
PERSPECTIVE
published: 24 March 2021

doi: 10.3389/fmed.2021.662513

Frontiers in Medicine | www.frontiersin.org 1 March 2021 | Volume 8 | Article 662513

Edited by:

Eliana Mattos Lacerda,

University of London, United Kingdom

Reviewed by:

Martin R. Goodier,

University of London, United Kingdom

Modra Murovska,

Riga Stradinš University, Latvia

*Correspondence:

Brett A. Lidbury

brett.lidbury@anu.edu.au

Specialty section:

This article was submitted to

Infectious Diseases – Surveillance,

Prevention and Treatment,

a section of the journal

Frontiers in Medicine

Received: 01 February 2021

Accepted: 24 February 2021

Published: 24 March 2021

Citation:

Lidbury BA (2021) Ross River Virus

Immune Evasion Strategies and the

Relevance to Post-viral Fatigue, and

Myalgic Encephalomyelitis Onset.

Front. Med. 8:662513.

doi: 10.3389/fmed.2021.662513

Ross River Virus Immune Evasion
Strategies and the Relevance to
Post-viral Fatigue, and Myalgic
Encephalomyelitis Onset
Brett A. Lidbury*

National Centre for Epidemiology and Population Health, Research School of Population Health, The Australian National

University, Canberra, ACT, Australia

Ross River virus (RRV) is an endemic Australian arbovirus, and member of the Alphavirus

family that also includes Chikungunya virus (CHIK). RRV is responsible for the highest

prevalence of human disease cases associated with mosquito-borne transmission in

Australia, and has long been a leading suspect in cases of post-viral fatigue syndromes,

with extrapolation of this link to Myalgic Encephalomyelitis (ME). Research into RRV

pathogenesis has revealed a number of immune evasion strategies, impressive for a

virus with a genome size of 12 kb (plus strand RNA), which resonate with insights

into viral pathogenesis broadly. Drawing from observations on RRV immune evasion,

mechanisms of relevance to long term idiopathic fatigue are featured as a perspective

on infection and eventual ME symptoms, which include considerations of; (1) selective

pro-inflammatory gene suppression post antibody-dependent enhancement (ADE) of

RRV infection, (2) Evidence from other virus families of immune disruption and evasion

post-ADE, and (3) how virally-driven immune evasion may impact on mitochondrial

function via target of rapamycin (TOR) complexes. In light of these RRV measures to

counter the host immune - inflammatory responses, links to recent discoveries explaining

cellular, immune andmetabolomicmarkers of MEwill be explored and discussed, with the

implications for long-COVID post SARS-CoV-2 also considered. Compelling issues on

the connections between virally-induced alterations in cytokine expression, for example,

will be of particular interest in light of energy pathways, and how these perturbations

manifest clinically.
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INTRODUCTION

The history of Myalgic Encephalomyelitis (ME) features outbreaks as defining events, suggesting
an infectious etiology behind the cluster of symptoms experienced by affected individuals (1, 2).
Outbreak examples include Akureyri disease (Iceland - 1940s), Royal-Free Hospital London
(UK - 1950s), “Tapanui Flu” (New Zealand - 1980s), and Lake Tahoe (USA - 1980s), with the
description of “flu-like” symptoms common among patients (3, 4). While respiratory viruses were
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obvious candidates given this history, other virus families have
been linked to ME (5), as well as the intra-cellular bacterial agent
of Q-Fever, Coxiella burnetti (6, 7).

Viruses rely upon the host-cell machinery to replicate,
and knowledge of these processes for diverse virus families
is well-established (8). Appreciation of the manipulation of
host-immunity by viruses has emerged during the previous
three decades (9, 10), with early insights gained from large
genome DNA viruses, for example poxviruses and herpesviruses,
which often involved cytokine ligand or receptor mimicry
to evade host-immune responses (11–15). RNA viruses also
have evolved ingenious strategies for immune evasion (16,
17), with examples including members of the flavivirus
and coronavirus families (18–21) that are responsible for
disease on a global scale. From an evolutionary perspective,
the author has previously theorized that RNA viruses rely
upon “erroneous replication” strategies to avoid destruction
by the host, but at the potential cost to the virus of
killing the host and impeding the propagation of viral
progeny (16).

The perspective presented here centers on the endemic
Australian virus, Ross River (RRV), a positive-strand RNA
(12 kb) Old World Alphavirus. RRV is transmitted by
mosquitos and responsible for Ross River virus disease
(RRVD), which is defined by lethargy, myalgia, rash and
polyarthritis, as well as post-viral syndrome (22, 23). RRV
is suspected of being a microbial precursor to Australian
ME cases, along with Epstein-Barr Virus (EBV) and
C. burnetti (7).

How infection leads to ME is the subject of the perspective
presented herein, with RRV as the primary ME-linked virus
example. Of particular interest are the observations on the
dysregulation of cytokine expression in macrophages post RRV-
ADE (antibody-dependent enhancement) infection, and thus
inflammatory responses by the host, as well as the impact on
mitochondrial function. A perspective on how these interacting
features result in the ultimate clinical manifestations of long-term
fatigue, post-exertional malaise and other symptom clusters (2) is
presented herein.

Consideration of these questions has contemporary urgency
due to the emergence of “long-COVID,” which for some patients

Abbreviations: AAF, IFN-α-activated factor; ADE, Antibody-Dependent

Enhancement; ATG5, Autophagy-related 5; COVID, Coronavirus Disease; CR,

Complement Receptor; DEN, Dengue virus; EBV, Epstein-Barr virus; FcR,

Fc Receptor; GM-CSF, Granulocyte-macrophage colony-stimulating factor;

IFN, interferon; IL, Interleukin; IP-10, IFN-inducible protein 10; IRF, IFN-

regulatory factor; ISGF3, IFN-stimulated gene factor 3; MIP-1, macrophage

inflammatory protein-1; MCP-1, Monocyte chemoattractant protein-1; ME,

Myalgic Encephalomyelitis; NF-κB, nuclear factor kappa B; NOS2, nitric-oxide

synthase 2- inducible NOS; p.i., post-infection; PIP2, Phosphatidylinositol 4,5-

biphosphate; PIP3, Phosphatidylinositol 3,4,5-triphosphate; PRRSV, Porcine

Reproductive and Respiratory Syndrome Virus; PTKs, protein tyrosine kinases;

RIG-1, Retinoic acid Inducible Gene-I; RLRs, RIG-I-Like Receptors; RLR-MAVS,

RNA-triggered RLR-mitochondrial antiviral signaling protein; RRV, Ross River

virus; SARS-CoV, Severe Acute Respiratory Syndrome-Coronavirus; SOCS3,

Suppressor of Cytokine Signaling 3; Sp1, Specificity protein 1; STAT, Signal

Transducer and Activator of Transcription; Syk, Spleen Tyrosine Kinase; TOR,

Target of Rapamycin; mTOR, mechanistic TOR; TORC, TOR Complex; TNF,

Tumor Necrosis Factor; TGF, transforming growth factor.

resembles ME once recovered from the acute SARS-CoV-2
infection (24).

Perspective Context
The concepts investigated to formulate the perspective presented
are of particular contemporary importance, since at the time of
writing, the world is confronting the SARS-CoV-2 (COVID-19)
pandemic that has raised issues related to:

(a) Vaccine safety in the context of antibody-dependent
enhancement (ADE) of virus infection, and

(b) The emergence of cases of “long-(haul)-COVID,” which in
some present symptoms identical to ME.

Vaccines are not the primary focus here, but understanding
ADE as an avenue of immune evasion, and thereafter
manipulation of host immune - inflammatory responses by
the virus, raise pertinent questions linked to the eventual
development of idiopathic fatigue in some individuals post-
acute virus infection. The concept of “cytokine storm” is well-
recognized for COVID-19 and other diseases, but in other cases
impacts of immune manipulation are maybe subtler? And what
do these events mean for the regulation mitochondrial function
and energy production if the virus is assisted by ADE?

Antibody-Dependent Enhancement
Hawkes first reported ADE of virus infection in 1964, observed
for members of the Togavirus Family as classified at the time (25).
The studies focussed on Class A and B Togaviruses, with Getah
(Togavirus - Alphaviridae) Murray Valley Encephalitis, West
Nile and “Japanese Encephalitis viruses” (Flaviruses - Flaviridae)
displaying up to 12-fold growth enhancement in chick embryo
fibroblast (CEF) cultures, and on chorioallantoic membranes,
with the effect only seen with antibodies raised in “domestic
fowls,” not from other species. Further investigations revealed
that the enhancing properties were specific to the IgG fraction
of the anti-serum that enhanced virus growth (26).

Presciently, once antibody was identified as the enhancing
factor, the authors stated; Another possibility that should be
considered is that the enhancing antibody is taken into the
cell along with the virus and influences subsequent intracellular
events. These problems can only be answered by further studies
of the interactions between complexes of virus and antibody and
susceptible cells (26).

Subsequent studies conducted over the 1970s−80s established
in vitro ADE for the global pathogen Dengue virus (DEN), as
well as identified the role for Fc-Receptor (Fc-R) engagement
in ADE via studies with other flaviviruses (27–29). By the
1990s, ADE was recognized as a factor in severe DEN disease
(Haemorrhagic Fever, Shock Syndrome), on subsequent infection
with a DEN serotype different to the original case (30), which
has also frustrated attempts to develop a DEN vaccine (31). Many
virus families have been observed as displaying enhanced in vitro
growth post-infection due to ADE, but the impact in vivo and on
disease manifestation are not currently well-understood (32–34).

While ADE was observed for the close RRV relative, Getah
virus, during Hawkes’s original ADE observations in 1964, RRV-
ADE was not reported until the 1990s (35). As found for earlier
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examples, RRV-ADE was demonstrated in vitro for monocytes
and macrophages, including the macrophage cell line RAW
264.7, which was later central to the elucidation of molecular
mechanisms post-ADE entry.

The Disruption of Macrophage
Pro-inflammatory Responses as an
RRV-ADE Mechanism
While enhanced virus uptake helped explain ADE mechanism
(28), the “. . . subsequent intracellular events . . . ” suggested
by Hawkes and Lafferty were eventually revealed by in vitro
models of RRV infection using RAW 264.7 macrophages. The
important intracellular events were linked to the regulation
of pro- and anti-inflammatory cytokines, at the level of the
transcriptional machinery. While the impact on early virus
growth is clear, it must be assumed that the dysregulation of
cytokines during an innate response also has implications for
longer term immunity, and perhaps the vigor of subsequent
inflammation that follows infection.

The RRV in vitro models showed a clear disruption of
expression for TNF, NOS2, IFN-β, IP-10 that involved the
temporary post-ADE ablation of STAT-1 (ISGF3 and AAF),
IRF-1 and NK-κB transcriptional complexes, which occurred
at the same time as enhanced RRV growth. As well as the
downregulation of proinflammatory - antiviral gene expression,
IL-10 expression was significantly increased, as was the
transcription factor Sp1 (36, 37). Similar patterns were also
detected in a flavivirus (DEN) (38–42) and an arterivirus
(PRRSV) (43–46). Post-ADE IL-12 and IFN-γ suppression was
also observed for DEN, as well as concomitant impacts on the
associated transcription factors (e.g., STAT, IRF), while IL-10
expression was similarly unaffected or increased (Table 1).

Knowledge of intracellular events post-ADE has been
assisted through understanding the biology of Fc-gamma-
Receptors (FcγR), including the identity of FcγR classes, the
affinity of IgG (or complex) receptor binding and linked
intracellular activating (e.g., FcγRIIa ➢ ITAM) or inhibitory
(FcγRIIb ➢ ITIM) pathways (55). For the inhibitory action
of FcγRIIb, phosphatases are recruited to the ITIM domain
post receptor cross-linking (SRC family kinases), and ultimately
leads from PIP3 to PIP2 conversion via hydrolysis. PIP3 is
a cell surface receptor linked second messenger synthesized
from PI3K isoforms, involved in a range of cellular functions
post ligand engagement. Of potential relevance to the role
of ADE-mediated suppression of inflammatory pathways after
FcγRIIb interaction, mouse models of disease have demonstrated
that the inhibition of PI3Ks diminishes the severity of
inflammation (56).

DEN has provided a strong focus into the intracellular
consequences post-ADE infection, describing other intracellular
mechanisms beyond those originally identified by RRV. These
extend to type I IFN restriction via autophagy, SOCS3 and
Syk-regulated pathways (Table 1). DEN-ADE and cytokine
expression changes have been also reported for mast cells (48).
Ebola virus ADE showed interesting FcγRIIa signaling pathways,
without details on cytokine expression (49–51), although Ebola

has been shown to alter cytokine expression without ADE via
secreted viral glycoprotein (57).

SARS-CoV is an ADE virus, but with a difference (Table 1).
While ADE for FcR bearing cells was observed, longer term
infection was abortive, and the post-ADE mRNA expression
profiles for IFN-α/β, MCP-1, IP-10, TNF, MIP-1 were not altered
(52–54). Whether ADE is a factor in SARS-CoV pathology,
or poses a threat post-vaccination, are currently being debated
and assessed (58, 59). However, there is broad consensus
that “cytokine storm,” which can be understood as a gross
dysregulation of appropriate cytokine responses leading to
hyperinflammation, is a factor in disease (e.g., acute respiratory
distress symptom). The link of SARS-CoV to ME is the
recognition of “long-COVID,” which shares symptoms such as
long-term unexplained fatigue, “brain fog,” pain and so on (24,
60), and as such provides a connection between an acute virus
infection and long-term sequelae, as has been suspected inME for
decades. Definitive cytokine profiles for long-COVID have not
been determined as yet, and drawing from the ME experience of
establishing cytokine profiles for long term illness is not helpful
due to the lack of consistency and validation by larger studies,
although TGF-β has attracted some interest (61, 62).

Linking Inflammation, Cytokine
Expression, and Mitochondrial Function
The core ME symptoms of long-term fatigue and post-exertional
malaise (PEM) logically point to bioenergetic pathways,
metabolomics and mitochondrial function, which have attracted
biomedical research attention over the previous 10–15 years
(63–66). Very recently, studies by Missailidis et al. (67, 68) have
investigated mitochondrial function in immortalized ex vivo
lymphoblasts collected from ME patients. Among a number of
observations, Complex V rate of ATP synthesis was significantly
reduced compared to healthy control lymphoblasts, with a
statistical difference also found for lymphocyte death rate, and
with chronic TORC I (TOR-Complex I) hyperactivation in ME
lymphoblasts observed (suggesting compensatory activity via the
upregulation of proteins required for oxidative phosphorylation
and general mitochondrial function). TORC signaling is critical
for stress sensing, cell growth and energetics, hence important to
homeostasis and life span in general, with implications for disease
if altered (69, 70).

Infection and the virally-induced disruption of cytokine
signaling impacts homeostasis, and evidence exists to support
mTOR - STAT signaling interactions in the context of immunity,
including IL-10 expression (71). Therefore, chronically
upregulated TORC signaling, as recently observed (67),
may be linked to upsets in STAT, or vice versa. Inflammation
impacts TOR function, and of relevance to the disruption to
cytokine expression in macrophages post RRV-ADE, mTORC2
regulation is necessary for IFN-stimulated genes (ISGs) (37, 71).

The disturbance of homeostasis is an obvious result of
infection, with the advent in some patients of severe illness due
to cytokine storm, which represents a serious disequilibrium
outcome due to the compromise of normal inflammation
regulation processes. In discussing pathology, it is often forgotten
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TABLE 1 | Examples of ADE-mediated virus infections and the impact on subsequent cellular pathways and cytokine expression.

Virus family (Genus) Examples (Disease) Cell examples - intracellular events

post-ADE: cytokines impacted

References

Togaviridae (Alphaviridae) Ross River (RRV) - (Lethargy, Myalgia,

Polyarthritis)

Monocyte, Macrophage (RAW 264) -

Post ADE suppression of TNF, NOS2, IFN-β,

IP-10 expression via IRF-1, NF-κB, STAT-1

complex (ISGF3, AAF) ablation; Increased IL-10

expression (mRNA, Protein);

Sp1 elevated

(37)

(36)

Flaviviridae (Flavivirus) Dengue - (Fever, Shock, Myalgia, Hemorrhage) Monocyte, Macrophage -

Post ADE suppression of IL-12, IFN-γ TNF;

Increased IL-6, IL-10 (0-5 days p.i) with

pSTAT-1, IRF-1 impacted;

Increased IL-10 expression SOCS3,

Syk-regulated;

Early NOS2 via RLR-MAVS (without IFN);

Autophagy role (ATG5) in IFN restriction;

Early Syk - ERK1/2 IL-1β stimulation

independent of DEN replication.

Mast cell/Basophil -

Post-ADE (72 hrs) significant increases for

IL-1β, IL-6, not GM-CSF

(47)

(40)

(39)

(42)

(41)

(38)

(48)

Arteriviridae (Arterivirus) * Porcine Reproductive & Respiratory

Syndrome Virus (PRRSV) - (Abortion,

Respiratory disease in pigs)

Alveolar macrophage -

ADE-mediating viral epitopes mapped to N and

GP5 proteins;

ADE via FcγRI, FcγRIIb, FcγRIII;

IFN-α, TNF-α expression decreased;

IL-10 increased (mRNA, protein);

IRF-1 IRF-3, NF-κB disrupted

(43)

(45)

(46)

(44)

Filoviridae (Ebolavirus) Ebola (Hemorrhage, Shock) Granulocyte blasts (K562 cells)

FcγRII, C1q-mediated ADE (via CR);

FcγRIIa signaling via Src family protein tyrosine

kinases (PTKs);

Endosome uptake (phago-pinocytosis),

Src phosphorylation

(49)

(50)

(51)

Coronaviridae (Beta-coronavirus) SARS-CoV (1, 2) (Acute respiratory disease,

Post-acute long-term fatigue)

Monocyte/Macrophage (THP-1;

CD68±/CD14± PBMC) -

FcγRII required (intracellular domain);

ADE infection achieved, but abortive in the

longer term;

IFN-α/β, MCP-1, IP-10, TNF, MIP-1 mRNA

expression not altered post-ADE (1–72 h p.i.)

(52)

(53)

(54)

Virus details - NCBI Taxonomy Browser (www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi).

*Recently suggested nomenclature - Beta-arterivirus suid 1.

For the history, and scientific reviews of ADE across virus families, see Taylor et al. (32), Tirado and Yoon (33), and Porterfield (34).

that immune responses are also required for cellular and tissue
repair, which involve the pleiotropic nature of some cytokines
that are normally associated with inflammation, like TNF (72,
73), in addition to other cytokine families with primary roles
in healing, for example, the transforming growth factor (TGF)
family. In fact, a member of the TGF super family, Activin B,
has been identified in serum from ME patients as significantly
different when compared to healthy volunteers (74). Activin
proteins have many physiological roles, including repair, pro-,
and anti-inflammatory functions (75).

In answering questions on why some individuals develop
severe symptoms post-infection, and then in a proportion of
cases intractable ME or long-COVID, while others display
no short or long terms health impacts, surely is connected

to individual differences in the regulation of the interactions
discussed above. And within this milieu, the TOR family
of proteins sit at the interface between the regulation of
inflammation - immunity post-infection, and energy regulation
both at themitochondrial level, and associated pathways required
for carbohydrate, lipid and amino acid catabolism.

DISCUSSION

While ADE is not the primary focus here, past investigations
of ADE mechanism have identified a range of cellular pathways
manipulated by viruses that may alter future cellular function,
potentially leading to a long-term disturbance of homeostasis,
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which can lead to chronic alterations in mitochondrial
function and energy regulation, ultimately manifesting as multi-
system disease. By linking patterns of post-infection cytokine
dysregulation with observations on chronically increased TOR
protein activity in cells from ME patients, the interface of TOR
and inflammatory pathways is recommended as a topic for
deeper investigation. Delving into these cellular processes will
contribute insights into the mystery of why a virus infection can
lead to a chronic health condition like ME in some individuals
(estimated to be 11% in Australia) (7). The emergence of long-
COVID brings a new urgency to these questions.

Of course, viruses do not need ADE entry to manipulate
host immune-inflammatory responses to infection [(5)
- includes explanations of virus-associated disruption of
mitochondrial function, impact on immune cells, and discussion
of infection and ME pathogenesis], but the impact associated
with the expansion of cellular range to Fc-Receptor (FcR)
or Complement-Receptor (CR) bearing cells, not normally
permissive to infection, requires consideration. The strong
disruption, and at times ablation of antiviral and inflammatory
pathways, must have downstream impacts on later innate
immune functions and the formation of adaptive immunity,
particularly with the higher viral load allowing more FcR and CR
cells to become infected, and their functions similarly impacted.

CONCLUSIONS

The history of ME features regular “outbreaks,” which have been
associated with virus infections. At the time of writing, the
COVID (SARS-CoV-2) pandemic has revealed a sub-population
of recovered patients who have developed long-term symptoms
that resemble classic ME. Therefore, a perspective is presented
herein that aims to link the viral manipulation of host antiviral

and inflammatory-immune responses to mitochondrial function,
with TOR proteins as the critical interface between deranged
cytokine expression and energy regulation. Established for many

virus families (Table 1), ADE post-infection is the particular
perspective focus. ADE currently has renewed interest in relation
to potential COVID vaccine safety, but in a more general
context also raises questions on ME pathogenesis due to the
dramatic consequences for immediate antiviral defenses, later
innate immune responses, and thereafter guidance from ADE-
impacted cells (e.g., antigen-presenting cells) for the formation
of an appropriate adaptive immune response to support long
term homeostasis.

The unraveling of the interactions between the viral
manipulation of cells, bioenergetics and mitochondrial function
will reveal the differences, at a cellular level, to explain why some
individuals go on to develop chronic long-term health challenges
like ME or long-COVID, while others do not.
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