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Increasing evidence supports a role of proximal tubular (PT) injury in the progression

of diabetic kidney disease (DKD), in patients with or without proteinuria. Research

on the mechanisms of the PT injury in DKD could help us to identify potential new

biomarkers and drug targets for DKD. A high glucose transport state and mismatched

local hypoxia in the PT of diabetes patients may be the initiating factors causing PT

injury. Other mechanism such as mitochondrial dysfunction, reactive oxygen species

(ROS) overproduction, ER stress, and deficiency of autophagy interact with each other

leading to more PT injury by forming a vicious circle. PT injury eventually leads to the

development of tubulointerstitial inflammation and fibrosis in DKD. Many downstream

signaling pathways have been demonstrated to mediate these diseased processes. This

review focuses mostly on the novel mechanisms of proximal renal tubular injury in DKD

and we believe such review could help us to better understand the pathogenesis of DKD

and identify potential new therapies for this disease.
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INTRODUCTION

Diabetic kidney disease (DKD) is a progressive microvascular complication of diabetes mellitus.
Within the kidney, the glomeruli, tubules, vessels, and interstitium are disrupted, resulting in
impaired renal functions and eventually end-stage renal disease (ESRD). Epidemiological studies
have shown that the current global burden of diabetes affects more than 425 million people.
Without intervention, the number of individuals with diabetes worldwide will rise to an estimated
629 million in 2045 (1). Given the high prevalence of diabetes, accordingly, the incidence of DKD is
rising rapidly with∼30–40% of diabetic patients developDKD and a third of these patients progress
to ESRD, which brings tremendous impacts on the socio-economics (2, 3).

Based on the distinct pathological glomerular changes (4), DKD has previously been regarded
as a glomerular disease, and the injury to the renal tubules considered as secondary to
glomerular lesions. In the natural history of DKD, the development of persistent microalbuminuria
(presence of albumin in the urine) progresses to overt proteinuria, followed by a gradual
decline in the glomerular filtration rate (GFR) and eventually renal failure (5). Although
albuminuria represents an independent risk factor for DKD, about 20% of patients with non-
albuminuric DKD progress to advanced ESRD within 10 years (6). The in-depth understanding
of the disease has enabled the identification of some patients with decreased renal function
before the presence of microalbuminuria according to creatinine-based estimated glomerular
filtration rate (eGFR) (7–10), and these are the patients that tend to progress more rapidly.
When compared with patients with proteinuria, these patients tend to have more severe
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tubulointerstitial fibrosis and tubular atrophy, suggesting that
renal tubular injury plays a key role in the progression of DKD
in the absence of proteinuria. In general, renal tubular injury is
closely correlated with the decline of eGFR in chronic kidney
disease (CKD) patients. Recent evidence has suggested that the
proximal tubular (PT) injury develops in the early stage of DKD
and promotes DKD progression (11). Therefore, this review
focuses on the mechanisms of PT injury in DKD.

HYPOXIA

The kidney is an oxygen-intensive organ that receives 20%
of the cardiac ejection fraction. The activity of renal tubular
transport is accountable formajor oxygen consumption in kidney
metabolism. The process of renal oxygenation consists of a
fine and balanced physiological process, which includes oxygen
supply determined by renal blood flow as well as arterial oxygen
content and oxygen consumption governed by renal tubular
reabsorption. The oxygen in the renal cortex is mainly utilized for
glomerular filtration and solute reabsorption. Majority of oxygen
supply goes to the renal cortex with a low supply to the renal
medulla. This ensures an effective countercurrent multiplication
system while the oxygen supply of the medulla is extremely
limited, albeit slightly higher than its oxygen utilization (12).
Therefore, an imbalance between the oxygen supply and oxygen
demand in the medulla will result in hypoxic damages to the
medulla tubules (13), whereby the renal tubules in the medulla
are the most vulnerable to renal ischemic injury (14).

The development of hypoxia depends on three factors:
increased oxygen consumption, oxygen utilization disorder, and
reduced oxygen supply, which often co-exists simultaneously
and interacts with each other to form a vicious circle (15).
Studies have shown that 60% of the overall energy consumption
of kidneys is devoted to sodium reabsorption with the PT
responsible for almost two-thirds through basal Na+/K+

ATPase activity primarily and quantified as ouabain-sensitive
O2 consumption (16). The glucose in the tubule fluid is
delivered into the cell by secondary active transport mostly
via the sodium-dependent glucose transporters 2 (SGLT-2)
in the apical membrane of the proximal tubular epithelial
cell (PTEC). Although this is not an energy-dependent
process, the sustainability of this activity demands a persistent
electrochemical gradient of Na+ produced by Na+/K+ ATPase
activity. Therefore, excessive glucose reabsorption in PT will
invariably lead to increased oxygen consumption in type 2
diabetes (17). Moreover, the diabetic kidney is constantly in
a state of high oxygen consumption due to hyperfiltration
and increase tubular reabsorption, which increases further
the severity of renal tubular hypoxia. This situation is then
exacerbated by subsequent mitochondria dysfunction (15).
Besides, the most classic complication of diabetes is systemic
microangiopathy which is characterized by basement membrane
thickening with hyaline deposition. This vascular injury will lead
to decreased blood supply and oxygen supply in the kidney (18,
19). Furthermore, gluconeogenesis is a major source of oxygen
and energy consumption in the kidney, accountable for 25% of

the energy required for sodium reabsorption (20). For diabetic
kidneys, the degree of gluconeogenesis in the kidney is increased
significantly (14, 21).

In studies using diabetic animal models, outer medullary
hypoxia has been demonstrated using blood oxygen level-
dependent (BOLD) MRI. Also, both cortical and medullary
hypoxia has been reported in the diabetic animal models as well
as humans with DKD (22–25).With increased oxygen utilization,
hypoxia inducible factor (HIF)-1 α has been implicated in the
correlation of hypoxic and tubulointerstitial fibrosis (26–30).
On the other hand, SGLT-2 inhibitors have been shown to
poses a renal protective effect on diabetes patients by inhibiting
glucose reabsorption and its associated high oxygen consumption
(21, 31), in addition to targeting HIF-1 α protein to inhibit
mitochondria oxygen consumption (32, 33). Furthermore, these
factors inhibit and internalize megalin O-GlcNAcylation to
reduce the reabsorption of plasma proteins (e.g., albumin and
neutrophil gelatinase-associated lipoprotein) in PT, which is renal
protective (34).

MITOCHONDRIAL DYSFUNCTION

PTEC demands substantial energy to maintain a normal function
(35), whereby 65% of the electrolytes and 100% of the glucose and
amino acids filtered by the glomeruli are reabsorbed by the PT.
PTEC is rich in mitochondria which is an important organelle
performing oxidative metabolism in eukaryotic cells mainly
through the β-oxidation of fatty acids to produce adenosine
triphosphate (ATP) (35). Mitochondria is also a place for aerobic
respiration and energy supply of cells, which produces 95%
of the energy needed in cellular activities through oxidative
phosphorylation and therefore is regarded as the power plant
of a cell. Mitochondria is the center of ATP production and its
dysfunction leads to apoptosis.

Mitochondrial homeostasis is strictly essential for an
optimally functioning kidney, given that the kidney is an organ
that demands high energy consumption (36). In diabetes, the
epithelial cells of the S1 segment of the PT require a large
amount of ATP as an energy source to reabsorb excess glucose.
However, ATP production brings superoxide (O−

2 ) production
concurrently, which can be converted into excessive reactive
oxygen species (ROS), leading to mitochondrial damage and
disorders in ATP production (36). Indeed, a reduction in the
ATP pool represents the initial event of PTEC damage, with
the degree of ATP reduction correlates with the severity of the
damage (37). Studies have demonstrated that the production
level of ROS may exceed the capacity of the local antioxidants,
which is the biomarker of renal mitochondrial dysfunction in
diabetes (38–41). This is further supported by the changes of
bioenergetics and kinetics of mitochondria that may precede the
development of DKD (38).

In addition to the driving force of cells, mitochondria have
also been regarded as the judge and executor of programmed
cell death (42, 43). In mitochondrial homeostasis, a balance in
the mitochondrial biogenesis, including fusion and mitophagy,
is required (35). Both Fission and fusion complement each
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other to maintain the mitochondrial morphology under different
metabolic conditions, while mitophagy removes damaged
mitochondria from the network (35). Mitochondrial swelling is
considered an indicator of mitochondria dysfunction (44), which
can be confirmed by electron microscopy (45, 46). Uncontrolled
mitochondria dysfunction eventually leads to the activation of
the intrinsic cell death pathway and cell death (47, 48). Cell death
may present in various forms, including apoptosis, autophagic
cell death, pyroptosis (49).

In recent years, increasing research studies have been
performed on the role of oxidative stress in cell death, given its
integral role in tubule injury in DKD. Studies have shown that
AOPPs (50, 51) induces oxidative stress and DKD mitochondria
dysfunction through CD36/β-Catenin and PKC pathways,
leading to tubulointerstitial fibrosis. On the contrary, in animal
studies using DKD mice, PGC-1 α (52) ameliorates renal
fibrosis via an antioxidant mechanism. Antioxidants (tempol and
ramipril) inhibit NADPH upregulation by negatively regulating
the endoplasmic reticulum stress (ERS) and inflammation to
improve renal damage in DKD (53). Oxidative stress and
endoplasmic reticulum stress positively regulate by each other,
forming a vicious cycle (54). Sirt3-CD38 has also been shown
to play a role in diabetic renal tubule damage by regulation of
mitochondrial oxidative stress (55, 56).

Given that the mitochondria may be a target for therapeutic
intervention, the mechanisms of some potential drugs have
been explored. SS31, a novel antioxidative peptide that targets
mitochondria, has been specially designed to concentrate in
the inner mitochondrial membrane (57), which reduces renal
tubulointerstitial damage in diabetic mice by decreasing
mitochondrial fragments and restoring mitochondrial
morphology through the inhibition of Drp1 expression and
upregulation of Mfn1 expression in renal tubular epithelial
cells. Also, the role of SS31 has been associated with CD36 (58).
Besides, Na2S4, a polysulfide donor that directly sulfhydrates
SIRT1, reduces high glucose-induced oxidative stress, cell
apoptosis, inflammatory response in renal tubular epithelial cells,
and the progression of epithelial-to-mesenchymal transition
(EMT) (59). Also, Carnosine has been shown to significantly
decrease the production of ROS, alleviate oxidative stress, and
inhibit apoptosis through mitochondrial pathway in vitro (60)
and in vivo (61). This may be a promising drug for the treatment
of DKD. All these studies shed light on the new potential
therapeutic agents in the prevention of renal tubulointerstitial
damage through regulation of mitochondrial function and
ROS production.

INNATE IMMUNITY

A persistently high glucose can cause abnormal activation of
mitochondrial endoplasmic reticulum stress and intracellular
signal transduction pathways, leading to cell stress and
cellular dysfunction. The abnormal activation following each
stress response promotes further activation of downstream
inflammatory factors, the release of damps, and induction of
innate immune response. The innate immune response induces

a continuous process of chronic inflammatory reaction in the
kidney, leading to substantial mesangial hyperplasia and renal
interstitial fibrosis, which lays the foundation for the occurrence
and development of DKD (62). Compared with adaptive
immunity, the mechanism of an innate immune response plays
an integral role in the occurrence of diabetic kidney injury
(63, 64), which is composed of pattern recognition receptors that
recognize pathogenic and endogenous ligands. The bindings of
ligands trigger several complex inflammatory cascade reactions,
including Toll-like receptor (TLR) signaling, nucleotide-binding
domain and leucine-rich repeat containing receptors (NLRs),
the kallikrein–kinin system (KKS), protease-activated receptor
(PAR) signaling, and the complement cascade, resulting in
further renal fibrosis and other renal damages (65). In particular,
the complement cascade plays a key role in innate immunity
that is responsible for the pathogenesis of several immune-
mediated inflammatory diseases (66). A study has shown that
the novel aptamer (NOX- D21) improves renal function and
reduces tubulointerstitial fibrosis by inhibiting the expression
of C5a in db/db mice (67). TAM receptors (Tyro3, Axl, and
Mer) have been implicated in the innate immunity (68). Studies
have demonstrated an obvious TAM shedding in DKD patients,
though the mechanism of this observation remains unclear.
Further research is warranted to establish the role of TAM in the
development of renal injury and DKD.

ANGIOTENSIN II

Angiotensin II (AngII) is also recognized as a mediator of
hyperglycemia-induced renal damage. The concentration of renal
Ang II is ∼1,000-folds higher than that of circulating AngII
(69). An increased AngII level is implicated in the development
of renal fibrosis by directly upregulating the pro-fibrosis genes
(70). Early studies have revealed that AngII induces cellular
hypertrophy of tubular cells that is mediated by the activation
of endogenous TGF-β (71, 72). Also, the study of primary
PT has demonstrated that glucose significantly increases the
concentration of AngII in cell lysates, while angiotensin receptor
blocker (ARB) significantly reduces this effect of AgnII (73,
74). Furthermore, AngII induces ROS (75) and EMT (76, 77),
leading to tubular cell damage. Importantly, recent studies have
revealed a high affinity of angiotensin II type 2 receptor (AT2R)
in the mitochondria of renal tubules. In the early stage of
diabetes, AT2R inhibits the production of mitochondrial reactive
oxygen species and cell proliferation. Overexpression of AT2R in
tubular epithelial cells contributes to the decreasedmitochondrial
bioenergy efficiency and increased mitochondrial superoxide
production (78).

In the current clinical practice, angiotensin-converting
enzyme inhibitors (ACEI), and ARB are the first-line drugs being
used in the prevention of DKD. Several recent studies have shown
that the combination therapy of renin-angiotensin system (RAS)
inhibitor together with neprilysin inhibitor was more effective
in preventing renal fibrosis than using RAS inhibitor alone in
the development of DKD [LCZ696 and angiotensin receptor
blocker (79); combination of sacubitril [NEPi] and valsartan
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(80); combination of thiorphan [NEPi]/telmisartan [ARB]; and
thiorphan/Dize [ACE2 activator] therapies (81)]. Moreover, the
combination of PGE1 with ACE inhibitor protects renal function
more as compared with PGE1 or ACEI monotherapy (82). These
studies provide evidence on the alternative options of effective
clinical treatment with RAS blockers.

FATTY ACIDS

In healthy kidneys, ATP is primarily generated via oxidative
phosphorylation (OXPHOS) of fatty acid (FA). However, in
diabetics, the utilization of fatty acid is changed to glycolysis
and lipid accumulation, which also represents an important
pathway of DKD due to lipid accumulation in the renal tubular
epithelia (83) via increased absorption and synthesis of fatty
acids, in addition to decreased utilization. The toxic effect of FA
on the renal tubular epithelial cells is associated with hypoxia
and mitochondrial dysfunction (33, 84). A recent study has
shown that FATP2, a member of the fatty acid transporter
family, regulates DKD pathogenesis through a combined
lipotoxicity and glucotoxicity (glucolipotoxicity) mechanism
(85). Nevertheless, PBI-4050, which is a fatty acid receptor
modulator, attenuates the development of DKD in type 2 diabetes
(86). Saturated fatty acid (SFA)-related lipotoxicity is also the
pathogenesis of diabetes-related PT cell damage. Therefore,
increasing the enzymes that metabolize free fatty acid (FFA) can
theoretically protect the PT cells from SFA-related lipotoxicity.
The study by Iwai et al. has found a significantly lower expression
of Stearoyl-CoA Desaturase-1 (SCD1) in the kidney of diabetic
mice induced by a high-fat diet (HFD) than that of non-diabetic
mice. Thus, enhancing SCD1-mediated desaturation of SFA and
subsequent formation of neutral lipid droplets may provide a
promising therapeutic target to reduce SFA-induced lipotoxicity
(87). Besides, through restoring functional lymphatic vessels,
SAR13175 was able to eliminate inflammatory cells and toxic
lipid metabolites in the kidney that can also improve lipotoxicity-
related fibrosis in diabetes (88).

AUTOPHAGY

Autophagy is a highly conserved pathway through which cells
degrade and recycle macromolecules and organelles. Growing
evidence shows dysregulated autophagy in DKD (89). The
well-known autophagy regulation pathways include mammalian
target of rapamycin (mTOR), Adenosine 5′-monophosphate
(AMP)-activated protein kinase (AMPK) and sirtuins (SIRT).
In addition, a variety of stress conditions, including hypoxia,
oxidative stress, ERS, and metabolism, have been shown to
regulate autophagy (90, 91). In general, mild to moderate ERS
and activation of autophagy play a protective role in kidney
cells. When the harmful stimulus cannot be effectively alleviated,
this leads to the sustained ERS creating an imbalance between
ERS and autophagy. This will lead to kidney cell injury and
progression of DKD (92).

mTOR can interact with several proteins to form two
different complexes, namely mTORC1 and mTORC2, to regulate

autophagy. There is ample evidence that mTORC1 is a key
regulator of autophagy, which regulates different steps of
autophagy such as nucleation, elongation, maturation, and
termination (93). mTORC2 indirectly regulates autophagy by
activating mTORC1. In general, mTORC1 is a negative regulator
of autophagy by inhibiting the activity of Ulk1 complex
through direct phosphorylation. On the contrary, AMPK and
SIRT1 are effective positive regulator of autophagy (89). In
recent years, some new findings have been made in this
field. Huang et al. identified KCa3.1 (calcium-activated K+
channel) involved in renal tubular autophagy dysfunction
through PI3K/Akt/mTOR signaling pathway in DKD (94).
Theodomir et al. confirmed that P2Y2R deficiency increased
the expression of sirtuin-1 and FOXO3a, which enhanced
autophagy and improved renal insufficiency in DKD (95).
In addition, Yang et al. found that Smad3, the downstream
transcription factor activated by TGFβ (transforming growth
factor β), suppressed lysosome biogenesis in a TFEB-dependent
manner (96). Furthermore, ATF4 (activating transcription factor
4) (97), TRAIL (TNF related apoptosis inducing ligand) (98),
Soluble epoxide hydrolase (sEH) and lys63 UB proteins were also
confirmed to be involved in the regulation of autophagy in the
kidney cells.

Targeting various components of autophagy pathway may
become a new strategy for clinical treatment of DKD. As a
potential target for regulating autophagy, Mikhail V blagosklony
proposed rapamycin (sirolimus) for the treatment of diabetic
kidney injury (99). However, clinical studies have found that
rapamycin and its analogs can cause immunosuppression,
glucose intolerance, increased risk of type 2 diabetes, and
other side effects (100). In particular, it has been reported
that long-term use of rapamycin can aggravate glomerular
damage and increase albuminuria (101). Recently, Dudley W.
Lamming group discovered the highly selective compound
DL001, which inhibits mTORC1, could be developed for the
treatment of DKD (100). In addition, several other drugs have
been shown to improve DKD in vivo and in vitro models by
regulating autophagy (102–104). SGLT2 inhibitors are also
thought to increase autophagy in diabetic kidneys (105). The role
of autophagy in the development of diabetes is still insufficient,
and more experiments are needed to further elaborate
in this field.

INFLAMMATION AND EMT

In the development of tubulointerstitial fibrosis, the complicated
process of inflammation not only is the initiating factor but
also the result of the development of several other factors.
Local inflammation in renal tubules is a marker of progressive
renal disease (106). Additionally, systemic inflammation exists in
patients with type 2 diabetes, which involves the production of
a large variety of chemokines that promotes inflammation in the
microenvironment, thus increasing renal damage. Inflammation
promotes renal infiltration of monocytes and lymphocytes,
which augments further the inflammatory response and the
development of cell damage and fibrosis (71). Additionally,
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a large number of macrophages, lymphocytes, and mast
cells infiltrate and secrete copious pro-inflammatory cytokines
and oxygen-free radicals, which could provoke renal tissue
damage and accelerate the process of renal fibrosis (107).
Renal tubular inflammation is associated with several triggers,
including local hyperglycemia, advanced glycation product,
mitochondria oxidative stress, angiotensin II, PKC, and other
factors (108). Recent evidence on the effects of histamines in
renal function suggests that histamines may also contribute to
glomerular hyperfiltration, inflammation, fibrosis, and tubule
hypertrophy (109).

OTHER PATHWAYS DISCOVERED IN
RECENT YEARS

Numerous cell signaling pathways have been confirmed to play a
role in the progress of DKD. Here, we discussed some of the new
pathways discovered in recent years.

HIPPO SIGNAL PATHWAY

The Hippo signal transduction pathway has been heavily
researched in recent years. Experimental studies have shown the
important roles of the Hippo signal transduction pathway in
regulating organ size, carcinogenesis, tissue regeneration, and
functions of stem cells. YAP (Yes-associated protein) and its
homologous protein, TAZ (transcriptional coactivator with PDZ-
binding motif), are the main effector molecules of the Hippo
pathway. The study by Yang et al. has demonstrated that the
activated YAP induced by the inhibition of MST1 up-regulates
the activation of TEAD directly by binding to TEAD to form
YAP-TEAD heterodimer, which promotes the expression of pro-
fibrosis genes in the renal tubular epithelial cells (110). A high
expression of YAP, TEAD, and CTGF was found in renal tissue
of patients with type 2 DKD suggesting a key role of YAP
in renal damage, while YAP expression is also correlated with
Systolic BP, BUN, Cr, DKD stage, DKD pathological grade,
serum albumin, and eGFR (111). The expression of YAP protein
and its phosphorylation were also upregulated in the renal
PTs of diabetic mice. Further studies have revealed that the
activated EGFR-PI3K-Akt-CREB signaling pathway mediates the
YAP gene expression, nuclear translocation, and interaction with
the TEAD transcription factor complex (112). Besides, TAZ
has been shown as a novel non-SMAD downstream effector of
renal TGF-β1 signaling, which is activated in fibrotic kidney via
TGF-β1-dependentmechanisms, while a sustained TAZ signaling
promotes epithelial maladaptive repair (113).

NOD-LIKE RECEPTORS (NLRS)

NLRs are a family of cytoplasmic pattern-recognition receptors,
which play several key roles in both innate and adaptive
immunity (114–116) by inducing inflammation and cell
death while facilitating rapid removal of invasive pathogens.
Different NLRs poses distinct roles in regulating immunity and
inflammation (117). NLRC3 inflammasome aggravates tubular

injury through promoting pro-inflammatory and pro-fibrotic
response of renal tubular cells (118). A study demonstrated
that the reduction of NLRP3 inflammasome suppressed by the
TNF-α inhibition alleviated tubular injury in DKD rats (119).
Moreover, NLRP3 exerts inflammasome-independent effects on
TGFβ signaling, which contributes to renal fibrosis in DKD (120).
The role of NLRC5 has been shown to be multifaceted in the
progression of DKD. Under high-glucose conditions, NLRC5
enhances IκB phosphorylation and reprograms macrophages
toward the M1 phenotype in addition to activating the TGFβ
signaling (121). Macrophages are closely related to interstitial
fibrosis (122). Among the variety of phenotypes of macrophages,
macrophages of M1 phenotype infiltrated the diabetic kidneys at
the early stage play mainly the pro-inflammatory role, while the
activation of macrophages M2 occurs in the late stage to promote
renal fibrosis in DKD (123–125).

PTEN

PTEN decreases in diabetic renal tubular epithelial cells when
cultured with high glucose, contributing to impaired autophagy
and renal fibrosis (126, 127). Animal studies have demonstrated
that although the level of unmodified Pten decreases, the level
of PtenK27−polyUb increases significantly with the damaged
renal tubules. Sufficient serine/threonine phosphatase activity
can be obtained after the modification of PtenK27−polyUb to
remove the phosphate groups of TWIST, SNAI1, and YAP.
Consequently, these pro-fibrosis transcriptional factors activate
the pro-fibrosis genes (128). Li et al. have proposed that the
unmodified PTEN (EMT prophylaxis) and PtenK27−polyUb

(EMT promotion) are dynamically regulated in kidney
disease, in which the identification of PtenK27−polyUb may
help in the early diagnosis of DKD and represent a potential
therapeutic target.

ZINC TRANSPORTER

Zinc transporters are categorized into Zrt/Irt-related protein
(ZIP) and zinc transporters (ZnT), which function together
to maintain intracellular zinc homeostasis. In the cytoplasm,
both ZIP and ZnT are zinc transfer proteins (129). Studies
have demonstrated the subcellular localization of ZnT8 on the
insulin secretory vesicle membrane of the islet β cells, which
promotes the synthesis, storage, and secretion of insulin and
regulates the homeostasis of intracellular free zinc ions. The
study by Zhang et al. has found that ZnT8 is highly expressed
in the tubular epithelial cells but only weakly expressed in the
glomeruli or podocytes, and confirmed the protective effect of
ZnT8 against tubulointerstitial fibrosis by inhibiting the TGF-
β1/Smads signal pathway. However, in normal circumstances,
overexpression, or knock-down of ZnT7 does not alter the
phosphorylation level of Smad2/3 (130). On the other hand,
Zhang et al. (52) suggest the important anti-fibrotic role of Zn
via the PI3K/Akt/GSK-3β signaling pathway. Nevertheless, the
role of Zn in the pathogenesis of DKD requires further research
and clarification.
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OTHERS

In addition to the above, several other signaling pathways
have been studied in PT in DKD. These include FoxO1-
STAT1 signaling (131), TSC1-mTORC1 signaling (132),
HSP70-TLR4 axis (133), and PDGFRβ/Akt/mTORC1
nexus (134).

MICRORNA

MicroRNA (miRNA) is a small molecule that attracts
great interest in the field of DKD research, given that it
has been implicated in the occurrence and development
of DKD. In particular, miRNAs participate in the
progress of tubulointerstitial fibrosis, leading to structural
changes and dysfunction of renal tubules. Also, miRNA
and RNA-induced silencing complex (RISC) form a
complex (135), which inhibits the expression of target
genes by promoting mRNA degradation or inhibiting
mRNA translation. Thus, whether miRNA promotes
or inhibits fibrosis will depend on their specific target
genes related to fibrosis as summarized in the table below
(Table 1).

BIOMARKERS OF TUBULAR CELL INJURY

Several biomarkers of tubular cell injury have been identified
in patients with DKD. TNFR1 and TNFR2 have been
shown as reliable biomarkers for predicting the progression
of DKD (158) and their levels also correlate with tubular
cell injury and inflammation (159). Kim1 is known as
an early biomarker for DKD and its level increases even
prior to the onset of microalbuminuria (160). Urinary N-
acetyl-beta-d-glucosaminidase (NAG) is also considered as a
potential early biomarker for DKD (161).A cross-sectional
study shows that u-NGAL and RBP-4 are potential markers
of tubular damage which can be used as complementary
measurements to albuminuria and GFR in the early diagnosis of
DKD (162).

ACUTE KIDNEY INJURY (AKI) AND DKD

Patients with DKD were susceptible to severe AKI and usually
had a worse prognosis following AKI (163). Advani recently
summarized clearly that diabetes may increase the risk of AKI
while AKI may increase the risk of CKD in diabetes (164). PT
suffers frommore severe renal tubular hypoxia andmitochondria
dysfunction in diabetic kidney. Inflammatory cytokines have
been also reported to be upregulated in diabetic kidney
leading to serial cascades of inflammation (165). Hyperglycemia,
advanced glycation end products (AGEs) and albuminuria
itself can induce the expression of adhesion molecules and
chemokines in proximal tubular cells to aggravate injury. In a
separate study (166), STZ-induced and Akita diabetic mouse
models exhibited heightened susceptibility to increased tubule
cell damage and programmed cell death caused by ischemia

TABLE 1 | miRNAs related to tubulointerstitial fibrosis in diabetic kidney disease.

Oxidative stress miR-25 PTEN (127) NOX4 (136)

miR-146a NOX4 (137)

miR-4756 Sestrin2 (87)

Autophagy miR-22 PTEN (127)

miR-155-5p Sirt1 (138)

EMT miR-23a SnoN (139)

miR-27a PARγ (140)

miR-30b-5p SNAI1 (141)

miR-30c SNAI1 (142)

miR-30c-5p JAK1 (143, 144)

miR-34a-5p SIRT1 (145)

miR-98 Nedd4L (146)

miR-130b SNAI1 (147)

miR-133b SIRT1 (148)

miR-145 ZEB2 (149)

miR-181a-5p Egr1 (150)

miR-184 LPP3 (151)

miR-192 Egr1 (152) ZEB1/ZEB2 (153)

miR-199a-3p IKKβ (154)

miR-199b SIRT1 (148)

miR302a-3p ZEB1 (155)

miR let-7c HMGA2 (156, 157)

reperfusion injury (IRI). Proximal tubule cells exposed to high
glucose exhibited higher apoptosis following depletion of ATP
or exposure to severe hypoxia. The authors (166) identified
activation of the intrinsic pathway of apoptosis characterized
by mitochondrial Bax accumulation and cytochrome c release,
and the activation of the intrinsic pathway of apoptosis
which was induced by the upregulation of p53 in tubule
cells exposed to high glucose and ischemic insult. The studies
by Kelly et al. also showed that DKD patients are more
susceptible to renal ischemia leading to more severe tubular cell
apoptosis (167, 168).

In addition, miRNAs have been shown to be highly promising
diagnostic markers for early DKD and it may have a potential
role in the treatment of DKD. However, one miRNA often
has multiple target genes, while one target gene may also be
regulated by multiple miRNAs. Given this complexity, further
studies are warranted to ascertain the specific roles of miRNA in
renal fibrosis before considering their potentials application in
clinical setting.

CONCLUSIONS

PT injury appears in the early stage of DKD and continues
throughout the progression of DKD (169). Based on its structural
and functional characteristics, PTs are vulnerable to injury in
hyperglycemic states and difficult to recover. In diabetic patients,
a high glucose transport state and local relative oxygen deficiency
(primary and secondary) in PT may be the initial factors of
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FIGURE 1 | The mechanisms of tubular cell injury in DKD.

tubular damage, while excessive mitochondria damages and ROS

production are important contributors to the further damage
of PTs in DKD. Abnormalities in hemodynamics, glucose and

lipid metabolism, mitochondria, oxidative stress, inflammation,

and many other factors interact with each other and form

a vicious circle, leading to the renal tubular dysfunctions

(Figure 1).
In this review, we discussed the potential mechanisms of renal

tubular damage in DKD and potential therapeutic targets to
prevent or treat the tubular cell injury. Renal tubular damage is
a complex and dynamic process involving a “tubulocentric view”
or “glomerulocentric view,” which represents a manifestation of
different stages in the development of DKD. New studies are
required to further understand the pathogenesis of tubular injury
in DKD and to develop specific treatments to prevent and delay
the tubular injury in DKD.
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