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Introduction: The rising incidence of pediatric inflammatory bowel diseases (PIBD)

facilitates the need for new methods of improving diagnosis latency, quality of care and

documentation. Machine learning models have shown to be applicable to classifying

PIBD when using histological data or extensive serology. This study aims to evaluate

the performance of algorithms based on promptly available data more suited to

clinical applications.

Methods: Data of inflammatory locations of the bowels from initial and follow-up

visitations is extracted from the CEDATA-GPGE registry and two follow-up sets are

split off containing only input from 2017 and 2018. Pre-processing excludes patients

in remission and encodes the categorical data numerically. For classification of PIBD

diagnosis, a support vector machine (SVM), a random forest algorithm (RF), extreme

gradient boosting (XGBoost), a dense neural network (DNN) and a convolutional neural

network (CNN) are employed. As best performer, a convolutional neural network is further

improved using grid optimization.

Results: The achieved accuracy of the optimized neural network reaches up to 90.57%

on data inserted into the registry in 2018. Less performant methods reach 88.78% for

the DNN down to 83.94% for the XGBoost. The accuracy of prediction for the 2018

follow-up dataset is higher than those for older datasets. Neural networks yield a higher

standard deviation with 3.45 for the CNN compared to 0.83–0.86 of the support vector

machine and ensemble methods.

Discussion: The displayed accuracy of the convolutional neural network proofs

the viability of machine learning classification in PIBD diagnostics using only timely

available data.

Keywords: pediatric inflammatory bowel disease, machine learning, diagnostic assistance, convolutional neural

network, CEDATA-GPGE registry
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INTRODUCTION

The incidence and prevalence of Inflammatory Bowel Disease
(IBD) have been constantly increasing over the last years, with
a relevant rise in Inflammatory Bowel Disease with onset in
the pediatric age group (PIBD) (1). A classification of the
PIBD at the onset of Crohn’s disease (CD), ulcerative colitis
(UC) and inflammatory bowel disease unclassified (IBDU) is
important to determine treatment and surveillance options
during the course of the disease (2). The diagnosis of IBD
is based on the Porto criteria through a combination of
history and physical exam, stool and lab diagnostic, endoscopic
examination and radiological workup and finally histological
examination of the gastrointestinal tract (3). Both diseases show
some pathognomonic macroscopic appearance, but especially
in younger children, the diagnosis can be challenging, since
histological appearance in the early stage of the disease may not
provide typical morphological changes (4).

To meet the development goals of pediatric patients and
avoid poor outcomes, the quality of patient care, diagnosis
and treatment should be reconsidered in terms of quality
improvement initiatives with the usage of modern information
technology (5). This intention motivated the founding of the
CED-KQN project, currently supported by German federal
innovations funds (VSF17054). CED-KQN is based on the
clinical registry CEDATA-GPGE R©, in which the disease features
of over 5,000 children and adolescents are collected since its
founding in 2004. The project members aim to analyze the data
of the CEDATA registry, improve patient care and data quality as
well as enable self-care in patients and their families (6). Through
the usages of Machine Learning and data comparison, predictors
of poor outcomes can be identified and decision support for the
diagnostic process can be provided.

In this study, the registry data of inflammatory presence
of patients during their initial and follow-up examinations is
used to create a classification algorithm for the diagnosis of
patients, differentiating between CD and UC. Tools for the
better classification of diseases are an appealing option for
clinicians who aim to optimize diagnosis accuracy and treatment.
Preceding research on this subject has shown the possibility
of differentiating between CD and UC through the means of
Machine Learning techniques (7, 8).

Machine Learning (ML) is a versatile and exceedingly
wide science of using algorithms to form determinations or
predictions based on past observations, which uses the constantly
increasing available computation power to analyze large and/or
complex data structures (9). Various ML algorithms use different
concepts to identify patterns or to extract features out of given
medical data and use these to either classify data or predict
outcomes. For example, Yao et al. (10) developed an ML
algorithm to predict the outcome of antiepileptic drug treatment
based on long-term observation of patients starting from the
point of first diagnosis. The risk determination ML algorithm
implemented by Weng et al. (11) significantly improves the
accuracy of cardiovascular risk prediction relying solely on
routine data. This enables early preventive treatment as well as
eliminating gratuitous therapy.

Subsequent to the learning or training process, a prediction
model can be afterwards analyzed in order to identify
contributing or independent parameters and possibly
comprehend correlations between data and outcomes (12).
While unsupervised ML enables the self-grouping of data into
previously unknown categories defined by the algorithm itself,
supervised Machine Learning enables the classifying of datasets,
which classes or categories are known from the beginning. The
supervised model learns from data classified by experts and
gains the ability to predict the class of dataset with an unseen or
undefined class (13).

This study uses various models for supervised learning, to
classify the diagnosis of patients with PIBD. It utilizes the data
of the common blood markers CRP (C reactive protein) and ESR
(erythrocyte sedimentation rate) in addition to the macroscopic
data collected during endoscopic procedures. Data taken from
the CEDATA registry along with the corresponding diagnosis
was used to train the supervised models. The models were
then compared and a convolutional neural network, having
achieved the comparably highest accuracy, was chosen for further
optimization. The neural network was subsequently improved
using grid parameter optimization and it was validated against
registry data, not used in the initial training or testing. Our goal
is to assert the feasibility of using common clinical data taken
from the CEDATA registry to model Machine Learning decision
support for diagnosis.

MATERIALS AND METHODS

Ethics
Data of all patients collected in the CEDATA registry since 2004
was initially included. All patients were below the age of 18
years. CEDATA-GPGE R© is a prospective, multicenter registry
for PIBD in German-speaking Countries (14). It is approved
by ethic committees of all participating institutions. Written
informed consent to participate in the registry is provided by
the patients’ legal guardians. Further ethical approval or consent
was not required for this study as the research is covered by
the CEDATA-GPGE R©’s ethical approval and the consent of its
participating patients.

Data-Extraction and Pre-processing
The registry currently contains records of over 45,000 visitations
where the patient suffers from either CD or UC. This yields an
overall ratio of 2.01 observations with a CD diagnosis to one
with a UC diagnosis. The extent of inflammation is assessed upon
initial diagnosis and during the course of disease. The location
features in the registry describe the presence of inflammation
from the esophagus to the rectum. The 11 locations from the
esophagus to the rectum, collected in CEDATA, include the
esophagus, stomach, duodenum, ileum, terminal ileum, coecum,
ascending colon, transverse colon, descending colon, sigmoid
and rectum. After the identification of the described features
and additional laboratory and administrative information, an
anonymized dataset was exported from the database of the
CEDATA registry.
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The extracted dataset was filtered to remove patients in
remission at the time of examination to avoid negative impact on
the learning effect of the algorithms. Incomplete documentations,
with no information in any of the features of interest, were
removed from the data to achieve a higher quality of training and
test data sets (15). All visitations were then categorized as either a
follow-up visitation or an initial specialist contact and the data
set was split accordingly. From each visit of both datasets, the
location data was extracted as well as the diagnosis. In addition,
the CRP and ESR laboratory results were added to the follow-
up data. The macroscopic findings were encoded in numerical
values [0, 1]. A visible presence of inflammation is represented as
“+1” while the unaffected gastrointestinal wall was coded as “0.”
In the dataset containing follow-up visitations, the CRP results
were coded as “mg/dl” unit and the unit of ESR as “mm/h.” These
laboratory values were, respectively, normalized to a decimal
zero to one, to better suit the processing by Machine Learning
algorithms (16). Two subsets of data were formed for the follow-
up visitations, consisting only of information entered into the
registry in the years 2017 and 2018, respectively. These were
chosen to analyze the effect recent data quality improvement
measures had on the prediction performance. All datasets
resulting from the pre-processed information were consecutively
split into a training and a test set. The former is employed for
training, including cross-validation and hyperparameter tuning,
while the latter is used in the final performance evaluation. The
ratio of observations in the training and validation set is 70 to
30% of the whole dataset (17).

Machine Learning Methods
With the aim of finding the best-suited method for classification,
a support vector machine (SVM), Random Forrest (RF), extreme
Gradient Boosting (XGBoost) as well as dense and convolutional
neural networks algorithms (DNN, CNN) were trained and
validated on two different datasets derived from the training
dataset (18). The initial learning and evaluation process employs
the model’s default configuration values, adjusting only necessary
input and output values as needed for the prescribed use case.
To avoid overfitting, a 10-fold cross-validation was implemented.
This repeats the process of training the model multiple times
while selecting different, non-overlapping, equally proportioned
subsets of data from the training dataset. The first and larger
one is used for training, while the second is used for validation
(19). This usage of additional data not present in training sets
also assures a better performance of models on external data (20).
The performance of each algorithmwas assessed by the calculated
average accuracy of the model after all iterations of the cross-
validation. For further optimization and the implementation
of a highly efficient model, the convolutional neural network
was chosen.

The applied neural net consists of a convolutional layer, a
pooling layer and a fully connected layer. Through an artificial
network, features of the given data are extracted and weighed
individually. The information is then pooled to condense and
reduce it. Afterward, the concluding fully connected layer
handles the final classification of the given input (21).

CNN Optimization
For optimization of the convolutional neural network, several
hyperparameters are of varying importance, influencing not
only accuracy but also the computational efficiency of training
a model. Both, convolutional and fully connected layer, have
activation functions which can be changed. These functions are
attached to each neuron of the layer and determine whether
the neuron should be activated for each input (22). For the
neural net, there are also different optimizers and loss functions
available. The loss functions are used to evaluate the wrongness
of the predictions of the network. This information is then
used by the optimizer to adjust the weights of the model.
Additionally, modern optimizers attempt to improve the training
by estimating best weight changes based on the previous
weight values. Furthermore, the number of epochs, defining
the quantity of training iterations, as well as the batch size,
specifying the quantity of the individual observations included
in a training process, can be optimized (23). The improvement
of hyperparameters is dependent on the task of the model and
the data and thus the influence of a parameter on the accuracy
of the model cannot be predicted at the start of implementation
The best hyperparameters were chosen using a grid-search-
algorithm in combination with five-fold cross-validation. In this
process a matrix is constructed, containing all possible parameter
combinations from the previously composed lists. Afterward,
the cross-validation process including training and testing the
model is carried out for each of the matrix’s cells, comparing all
accuracies to find the optimal combination (24). The process of
optimization was carried out for each of the follow-up datasets
and the initial contact dataset individually.

After identifying the optimal parameters of the convolutional
neural network, the resulting model was again trained using
10-fold cross-validation by employing the combined data of
the training and test datasets. Its performance was analyzed
regarding mean accuracy and standard deviation, as with the
previous algorithms. The process was repeated for all the datasets,
including a visitation set without laboratory values. Following
the analysis and model training for all datasets, prediction
models were received for the entire follow-up data including and
excluding laboratory values, only visitations entered in 2018 or
2017 and the entire initial contacts.

Extraction of data from the CEDATA registry was completed
using a self-written Ruby script (2.5, Japan, Yukihiro
Matsumoto). The pre-processing of data, as well as model
implementation, was accomplished with Python (3.7, USA,
Python Software Foundation) and its packages Pandas (0.24.3,
Community-developed), Keras (2.2.4, USA, François Chollet),
and Scikit-learn (0.21.2, France, Community-developed).

RESULTS

The CEDATA registry contained records of 29,556 follow-up
visitations where the patient suffers from CD and 14,394 from
UC at the time of data extraction. Comparatively, there are
3,135 recorded initial contacts where the patient suffers from
CD and 1,837 in which the diagnosis is UC. The four different
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FIGURE 1 | Workflow and Datasets displays the outline of the applied

methodology as well as the resulting datasets and their segmentation into CD

and UC diagnosis.

datasets derived from the database are composed of up to 1,314
visits for the entire follow-up visitation set (“Follow-Up-Total”),
768 of which derive from cases the patient was inflicted by CD
and 546 cases in which they were suffering from UC. The data
limited to follow-ups from 2018 (“Follow-Up-2018”) consist of
721 entries, among them 400 with a CD diagnosis. The smaller
datasets for 2017’s follow-up examinations (“Follow-Up-2017”)
and the initial documentations (“Initial-Total”) amount to 108
and 177 records, respectively. The diagnosis count and ratio
of each dataset are displayed in Figure 1. The patient group
consists of 44.7% females. The frequency of inflammation at
the observed locations is highest in the descending colon with
66.7%, followed by the sigmoid with 62.8%. An inflammation

of the small intestine is least frequently recorded at 3.1%. The
incidence at each location can be viewed in Figure 2, which also
displays the correlation between inflammations at each location.
While neighboring positions generally show a high correlation,
inflammations in both the small intestine and terminal ileum
show a contrary relationship with inflammation of the colon and
only weakly correlate with each other or the coecum. Various
machine learning algorithms were used on each visitation.
The span of the accuracy of classifying between CD and UC
range from 83.49 to 90.57% on the Follow-Up-2018 dataset
with extreme gradient boosting showing to be least accurate.
Following XGBoost, is the support vector machine and the
other ensemble method random forest which performed better
reaching an accuracy of 85.49 and 86.53%, respectively. The most
efficient models are all different artificial neural networks (NN),
with naive implementations starting at 88.78% and reaching
90.02% through the not optimized convolutional neural network
on the 2018 follow-up dataset. After an optimization process,
this method reached 90.57% on the same dataset. The choice of
the convolutional neural network for further optimization was
based on the performance of the different classification strategies
as shown in Table 1. The SVM and both ensemble methods
result in a significantly lower standard deviation at 0.83 and
0.87 than the utilized neural networks where the lowest is 3.45
through the optimized convolutional neural network. The naive
convolutional implementation and the dense neural network
yield 4.01 and 5.43 each.

Further insight into classification was gained using the
convolutional neural network. Ancillary datasets were used
during the training and evaluation process to explore the
influence of common laboratory parameters and to examine
the influence of changes in data acquisition by the CEDATA
registry software over the past years. Figure 3 shows the accuracy
achieved by the optimized convolutional neural network using
the data subsets containing no laboratory values. In addition,
the models differ in the time span, in which their data was
recorded. The first model was trained on the Follow-Up-Total
dataset, while the second and third only contain data registered
in the years 2017 and 2018 (Follow-Up-2017, Follow-Up-2018),
respectively. While the whole dataset results in an accuracy
of 83.25%, the data from 2017 equates to 78.81%. The subset
containing visitations input in 2018 shows an efficiency of
88.21%. In comparison, Figure 4 displays the resulting accuracy
when splitting the dataset by the input timespan and including
laboratory parameters. The entire dataset results in 86.15%
accuracy, showing an improvement of 2.9% when compared to
the original result from the optimized neural network trained
on the dataset without laboratory values. The model trained on
the dataset comprised of entries from 2017 achieves an enhanced
outcome with an accuracy of 79.72%. The model trained and
validated on records collected in 2018 demonstrates the best
performance at an accuracy of 90.57%, an increase of 2.36%
compared to the model of the same dataset excluding laboratory
values. The classification models for the Initial-Total dataset
seen in Table 2 reached an accuracy between 82.89 and 87.06%.
The performance increase of the optimized CNN is 0.12% when
compared to the not optimized model of the same dataset.
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FIGURE 2 | Heatmap of inflammatory locations: displays the correlation of observed inflammations in the given locations. Correlation is visualized using Pearson’s “r”

coefficient. Additionally, the diagonal line of values shows the frequency of inflammation observed at the location in percent.

TABLE 1 | Achieved accuracy per method for 2018 follow-up dataset: table

showing the executed machine learning methods and the achieved accuracy in

percent as well as standard deviation during cross validation.

Machine learning method Accuracy in percent (%) Standard deviation

SVM 85.49 0.83

RF 86.53 0.87

XGBoost 83.94 0.87

Dense NN 88.78 5.43

Conv. NN 90.02 4.01

Conv. NN optimized 90.57 3.45

Of the naive implementations, the convolutional neural network perfomes best at 90.02%

which is topped by its optimized implementation reaching 90.57 percent. The underliing

data stems from registry inputs of 2018 and includes laboratory values.

The optimized neural networks were compiled with the
following values: the activation function selected for the
convolutional layer is the hyperbolic tangent function. The fully
connected layer implements the Rectified Linear Unit function.
As loss function, the mean squared error function was found
to achieve best results. The corresponding optimizer is “Adam”
(derived from adaptive moment estimation). The grid search for
optimal hyperparameters resulted in a batch size of 64 and a
number of epochs of 200 for the follow-up visitations and 100
epochs and 128 batch size for the initial contacts.

Overall, the neural nets trained and tested on data acquired in
2018 show a better performance than the ones used on data from
2017, which themselves have a disadvantage over data taken from
the entire dataset. The precision and recall as well as the F1 score
show a similar behavior, displaying peak values on data from 2018
and worst on the 2017 dataset.

The addition of common laboratory values has a positive
effect on the model’s performance, with effects varying from
an additional 2.42 to 3.19% compared to the accuracy without
using laboratory parameters. The neural network has a higher
sensitivity than specificity in perspective to Crohn’s disease
resulting from a larger number of visitations falsely classified as
CD while in fact representing cases of ulcerative colitis. Being a
two-class classification problem, the sensitivity and specificity are
reversed for UC as can be observed in Table 3.

During further research, the remaining not optimized
machine learning methods were optimized as well. This process
did not yield any further insights and the results are not shown
but can be forwarded by the authors on request.

DISCUSSION

This study, based on the CEDATA registry and its collected
information, displays the optimization of an algorithmic model
for supporting decision-making when classifying PIDB patients
concerning their diagnosis. The results show the possibility of
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FIGURE 3 | CNN performance without laboratory values: plots the performance of the convolutional neural network (CNN) when using sub datasets selected by time

of input. None of the datasets contain laboratory values.

FIGURE 4 | CNN performance with laboratory values: illustrates the performance of the convolutional neural network (CNN) on datasets containing laboratory values.

The datasets are sampled by year of collection.

digital differentiation between CD and UC with an accuracy
of over 90% (90.57%), despite the intersection features visible
during endoscopic procedures and the presence of not more than
common laboratory values.

Plevy et al. (8) demonstrated a method for achieving solid
accuracy on the classification of IBD using Machine Learning
methods on serologic markers in addition to macroscopic data.
The resulting model is albeit not applicable to average patient
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TABLE 2 | Achieved accuracy per method for initial visitation dataset: table

showing the executed ML-methods and the achieved accuracy on Initial-Total

dataset in percent.

Machine learning method Accuracy in percent (%)

SVM 85.89

RF 83.33

XGBoost 82.89

Dense NN 86.89

Conv. NN 86.94

Conv. NN optimized 87.06

Of the naive implementations, the convolutional neural network perfomes best at 86.94%

which is topped by its optimized implementation reaching 87.06%. The underliing data

includes laboratory values.

TABLE 3 | Sensitivity and specificity of CNN per diagnosis: this table displays the

sensitivity and specificity of the convolutional neural network (CNN) trained and

tested on the data from the Follow-Up-2018 dataset.

Disease Sensitivity (in %) Specificity (in %)

Crohn’s disease 91.4 89.73

Ulcerative cloitis 89.73 91.4

data as the usedmarkers are expensive and generally not obtained
in real-world hospitals. Hence, these markers are not included
in the clinical registry CEDATA either. Mossotto et al. (7) aimed
to provide a Machine Learning model based on simpler clinical
data like microscopic and macroscopic examination results and
still achieve good classification accuracy. In another approach,
Dhaliwal et al. (25) also utilized histological findings to classify
PIBD subgroups on a small cohort. Building on this approach,
commonly available clinical data is used in the CEDATA
registry study to classify CD and UC through Machine Learning
algorithms, waiving histological data as well as any other
momentary data of the illness’ presentation. Following the same
reasoning, the timely progress of the disease is also excluded,
keeping requirements for utilizing the model low. It should also
be noted that the histological results are highly dependent on
the examiner and the technical equipment (26). The limited
data requirements enable the application of the model on cases
of PIBD where either histological data or extensive serology
reports are not yet on hand or are not conclusive. The resulting
model is applicable to PIBD patients only due to significant
differences in inflammation localization. The differences in
adult and pediatric IBD localization (27) proves that machine
learning results, stemming from adult data, cannot be assimilated
into pediatric models and signifies the importance of purely
pediatric classification models as well as distinct data collection
for research purposes (27). Although cross-validation mitigates
the possibility of overfitting, it results in fewer data to train a
classifier (20). Large data sources like the CEDATA registry are
of high value when trying to apply machine learning methods
to medical data and are needed to develop predictors more
applicable to real-world scenarios than models fitted on small
datasets (25). While the applied pooling and cross-validation

technics reduce overfitting, a remaining standard deviation of
3.45 can indicate that the CNN still experiences overfitting during
the training phase. To further address this problem, the networks
architecture could be expanded, including one or several dropout
layers, which randomly drop connections between layers during
training and lessen their linkage (28). Other methods might
include “early stopping” which prevents further training of the
network when the peak performance is reached or “weight decay”
which continually decreases the weights of the network during
the training phase (29).

A convolutional neural network is more often seen in
approaches of image or language recognition, but also applicable
for classification (30). While the convolutional neural network
is able to classify most data entries correctly, the partial overlap
between CD and UC inflammation patterns still leads to
misclassifications. The increased performance of the algorithm
when applied together with laboratory values points to a
close connection of systemic inflammation with IBD diagnosis.
The clearest distinction of IBD utilizing the locations visibly
inflamed can be made on the initial diagnosis, as there is no
corruption through various therapy methods. As the visitations
used in the described study took place during ongoing therapy
and regular examinations, the noted localizations are expected
to be influenced by previously mentioned therapy. Overlap
between the macroscopical manifestations has increased when
compared to information derived from untreated patients. A
convolutional neural network trained on the information of the
initial endoscopic diagnostic could be expected to provide better
accuracy due to a lower treatment bias on newly diagnosed
patients when compared to follow-up examinations. However,
the models trained on initial contact datasets consistently
performed slightly worse than those fitted with follow-up data.
This could be caused by bias in the data due to unrecorded
treatment prior to consulting a specialist or the smaller amount
of data from initial visitations available in the registry. Another
explanation can be found in the missing laboratory values in
the initial contact dataset, which were shown to improve model
performance in the follow-up dataset. At the time of the creation
of the CEDATA registry, the chosen laboratory values of CRP and
EST were not included in the data gathered at the initial specialist
visitation. Data quality in these fields compromised usefulness in
themodel on initial presentation.While improving the predictive
accuracy of the convolutional network, the hyperparameters
were tuned using a grid search algorithm that chose the best
parameter combination available by iterating through all given
possibilities and saving the one yielding the best result. This
approach is as exhaustive as the lists of parameters given to
the algorithm. Since there was only a limited list of numbers
given as possible values to a number of epochs and batch
size, the carried-out grid search is not fully exhaustive. While
this approach diminishes computational load and leads to a
faster discovery of optimal parameters, the possibility of a
better performing combination of hyperparameters remains.
To achieve selecting the best combination of elements for the
optimization, an exhaustive grid search including all possible
epochs and batch sizes would have to be applied. As this
process would be incredibly resource-demanding while probably
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not yielding better results, it is not considered best practice.
The performed grid search or even a random search over
the given parameters are considered the better approaches to
hyperparameter tuning (31).

The differentiation between multiple datasets by date of
acquisition was chosen regarding the changes the CEDATA
registry and its essential software components underwent
through the past years. As all data gathering and entering are
prone to errors, mistakes cannot be ruled out among the datasets
exported from the registry. This has been the key motivation to
continuously improve the data quality and insertion methods
used for the storage. The main efforts began with a new
user interface at the end of 2017, providing auto-completion,
feedbacks and logical assessments, ruling out many potential
error sources. The improving performance of the neural network
on datasets from 2017 and 2018 is an indicator that these efforts
are effective and lead to an overall better data quality. The higher
accuracy on the entire dataset compared to 2017 can be attributed
to the inclusion of the 2018 data and the overall amount of
data provided to the machine learning algorithm. Nevertheless,
the whole data from the registry is expected to have high data
quality, as patients are continuously examined, their progression
closely monitored and decisions like diagnosis are ascertained by
multiple physicians.

The CEDATA registry is continuously expanding its storage,
not only adding new patients but also joining new data fields
to the existing ones. This results in a repository of over 600
possible attributes per visitation. The latter can enable the
researcher in further improving the neural network based on
the inclusion of additional phenotyping attributes, which might
be key to reaching a higher accuracy and could help to identify
key parameters when differentiating between PIDB diagnoses.
Another possibility would be the inclusion of microbiome omics
data. Kellermayer et al. (32) have shown the correlation between
this data and an inflammatory process in the intestines. The usage
of this data could increase accuracy but also identify specific
parameters that have an especially strong correlation to differing
PIBD diagnosis.

To further progress the research on this subject, a combination
of the different implemented machine learning models is
planned. The goal is to utilize the strengths of the individual
methods to attain a superior model. A simple path to achieve
this would be the calculation of a weighted mean across the
incorporated methods. While this does in fact utilize the output
of all models, it disregards the fact the models might be more
or less accurate for a specific subgroup of samples. Therefore,
a method that incorporates differently weighted methods for
particular data records is necessary. In regards to this, further
research will apply sample-specific late fusion methods to this
classification problem (33).

As all data used in this study stems from the CEDATA
registry and its associated clinics, there is an underlying bias
in the data acquisition and all results should be confirmed
with data collected from a non-CEDATA member registry or
clinic. To assert if the registries data can accurately represent
real-world data, a test with an external institution is planned.

Next to validating the model on outside data, the goal is
to affirm a high correlation between the registry and overall
real clinical data.

The ground truth against which all models were trained
and tested is recorded as a diagnosis in the registry. It
is noteworthy that physicians formed these diagnoses upon
reviewing the entire medical information of the patient and
not only the location data. There is no estimate, at what
accuracy an experienced medical practitioner might classify the
given data, so a direct comparison between the model and a
human is impossible. The pre-existent demand for implementing
machine learning technics in clinical environments is furthered
by the increased attention new deep learning methods have
gained in the last years. Rising computational resources and
improved models enable novel strategies to support diagnosis,
outcome and risk prediction, as well as personalized therapy.
However, applying artificial intelligence in medicine should
aim not to replace patient-physician interactions and decision
processes, but to support them through assistance. As the
prediction methods are limited by the entered data, they
are unable to regard the patients in their entirety. Even if
sufficient data for classification is present, medical experience
and individual case assessment are essential for uncommon
pathological presentations. Although artificial neural networks
are trying to replicate the learning progress of biological brains
on a crude level, there is no method to simulate complex pattern
recognition and decision process formed through prolonged
clinical occupation. Deep Learning algorithms are influenced
strongly by the selected training cohort, which can lead to bias
of ethnicity and unexpected performance drops when applied on
fringe groups (34, 35). Still, various examples show the potential
gain of introducing machine learning into clinical processes.
Exemplary, there are systems for risk evaluation, pre-processing
or pre-sorting of telemetric and visual data, differentiation
of patients into subgroups or integration into diagnostic
procedures. Overall, the application of artificial intelligence
in medicine is beneficial but requires ethical oversight in
implementation and usage (36).

The benefit provided by the developed model can be utilized
to a great extent immediately in the CEDATA registry itself.
Through direct feedback on data input, the physician can
receive a probability value for the patient’s diagnosis, which
can lead to a re-evaluation of the diagnosis or a correction
of the recorded data. Thereby, the overall data quality of
the register can be improved and an additional care quality
assertion for partaking patients is established. The machine
learning algorithm itself can be implemented to perpetually
learn from the newly input data and continue to increase
in accuracy.

An accuracy of up to 90.57% is achieved when differentiating
between the diagnosis of CD and UC on relapsed pediatric IBD
patients by adapting a convolutional neural network. While this
performance is sufficient for usage in the CEDATA registry,
an augmentation to at least 95% accuracy seems necessary
to implement the model directly in a clinical environment.
To achieve this result, further optimization, more data entries
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and the inclusion of additional visitation parameters into the
model will be utilized. The introduction of the commonly
examined laboratory parameters CRP and ESR results in a
more accurate prediction by the model. It performs better
when being tested and validated only with data that has
been through a correction and validation process which
provides an improved data quality. These results stress the
role of high quality and quantity input data to improve
decision-support solutions.
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