESKD) could be associated with higher rate
of recurrence (72). IgA nephropathy impact on graft survival
is mild and survival graft curves just differ from other entities
beyond 10 years post transplantation (69). Histological Oxford
classification could have prognostic value for allograft failure
(73). No specific treatment is recommended for IgA recurrence.
According to KDIGO guidelines, treatment should aim to
reduce proteinuria, to optimize blood pressure and to reduce
inflammation (74). Steroid withdrawal is associated with major
incidence of recurrence and poorer graft outcomes (75). Studies
from Japan reported favorable outcomes after tonsillectomy, but
these results need to be confirmed (76).

Recurrent MPGN
Each type and subtype of MPGN has its particular evolution after
transplantation (58). In general, MPGN due to Immunoglobulin
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(Ig) deposition has a lower risk of recurrence (30–70%) specially
if the Ig are polyclonal. Instead, recurrence of MPGN due to
complement deposition rises to 70–90%. Regarding MPGN with
Ig deposition, polyclonal Ig MPGN usually appears after some
years and presents a slow course (77). Instead, recurrence by
monoclonal Ig occurs more often, earlier and is associated with
a more aggressive course that often leads to graft failure (77).
On the other hand, both DDD and G3GN are associated with a
very high risk of recurrence. In addition, C3GN is associated with
poor graft survival (78). Treatment of Ig deposition associated
MPGN targets Ig production through Rituximab. Though the
absence of CT some series has shown promising response rates
(79, 80). As C3GN and DDD patients have presented alterations
in alternative pathway of the complement cascade, there are
several reports on the use of monoclonal antibodies that inhibit
activation of the C5 component of complement (eculizumab)
with distinct results (81, 82) but so far, no RCT has been done.

Diabetic Nephropathy and Other Classical
CKD Risk Factors
Diabetic nephropathy is not only the main cause of ESKD but
is also associated with greater morbidity and mortality when
it occurs in the kidney graft (83, 84). Post-transplant diabetic
nephropathy (PTDN) shares pathophysiological and histological
characteristics with primary diabetic nephropathy (85). However,
the associated complications seem to develop at an accelerated
rate (86). Older age, and obesity have shown to be the main
risk factors for the development of PTDN (87). In addition,
early low-grade proteinuria (<0.3 g/day) and hypertension
(especially systolic blood pressure and elevated pulse pressure)
have also been described as risk factors (88). Strategies with
reduction or avoidance of steroids tend to decrease the incidence
of PTDN (89). CNI are also associated with a high risk of
developing PTDN. Among them, Cyclosporine seems to be
less hyperglycemic according to the Diabetes Incidence after
Renal Transplantation trial (DIRECT) (90). However, Tacrolimus
continues to have a safer cardiovascular profile due superior lipid,
blood pressure and kidney function effects (91).

The treatment of PTDN does not differ from native diabetic
nephropathy. Screening for PTDM should be performed after
starting treatment with glucocorticoids, sirolimus, or CNI (74).
The choice of oral medication vs. insulin treatment must
be done under the exact same rationale than in diabetic
nephropathy. To mention, there’s little evidence that basal
insulin initiation to avoid hyperglycemic status immediately
post transplantation can prevent further presentation of PTDN
(92). In patients who develop PTDN with overt micro
and macroalbuminuria, use of angiotensin inhibitors and
statins are strongly recommended. This recommendation is an
extrapolation from the effects observed in general population.
However, in transplant population with proteinuria of any cause,
treatment with angiotensin inhibitor has not demonstrated any
benefit in long-term graft survival (93). Lately, iSGLT2 have
shown remarkable results in decreasing cardiovascular risk and
increasing survival both in general and in chronic kidney disease
population (94–96). Given the enthusiasm that they have caused,

it was predictable that some papers would appear defending that
its use in kidney transplant recipients is safe and effective (97–
100). Certainly, randomized trials will attempt this issue soon.

Beyond diabetic nephropathy, there are other risk factors of
kidney disease progression but its impact in CKaD are not clearly
defined. Briefly, hypertension is a common risk factor of renal
disease progression, especially if it is associated with proteinuria.
The use of RAAS blockade is one of the main strategies to
reduce CKD progression. Hypothetically, the same mechanisms
of damage occur on the kidney graft and may lead to CKaD
but when it has been studied, results are not clear. While some
retrospective cohorts associated the use of ACEI/ARB to better
graft and patient survival (101, 102), prospective trials have not
confirmed these association with graft survival (93, 103). The
effect of obesity in graft outcomes is also controversial. Lafranca
et al. (104) recently reviewed its effect, showing better outcomes
for graft survival in patients with low BMI (<30). However,
patient survival expressed in hazard ratios was in significant
favor of high BMI recipients. Hyperlipidemia has also shown
important outcomes related to patient survival but not related
with CKAD. Though the anti-inflammatory effects of statins,
associated with the inhibition of HMG CoA, have reported some
good results in other solid organ transplantation (105) its use
in kidney transplantation hasn’t reported strong evidence in
decreasing CKaD (106).

Infections
Infections are one of the most common complications after
kidney transplantation due to immunosuppression (107). Besides
of its impact in mortality, infections are a well-known risk
factor for graft loss (108). Two different scenarios are especially
important in relation to CKaD: first, the majority of infections are
bacterial urinary tract infections (UTI). They occur more in the
elderly due to immunosenescence, frailty, functional impairment
andmultiple comorbidities (109, 110). Female gender and obesity
are also risk factors for the development of urinary infections.
They usually occur within the first year after transplantation
(111, 112). Despite screening of asymptomatic bacteriuria being
common in Kidney Transplant Units (113), its treatment hasn’t
proved to reduce the incidence of acute pyelonephritis (114).
Some series have demonstrated the association between the
presence of UTI in the first year after transplant and poorer
graft outcomes (108, 115). To explain this, we could extrapolate
the effect of acute pyelonephritis on renal scarring and nephron
mass loss observed in children (116). However, the association
between UTI and loss of kidney functions has been observed also
in patients with one or a few episodes of infection in which major
renal mass loss is not expected (108). Another explanation is that
infections and its clinical context could lead to an immunological
imbalance triggering a rejection that would be the culprit for
the dysfunction. Interestingly, in one of the few papers that has
evaluated this issue, acute pyelonephritis was not independently
associated with long term graft survival (117). Altogether, acute
pyelonephritis is themost common complication in graft survival
and has severe consequences on both patient’s and graft’s survival.

Second, viral infections play a relevant role in the development
of CKaD. Cytomegalovirus (CMV) is the most infectious
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pathogen in KT recipients and it has been associated with
both poor patient and graft survivals as it has been associated
with cardiovascular mortality and an increased risk for acute
rejection (118). Luckily, the better knowledge and prevention
strategies have led to a drastic reduction of the prevalence of
CMV infection from 40–100% to 0–37% (118). On the contrary,
human polyomavirus has significantly increased its prevalence
and it is associated with an important number of graft losses. BK
virus nephropathy (BKVN) is an entity that occurs in up to 10%
of renal transplant recipients and can result in graft loss in up to
50% of those affected (119). BK virus is a human polyomavirus of
high prevalence and low morbidity with an estimated prevalence
in adults of 80– 90% (120). After infection, BK virusmay establish
itself in a state of non-replicative asymptomatic infection in the
renal epithelial and urothelial cells (121). In the host, BK virus
can reactive itself in context of both immunosuppression and
cellular injury (“two-hit hypothesis”). Three stages of the disease
have been described: BKVN starts with viral cytopathic effects
(stage A), then leads to an inflammation phase (stage B) and
finally tubular atrophy and interstitial fibrosis (stage C) (122).
The last stage would explain irreversible graft damage and then
CKAD. The lack of strategies to prevent or treat BKVN explain
the ominous prognosis of the entity with respect to graft survival.
Since treatment options are limited and have poor results,
strategies to prevent BKVN are crucial. In kidney transplant
units, it is common to perform BK virus surveillance by
monitoring BKV viremia post-transplant at different time points
(123). This monitoring combined with stepwise drug adjustment
is the strategy most commonly used and has become the gold
standard. We must assume that lowering immunosuppression
implies an increased risk of T-cell-mediated rejection (TCMR)
and antibody-mediated rejection (ABMR) (124–126). Based on
observations from DIRECT (92) and TRANSFORM (127) trials,
treatment with ciclosporin and mTOR seemed to be better
than Tacrolimus, although the combination of everolimus and
tacrolimus was associated with lower incidence of BKVN than
MMF with tacrolimus (128, 129). Some other interventions have
been attempted with IVIG, cidofovir or Leflunomide among
others. Some papers show 90% clearance of BK viremia and
sustained graft function after 12 months with IVIG (130–132).
Cidofovir has shown to stop polyomavirus replications in vitro,
as well as good results on achieving BK clearance in a total of 11
cases in the literature (133–135). Conversion from MPA/MMF
to Leflunomide has shown therapeutic response in some studies
(136) but not in others (137).

Cold Ischemia Time and Ischemia
Reperfusion Injury (IRI)
After surgical removal of the organs for transplantation, kidneys
are stored in a cold solution to preserve their viability. Cold
ischemia time (CIT) is defined as the time that passes from
surgical graft removal until the organ is warmed by recipient’s
blood supply after artery unclamping. CIT is a well-known risk
factor for the development of delayed graft function (DGF) (138,
139) and acute rejection (AR) (140). This association implies
both poorest graft and patient survival for those transplants with

more CIT. Importantly, CIT itself does not seem to determine a
decrease in long term graft survival (140–142).

Despite there are many definitions, DGF is the termed used in
literature for those grafts that need at least one dialysis session
in the first week after kidney transplantation. A longer CIT
expanded criteria donors and terminal serum creatinine previous
to donation are themain risk factors for DGF (142). The presence
of DGF is detrimental for graft performance both in short and
long-term. Interestingly, DGF is not only associated with a major
rate of acute rejection episodes (143–145) but has also shown to
be an independent factor for CKaD (143, 144).

Finally, IRI is a bimodal pathogenic way of tissue damage.
Though cold storage and donor hypothermia try to minimize
cell metabolism during CIT, some cells like renal tubular
epithelial cells remain active in a state of hypoxia. In response to
hypoxia, their mitochondria increase the production of reactive
oxygen species and tend to develop intracellular acidosis. Thus,
prolonged CIT will relentlessly lead to cell death and acute
tubular necrosis: the ischemia damage. After reperfusion, the
microvascular injury caused by ischemia enhances fluid filtration,
with leukocyte plugging in capillaries and damaged endothelial
cells secreting factors to favor inflammatory mediators and
proteolytic enzymes (146). The global outcome of this ischemia-
reperfusion damage is a harmful environment that through
DAMPS and PAMPS enhances both innate and cellular
immunity (147).

Thus, CIT is associated with a decrease in long term graft
survival, but its impact is explained for the risk of developing
an AR and DGF. Meanwhile, DGF is independently associated
with both decreased long term graft survival and increased
AR risk. IRI is a pathogenic phenomenon intimately related
long CIT and explains DGF, chronic lesions and rejection
risk (148).

Currently, no pharmacological intervention has proved to
mitigate DGF neither in terms of duration nor its consequences.
In clinical practice some strategies are used based on theoretical
rationales without evidence. CNI delayed introduction to avoid
toxicity and complement activation is one of these strategies
although current evidence does not show significant differences
(149). Combined to CNI delayed introduction, the use of Anti-
Thymocyte Globulins (ATG) has been used to prevent AR and
mitigate damage due to IRI. Even though ATG induction seems
to have a better security profile in immunological high-risk
patients, it is not clear that this grants any advantages in low-
risk recipients compared with Basiliximab, not even in terms
of reducing DGF (150). The results of PREDICT-DGF trial
(NCT02056938, EudraCT #2014-000332-42) will provide more
light about if ATG reduce DGF in comparison with Basiliximab
in a selected group of patients at a high risk of developing DGF
(151). The role of complement on IRI damage has also been
tested as a therapeutic target. The use of C1 esterase inhibitor
(C1INH) has shown good results in phase I/II studies, especially
in those patients with more risk of DGF (152). Novel therapeutic
options are also been tested like siRNA, mesenchymal stem cells
or thrombin-targeted per-fluorocarbon nanoparticles (PFC-NP)
(153, 154). However, all these strategies are far from being used
in clinical practice.
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Instead, the only strategy that has been proven effective
to reduce CIT related DGF is the use of machine perfusion
technology during kidney storage. Specifically, Tingle SJ et al.
(155) have recently published a meta-analysis on this topic,
showing that in deceased donors storage in hypotermic machine
perfusion the incidence of DGF was reduced by 23% in
comparison with static cold storage solution.

THE REPARATION MECHANISMS

As reviewed, lots of efforts are currently being put into
understanding the whole spectrum of kidney graft damages
better. On each field, small strides are being made but with a
global vision, CKaD is still worrying. A common limit for all
therapeutic strategies is the presence of chronic lesions. These
lesions, histologically characterized by fibrosis and extracellular
matrix (ECM) deposition, are considered scars which can no
longer be repaired. Yet, from another point of view, scars are
the result of a wound healing mechanism designed to repair or
regenerate kidney damage.

Schematically, when damage of any etiology happens there is
a loss of mass of functioning cells and consequently an attrition
in organ function. Therefore, the healing process has to (1)
stop the damage, (2) refill the gaps left by cell loss, and (3)
compensate the loss of organ function (Figure 1). Probably, the
magnitude and duration of the damage, the age of the organism
and the dialogue among the effectors of kidney regeneration
will determine the balance between healing and regeneration
processes. These are the main regeneration mechanisms for
kidney regeneration (Table 3).

Macrophages
One of the clearest examples of why the reparations mechanisms
are doubled-edged swords is the study of macrophages in CKaD.
There is a considerable body of evidence that both circulating
and, mainly resident kidney macrophages play a crucial role
in kidney inflammation and healing. These hematopoietic cells
derived from the yolk sac seem to remain in the kidney during
embryogenesis forming niches and they are activated when the
harm occurs (156).

After injury, the presence of pathogen-associated molecular
patterns (PAMPs) and damage-associated molecular patterns
(DAMPs) is recognized via Toll-like receptors (TLR) or patterns
recognition-receptors (PRR) and activate a subpopulation of
macrophages (M1 or activated macrophage). These activated
M1 macrophages are proinflammatory cells capable of secreting
pro-inflammatory cytokines (IL-6, IL-1, and TNF-α), superoxide
anions and oxygen and nitrogen radicals (157). The amplification
of the inflammation cascade contributes to fight against the
cause of the injury but as a side effect it does also kill host
cells increasing tissue damage. These cells will also contribute
to kidney fibrosis through secretion of MMP-9, which increases
tubular cell ECM transition via the β-catenin pathway (158). In
animal models, the depletion of M1 macrophages ameliorated
kidney injury (159). These results were also seen in rat models
of acute rejection (160).

In addition, there are other populations of macrophages with
distinct function in the reparation process. The alternatively
activated macrophages (AAM or M2) usually appear later and
have an anti-inflammatory function. Up to three types of M2
macrophages can be differentiated: M2a, stimulated by IL-4
and/or IL-3, are capable of secreting ECM components and
therefore they also participate in wound healing and tissue
remodeling. M2b have an immunoregulatory profile, inducing
IL-10 secretion, upregulating antigen presentation throughMHC
II and downregulating IL-12, IL-6 and TNF. Finally, M2c
macrophages are induced by IL-10, TGF-ß and glucocorticoids
and produce anti-inflammatory cytokines (161). In a model
with depletion of M2 macrophages, a reduction in tubular
cell proliferation and repair is observed (159). Altogether, the
macrophage system seems to contribute to kidney regeneration
in two differentiated phases. First, immediately after kidney
injury M1 population contributes to fight the cause of the
aggression through inflammation. Second, once the aggression
is neutralized, M1 and M2a contribute to restore the damaged
tissue by the production of ECMwhileM2b andM2c populations
reduce inflammation to restore kidney homeostasis.

However, an imbalance in this system can contribute to
aggravate kidney damage both in animals and humans (159).
For example, macrophage depletion is a useful tool to reduce
kidney damage in in vitro models, yet a selective depletion to
manipulate the M1/M2 ratio has different effects. Moreover, the
activation of M2 macrophages that usually results in a reduction
of the damage can be the main effector of kidney fibrosis
when chronic or constitutive damage occurs (162). Interestingly,
Wang et al. demonstrated that after kidney rejection, fibrosis
is associated with a constitutive activation of macrophages
(mostly M2) especially in chronic active forms. In addition, they
identified as etiologic factors of fibrosis not only the production
of ECM components but also a macrophage to myofibroblasts
transition (163).

Cell therapy using the macrophage system has been attempted
in animal models to control kidney fibrosis. The phenotype
plasticity of this cell type is one of the main limitations. Cao
et al. (164) failed to protect kidney function after infusion of
bone narrow derivedM2macrophages, mainly due to phenotypic
changes of the infused cells. Spleenmacrophages, on the contrary,
seem to be more stable and have demonstrated a beneficial effect
in model of Adriamycin induced nephropathy.

Renal Progenitor Cells (RPCs)
In 2006, a population of progenitor cells surrounding the
Bowman’s capsule was identified. These cells, which are
characterized by the co-expression of CD133 and CD24 markers,
display a multipotent capacity of evolving into kidney specific
cells terminally differentiated (podocytes and tubular cells) (165).
Through differentiation, these RPCs exhibit the capacity to
ameliorate acute kidney damage (166). At the same time, under
certain conditions, as a sustained injury, these cells could also
contribute to crescent formation (167) or glomerulosclerosis (16,
168). Sicking et al. (169) observed how after podocyte damage
caused by doxycycline, RPCs from Bowman’s capsule tended to
leave their position to replace podocytes. After, the remaining
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FIGURE 1 | Schematic representation of kidney allograft injury and reparation process. Kidney allograft is exposed to many insults. Although there are mechanisms to

protect the graft from each of them, tissue damage is often present at the end. Once the tissue is injured the kidney’s owns mechanisms of reparation come into action.

To stop the insult, M1 macrophages among others will trigger and inflammatory response. After that, the damage caused (cell loss) must be compensated. Factors

like the type and duration of the damage or the age of the donor will determine whether the reparation process tends more toward reparation or scarring (fibrosis).

RPCs formed cellular extensions to cover the denuded Bowman’s
capsule surface (expressing de novo CD44). Throughout the
observation period, the induced proliferation of RPCs persisted,
resulting in the formation of typical cellular crescents with
periglomerular infiltrate. Thus, it can be hypothesized that RPCs
act as a physiological renal regenerative mechanism that when
overcome tend to scar in order to prevent further damage.
Importantly, urinary detection of RPCs is feasible and has been
already used to perform functional and genotypic studies without
the need of invasive procedures (170, 171).

Recently, Manonelles et al. (172) published the first and only
experience of RPCs isolation in kidney transplant recipients.
In this study, a cohort of stable kidney transplant recipients
with 6 months protocol biopsy was divided into two groups
depending on the presence or absence of urinary RPC. A
total cohort of 66 patients were then followed for 2 years.
Interestingly, at the beginning of the study both groups were
identical considering clinical variables, alloimmune response,
renal function, albuminuria and graft pathology. However,
uRPC+ group showed increased podocyturia and a higher rate
of proliferating RPCs along the Bowman’s capsule, suggesting

that RPCs were proliferating to compensate a podocyte loss.
Consequently, 2 years follow up evidenced poorer outcomes
in the uRPC+ group with worse renal function, increased
albuminuria, wider mesangial expansion and more severe
interstitial fibrosis. If these results are confirmed, the detection
of urinary RPCs could act as a marker of current injury much
before clinical, immunological or histological damage is detected.
Whether a therapeutic intervention at this time could prevent
function graft attrition must be proved in further studies.

The Tubular Regeneration:
Dedifferentiation and Polyploidization
Tubular epithelium is the kidney structure that most commonly
suffers damage due to its high metabolic activity and decreased
blood supply. Tubular regeneration model has great efficiency
and is able to repair after an injury with no or little consequences.
One of the important characteristics in this model is that tubular
epithelial cells (TECs) are simpler than other kidney cells like
podocytes. This feature allows TECs to easily dedifferentiate after
an injury in order to do mitosis and repopulate the epithelia
(173). This model for regeneration through dedifferentiation
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TABLE 3 | Kidney regeneration mechanisms.

Reparation

Mechanism

Potential therapeutic

target

Current limitations

Machophages Cell therapy M1-M2 phenotype

plasticity

Cell obtention

Renal progenitor Cells Podocite loss biomarker Pre-clinical phase

To control crescent

formation

Tubular regeneration Senolytic stretagies Pre-clinical phase

“AKI to CKD” minimization

Stem cells MSC-based therapy Legal/Administration

restrictions

Low-grade evidence

has been classically proposed for tubular regeneration but some
objections have been done recently.

Lazzeri et al. suggested that the regeneration capacity of the
tubule through dedifferentiation had largely been overestimated.
Instead, they proposed a model of regeneration highly preserved
in other human organs (174). This model is based on two main
effectors: first, niches of progenitor cells can be found near
the remaining tissue in a non-differentiated state. Second, after
injury the remaining differentiated cells increase its content in
DNA without undergoing mitosis through a specific cell cycle
called endocycle. Thus, these cells can improve their performance
reducing the loss of function of the organ while complete
regeneration occurs. The same group has already demonstrated
the presence of niches of cells that express progenitor markers
next to the tubule and also the existence of endocycling cells, in
both animals and humans (175).

In this model, the injury would cause a cell loss that implies
decrease of organ of function of the organ. After that, progenitor
cells would be mobilized from their niches and would finalize
their differentiation process to repopulate the epithelia. In the
meantime, to preserve organ function (or even survival) the
remaining tubular cells would enter endocycle in order to
duplicate its DNA content and keep the function of the organ.
These cells though, will not be able to perform a normal cell cycle
ever again; so, they are doomed to become a hyperfunctioning
cell with a hypersecretory state of profibrotic mediators driving
fibrogenesis, that is, cell senescence (176). These aberrant
profibrotic cells would be responsible for fibrosis after AKI
explaining, at least partially, the AKI-to-CKD transition. The
balance between progenitors’ repopulation and endocycling cells
would then be crucial in a complete regeneration of the organ
without later damage. Consistently, it has been observed that,
the amount of progenitor cells in mammals decrease with aging
and endocycling cells take a more important role in reparation
processes, which would lead to greater fibrosis (177).

Stem Cells
To involve the kidney’s own repair processes as a therapeutic
tool is a strategy that has been already tested with promising

results through the infusion of stem-cells. In general, based
on their therapeutic potential, mesenchymal stem cells (MSCs)
from bone marrow or other tissues are considered one the
most powerful tools for treating several human diseases. MSC
action is based not only on the capacity to differentiate into
terminal renal cells but they have also been associated with
the release of pro-mitotic, anti-apoptotic, anti-inflammatory and
immunomodulatory soluble factors as well as to the mitigation
of metabolomic and oxidative stress imbalance (178). A number
of clinical trials have been designed to evaluate the safety and
efficacy of MSC-based therapy and some good results have
been observed in acute kidney injury trials (179). Very recently,
the TRITON study (180) has used the infusion of autologous
MSCs in 29 kidney transplant recipients to withdraw CNI. After
24 weeks of follow up, no differences were observed in graft
function, acute rejection, graft loss, major adverse events or in
kidney fibrosis. In a post-hoc analysis of this study, a longer follow
up (5-year) was performed observing a more preserved renal
function in the MSC group. Although there are already many
limitations and restrictions to cell therapy, this study shows the
feasibility of these treatments and which could be a cornerstone
in future kidney transplantation therapeutic regimens.

CONCLUSION

Long-term graft survival is a major concern in the transplant
community due to its clinical impact. Until now, lots of efforts
have been put into identifying and precisely mitigate the impact
of every potential graft damage. Consequently, advances in the
treatment of ABMR are expected to report greater outcomes
than BK virus or pyelonephritis prevention. However, from
a pragmatic point of view, all the aforementioned harmful
situations will be present in every kidney graft contributing to the
final outcome: Chronic Kidney Allograft Disease. CKaD needs
to be addressed by a holistic strategy. A therapeutic approach
that considers to abrogate the mechanisms of graft injury and to
improve the intrinsic mechanisms of kidney repair could have
a transversal impact and lead to a significant improvement in
CKaD. Further studies are needed to address this issue in the
coming years.
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