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Lung development is not completed at birth, but expands beyond infancy, rendering

the lung highly susceptible to injury. Exposure to various influences during a critical

window of organ growth can interfere with the finely-tuned process of development and

induce pathological processes with aberrant alveolarization and long-term structural and

functional sequelae. This concept of developmental origins of chronic disease has been

coined as perinatal programming. Some adverse perinatal factors, including prematurity

along with respiratory support, are well-recognized to induce bronchopulmonary

dysplasia (BPD), a neonatal chronic lung disease that is characterized by arrest of alveolar

and microvascular formation as well as lung matrix remodeling. While the pathogenesis

of various experimental models focus on oxygen toxicity, mechanical ventilation and

inflammation, the role of nutrition before and after birth remain poorly investigated. There

is accumulating clinical and experimental evidence that intrauterine growth restriction

(IUGR) as a consequence of limited nutritive supply due to placental insufficiency or

maternal malnutrition is a major risk factor for BPD and impaired lung function later in life.

In contrast, a surplus of nutrition with perinatal maternal obesity, accelerated postnatal

weight gain and early childhood obesity is associated with wheezing and adverse clinical

course of chronic lung diseases, such as asthma. While the link between perinatal

nutrition and lung health has been described, the underlying mechanisms remain poorly

understood. There are initial data showing that inflammatory and nutrient sensing

processes are involved in programming of alveolarization, pulmonary angiogenesis, and

composition of extracellular matrix. Here, we provide a comprehensive overview of the

current knowledge regarding the impact of perinatal metabolism and nutrition on the lung

and beyond the cardiopulmonary system as well as possible mechanisms determining

the individual susceptibility to CLD early in life. We aim to emphasize the importance

of unraveling the mechanisms of perinatal metabolic programming to develop novel

preventive and therapeutic avenues.
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INTRODUCTION

Chronic lung diseases (CLD) such as asthma, chronic obstructive
pulmonary disease (COPD) and pulmonary arterial hypertension
(PAH) have a major impact on global health, with COPD
being the third leading cause of death worldwide (WHO
Global Health Estimates, 2020). CLDs do not only have an
enormous impact on the patient’s quality of life, but also on
health care costs (e.g., an average of $4147 per COPD patient
per year) (1, 2). While the pathology of adult lung diseases
and the influence of environmental factors such as smoking
have been extensively studied, the mechanisms determining the
individual susceptibility to CLD early in life remain elusive. This
review will provide insights in the current knowledge on how
perinatal nutritional and metabolic conditions adversely affect
lung development and contribute to the origin of CLDs.

Maternal obesity and intrauterine growth restriction (IUGR)
represent alterations of the antenatal, perinatal and postnatal
nutritional and metabolic status with adverse consequences for
the fetus and newborn. (1) First, both maternal obesity and IUGR
increase the risk of pregnancy complications and prematurity of
the offspring. Epidemiological studies have shown that not only
the risk of pregnancy complications for overweight and obese
mothers is higher; it is also associated with an early pregnancy
loss, congenital malformations, premature birth and stillbirth
(3). In addition, the offspring has an increased risk of being
either macrosome or IUGR, both introducing their own risk of
comorbidity. IUGR is diagnosed in 5–10% of all pregnancies,
characterized as a rate of fetal growth less than the growth
potential that is appropriate for the gestational age, and well–
recognized as an additional risk factor for prematurity (4, 5).
(2) Second, fetal and postnatal nutritional supply as well as
maternal weight and metabolism can adversely affect the long-
term health of the child. This is referred to as perinatal or
metabolic programming (6, 7). This concept was initially coined
by Barker as the fetal origins hypothesis, also known as fetal
programming. Barker et al. proposed that the developing fetus
adapts its growth rate and metabolism as a response to variations
in the supply of nutrients (and oxygen), which may lead to
permanent changes of organs’ structure and physiology in the
newborn (8). Over the past two decades, the developmental
origins of health and disease have gained increasing scientific
interest. There has been an enormous effort and an accumulation
of studies devoted to elucidating the underlying mechanisms
of perinatal (metabolic) programming of diseases as well as its
prevention and therapy. (3) Lastly, maternal obesity and IUGR
are associated with long-term alterations of lung function and
lung structure. For example, clinical reports showed a positive
linear trend between birth weight, adjusted for maternal factors,
and lung function in adulthood (9). Furthermore, children
that were exposed to maternal obesity during pregnancy or
gestational diabetes mellitus (GDM) have an increased risk of
developing asthma in childhood (10–12). These findings indicate
the significant impact of body weight, nutrition, and metabolism
during critical phases of pregnancy and the early postnatal period
on the lung development and later pulmonary function of a
child (13).

In addition to the adverse nutritive and metabolic influences,
the time of exposure is of great importance with regard to the
resulting lung pathology. There are different critical windows
of lung development with diverse developmental biological
processes. The lung develops in five stages, with the last
(alveolarization) starting shortly before birth and continuing
beyond infancy (14). The window and the nature of exposure
to adverse influences render not only the prenatal, but also
postnatal lung development highly susceptible to injury and
CLDs (15). This basic principle of timing emphasizes the far-
reaching complex consequences of antenatal, perinatal and
postnatal nutrition. Here, we provide an overview of the
impact and mechanisms of nutritive surplus with metabolic
disorder (maternal obesity) as well as nutritive deprivation (e.g.,
IUGR) on the child’s lung health (schematic representation
in Figure 1).

THE IMPACT OF PERINATAL NUTRITIVE
SURPLUS ON THE ORIGINS OF CHRONIC
LUNG DISEASE

Obesity and overweight result from an imbalance of energy
consumption and energy intake, causing fat accumulation in
adipose tissue (16). The origin of obesity is multifactorial and
comprises a complex interaction of genetic and life style factors
(17, 18). It is widely accepted that each individual has a certain
level of predisposition for obesity due to genetic and epigenetic
adaptations along with modifying environmental factors that
can in part contribute to familiar obesity (17). Two central
endocrine pathways in obesity are those of insulin and leptin.
Insulin is a critical regulator of adipocyte biology that promotes
the uptake of glucose and fatty acids and stimulates lipogenesis
while inhibiting lipolysis (19). In obesity, the glucose transport
and adipocyte metabolism are decreased despite high circulating
levels of insulin, also known as insulin resistance (20). Leptin is
produced by adipose tissue and acts as a regulator of appetite
and energy expenditure (21). Obesity is associated with high
levels of circulating leptin combined with leptin resistance
(22). Leptin and insulin directly interact with each other and
in addition, leptin influences insulin sensitivity through the
regulation of glucosemetabolism (23). Interestingly, targeting the
energy balance to favor weight loss might induce compensatory
behavioral and metabolic actions that favor the maintenance of
bodyweight (24). This is one of the explanations for the further
increasing numbers of obesity, despite multiple broad scale
attempts on lifestyle and dietary interventions. Instead, obesity
has grown into a worldwide pandemic. Surveys conducted
by the WHO in 2008 showed that around 1.5 billion adults
worldwide suffer from overweight, which corresponds to a
body mass index (BMI) of over 25. Of far greater concern
are the ∼200 million men and 300 million women with a
BMI of more than 30, therefore considered to be obese (25).
It is alarming that the prevalence of overweight and obesity
is not only increasing dramatically among adults, but also
children (26).
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FIGURE 1 | Schematic representation of the structure of this review. We aim to provide a comprehensive overview of the influences of maternal obesity, early

childhood obesity and intrauterine growth restriction (IUGR) on nutrient sensing as well as endocrine and inflammatory pathways, and how these adverse perinatal

effects contribute to the early origins of chronic lung diseases.

Linking Maternal to Childhood Obesity: a
Transgenerational Vicious Circle
Early childhood obesity has been proposed as a strong predictor
of overweight in early adulthood (27). It has also been
reported that maternal obesity and GDM can cause early-
onset childhood obesity, which is associated with a higher
prevalence of overweight or obesity in adulthood (28). In the
USA, 17% of children are already considered obese (26, 29).
Studies show that 1 to 2-year-old overweight children are more
likely to be obese in their teenage and middle age years, and
are prone to develop early-onset metabolic syndrome (30–33).
Metabolic syndrome is characterized by obesity, type 2 diabetes,
cardiovascular diseases, dyslipidemia and hypertension. As the
prevalence of obesity amongst young adults continues to rise,
the number of overweight/obese pregnant women is also steadily
increasing. Interestingly, there is accumulating evidence of a
transgenerational effect of obesity that adversely affects child
health throughout life (34, 35). Specifically, maternal BMI shows
a significant correlation with high offspring’s birth weight and
children’s overweight (30, 36, 37). Thus, children of overweight
mothers are at high risk of developing overweight later in life and
tend to suffer from overweight-associated diseases (38). These
findings are supported by experimental studies that show higher

tendency for obesity and impaired insulin response in offspring
of obese dams (39–41).

These transgenerational effects can be attributed, in part,

to epigenetic changes in the offspring of obese mothers. The
DNA is hypomethylated at the start of embryonic development,

therefore, the developing embryo is particularly sensitive to

epigenetic changes (e.g., DNA methylation, histone modification
and microRNA expression) in response to the intrauterine

environment (42). For example, maternal high-fat diet before,
during and after pregnancy has been shown to alter miRNA
expression and to induce a chronic dysregulation of insulin-
like growth factor 2 (IGF-2) signaling in a mouse model (43).
Such changes are not only detectable in adult mice (42), but
also in human fetal umbilical cord blood (44). In addition, there
are multiple reports of modified DNA methylation on sites of
importance for metabolic processes after dysglycemia and/or
high-fat diet during pregnancy (45–47).

In addition to metabolic consequences, the rising incidence
of early childhood obesity is particularly concerning because
of the association with respiratory symptoms and diseases in
youth. One of the most common respiratory symptoms in
childhood is wheezing, with ∼30% of all children suffering from
it (48). The risk of recurrent wheezing is especially high in
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children of obese mothers (49, 50). Obese children experience
exertional dyspnea and often suffer from obstructive sleep apnea
syndrome (OSAS) as well as obesity hypoventilation syndrome
(OHS) (51, 52). In case of an emergency, obese children
show dyspnea related to sedation and post-operative care (53).
Furthermore, persistent asthma is strongly associated with high
BMI throughout childhood (54–56), which manifests in a 92%
higher prevalence of asthma in adult obese patients (57). In
addition, the functional parameters of lung function such as
respiratory muscle strength and endurance, airway resistance,
lung volume and function or gas exchange are negatively
influenced by obesity (58–60). Collectively, these studies indicate
an adverse clinical course of respiratory diseases in children of
obese mothers and after childhood obesity. In the following, we
will discuss possible causes for the association between maternal
obesity and child lung health.

Molecular Insights Into the Mechanical
Effects of Obesity on Lung Function
Mechanical and physical influences on the lung play a significant
role in the overall health of obese children and adults.
Obese persons, including children, experience a lung restrictive
syndrome, which goes along with increased overall body volume
causing a narrowing of the upper airway and a reduced full
inflation due to neck fat and an inadequate thoracic expansion,
respectively (61). Accordingly, obese children suffer from
obstructive sleep apnea hypoventilation syndrome (OSAHS)
which is associated with hypoxemia, hypoventilation, sleep
interruptions and chronic fatigue (62). Therefore, OSAHS has
a drastic effect on oxygen supply and can induce hypoxia-
associated changes in gene expression through the transcription
factor hypoxia-inducible factor (HIF) (63). Under normoxia,
prolyl hydroxylases (PHDs) hydroxylate proline residues on
HIF-α subunits leading to subsequent proteasomal degradation
through ubiquitination. In contrast, hypoxia reduces the O2-
dependent hydroxylation of HIF-α subunits by PHDs, resulting
in nuclear HIF-α accumulation (64). In a murine model, the
effects of hypoxia-mediated HIF activity have been reported to be
involved in the pathogenesis of pulmonary arterial hypertension
(PAH), in part by upregulating the vasoconstrictor endothelin-
1 (65, 66). Deficiency of HIF-2α, however, partly protected
from the increase in endothelin and PAH (65, 66). In addition,
stabilization of HIF-α induces alveolar epithelial type 2 cell (ATII)
apoptosis and subsequent fibrotic lung diseases (67). In contrast,
the use of PHD inhibitors in vivo to stabilize HIF-α improved
lung growth and function in a model of prematurity (68, 69).

It has been shown that HIF-1α in part sustains the Warburg
effect (70, 71). The Warburg effect describes a condition in
which the cells obtain their energy mainly through glycolysis
with subsequent excretion of lactate. This alternative metabolic
state for energy production is used by cancer cells, but also by
healthy cells under hypoxia (anaerobic glycolysis). As described
above, obesity-associated mechanical forces can lead to an
activation of HIF, a mediator of hypoxia. HIF can cause a
shift toward glycolysis rather than oxidative phosphorylation, in
order to meet the energy demands under hypoxic conditions

(70). Interestingly, studies suggested a Warburg effect inversion,
a condition in which cancer cells exposed to an adiposity
environment increase energy production by aerobic respiration
as well as gluconeogenesis (72). The authors suggest that the
cells do not consume glucose in glycolysis, but produce glucose
through gluconeogenesis. Moreover, it has been described
that during hypoxia, mitochondria increase the production of
reactive oxygen species (ROS) at complex III (73), leading
to inhibition of PHD activity and subsequent stabilization of
HIF-α (74, 75). The shift toward glycolysis by the Warburg
effect and the increased production of ROS, both induced and
maintained by hypoxia, resemble mitochondrial dysfunction
(76, 77). Increasing evidence points toward a central role for
mitochondrial dysfunction in the development of cancer as
well as CLDs including asthma, COPD and PAH (71, 76, 77).
Furthermore, recent studies have indicated that the hypoxia-
induced increase of ROS in acute lung injury contributes to
pulmonary fibrosis by triggering an epithelial-mesenchymal
transition (EMT) (78, 79) via the stabilization of HIF-1α in
several cell types, including alveolar epithelial cells (80).

These findings highlight the effect of obesity on oxygen
sensing and energy metabolism as well as the subsequent
consequences for the development of CLDs. HIF, as a central
player in oxygen sensing, might serve as a potential therapeutic
approach to target the rising incidences of obesity-related
diseases. For example, preclinical data show that blocking HIF
with digoxin in a mouse model prevented or slowed down
the progression of PAH (81, 82). These promising findings
demonstrate that not only preventing obesity itself, but also
targeting specific metabolic processes might offer new preventive
strategies for CLDs.

Cell Homeostasis and Inflammatory
Response Under Obese Conditions
Obesity represents a state of low-grade chronic inflammation.
The numbers of inflammatory cells such as CD8+, CD4+

and CD68+ cells are significantly elevated in adipose tissue
(83, 84). These immune cells along with adipocytes release a
wide range of inflammatory factors including leptin, tumor
necrosis factor-alpha (TNF-α) (85), interleukin 6 (IL-6), and IL-
8 (86), C-reactive protein, monocyte chemoattractant protein-1
(MCP-1), and Plasminogen activator inhibitor-1 (PAI-1) (87–
89). Exposure of the lung to these pro-inflammatory cytokines
can occur in three different ways at different time points during
lung development: (1) through transplacental transport from
the obese mother to the fetus; (2) through breast milk of the
obese mother during lactation; and (3) through the child’s own
adipose tissue as a result of (early) postnatal obesity. For example,
maternal high-fat diet in a murine model during lactation
[postnatal day 1 (P1) to P21] induced an early-onset obesity
in the offspring with elevated inflammatory cytokines, such as
IL-4, IL-6, IL-13, IL-17A, and TNF-α. The early inflammatory
response was related to increased airway hyperreactivity, similar
to asthma (90). The adverse effect of IL-6 on the lung was further
supported by a study that showed that elevated IL-6 could in
part account for the development of emphysema through IL-6
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trans-signaling-mediated apoptosis of ATII. Blocking IL-6/gp130
signaling, however, prevented features of lung emphysema (91,
92). Furthermore, elevated IL-6 levels contribute to PAH (93).
For example, IL-6 induces a downstream activation of Stat3,
which in turn causes a phosphorylation of the transcription
factor forkhead box O (FoxO) 1. Phosphorylation of FoxO1 leads
to its cytoplasmatic sequestration, subsequent inactivation and
ultimately to a hyperproliferation of bronchial smooth muscle
cells (SMC) (93, 94). In addition to IL-6, TNF-α is also a
notable adipocytokine that is elevated under obese conditions
(95). TNF-α modulates the effects of G-protein coupled receptor
(GPCR)-induced hyperreactivity in cultured murine airway
SMCs and increases contractility (96). By this mechanism,
TNF-α may be contributing to SMC responsiveness and the
development of asthma. Consequently, the anti-inflammatory
adiponectin reduces TNF-α-induced nuclear factor κ B (NFκB)
signaling. Thus, the obesity-related decrease in adiponectin
further contributes to a dysregulated TNF-α signaling (97).
Due to its potential impact on the development of asthma,
TNF-α is under intense investigation as a therapeutic target
(98–100). Another important functional aspect of TNF-α is
the ability to contribute to insulin resistance by inhibiting
tyrosine phosphorylation of insulin receptor substrate-1 (IRS-
1) (95). Similarly, PAI-1 is produced and secreted by adipocytes
and elevated in obesity serum levels (89). In a mouse model
of airway hyperresponsiveness, PAI-1 was involved in airway
remodeling after LPS-induced lung injury (101). Chronically
elevated levels of PAI-1 affect the extracellular matrix turnover
and contribute to collagen deposition in the airways (102).
Moreover, dysfunction of the adipose tissue after perinatal
obesity can further contribute to the maintenance of low-grade
chronic inflammation. For example, a recent study indicated that
maternal obesity induces metabolic programming of adipocytes
in the offspring with lifelong dysfunctional adipose tissue and
obesity (103). Collectively, obesity represents a state of low-
grade chronic inflammation exposing the developing lung to pro-
inflammatory cytokines which could adversely affect lung growth
as a first “hit” and increase susceptibility for CLDs in later life.

Nutrient Sensing and Leptin Signaling as a
Mechanism of Perinatal Obesity
Under physiological conditions, leptin is integrated in the
complex mechanisms of airway and bronchial maturation.
A recent study highlighted the importance of physiological
non-obese levels of leptin in lung maturation through the
upregulation of the expression and the secretion of surfactant
protein A (Sftpa) in ATII (104, 105). Similarly, leptin promoted
maturation of lung structure and contributed to postnatal lung
remodeling and enlargement of the alveolar surface area via the
induction of the genes Col1a1, Col3a1, Col6a3,Mmp2, Tieg1, and
Stat1 (106). A lack of leptin signaling in ob/ob mice (induced by
leptin deficiency) resulted in a significant reduction of alveolar
surface, indicating a critical role of leptin in postnatal lung
growth (106). These contradictory observations may be due to
effects of high circulating concentrations of glucose and insulin
during pregnancy in obese mothers, which might potentially

overrule the beneficial effect of leptin on lung development (107).
In addition, long-term exposure to leptin before birth could affect
the expression of pulmonary leptin receptors, disturbing leptin-
signaling, leading to defective lung maturation and respiratory
function at birth (108, 109).

Leptin has a central role in the immune response as well.
Leptin was linked to asthma in adults as well as in children; the
severity of asthma was correlated to serum leptin levels in a meta-
analysis of 13 studies (110–113). High leptin levels increased
the T-helper cell type 2 (Th2)-type immune response in airways
via a leptin-mediated and XBP1 (X-box binding protein 1) s-
dependent activation ofmTOR (mechanistic target of rapamycin)
as well as MAPK (mitogen-activated protein kinase) signaling
(114). A shift toward the Th2-type immune response in airways
is characteristic for the pathogenesis of asthma, thus providing
a relevant link between obesity-induced high circulating leptin
levels and the development of asthma (114, 115). Adiponectin
acts as an anti-inflammatory agent, counteracting leptin (88,
89). Circulating adiponectin levels are known to be reduced
in obesity, possibly further contributing to the pathogenesis of
obesity-associated asthma (116).

There have been several attempts to alter the high leptin and
low adiponectin levels in order to restore the metabolic balance.
For example, pharmacological elevation of adiponectin levels in
obese mice protected from hyperglycemia, glucose intolerance,
and insulin resistance (117) as well as increasing insulin
sensitivity (118). However, to date, the effect of adiponectin
supplementation on pulmonary development and function
remains elusive. In diabetes, thiazolidinedione (TZD) is possibly
the most extensively characterized regulator of adiponectin
expression. TZDs, such as pioglitazone and rosiglitazone
increase adiponectin expression through the activation of
peroxisome proliferator-activated receptor gamma (PPARγ)
(119, 120). Since it is already a well-established therapeutic
intervention for diabetes, targeting adiponectin might be a new
promising therapeutic approach for the prevention of long-term
consequences of obesity such as pulmonary remodeling and
reduced lung function.

Lipid Metabolism and Perinatal Obesity
Obesity is characterized by a dysregulation of the energy and
lipid metabolism. Lipoproteins are responsible for the transport
of fatty acids, cholesterol and phospholipids. Therefore, the
lipoproteins in obese patients show a change in circulating
protein levels (121). For example, apolipoprotein E (ApoE),
which is part of the low-density lipoprotein (LDL), is elevated
in the obese and contributes to fat mass accumulation (122).
LDL/ApoE is internalized into cells by its receptor, the
low-density lipoprotein receptors (LDLRs), and is the main
source of cholesterol and phospholipids efflux out of cells.
In the lung, ApoE is produced by lung macrophages and
acts on ciliated airway epithelial cells, where it can modulate
airway hyperreactivity, mucin gene expression, and goblet cell
hyperplasia (121). Thereby, it is involved in reducing the
susceptibility to airway hyperresponsiveness (121, 123). In
line with this, genetic modified mice with an ApoE deletion
show reduced alveologenesis and abnormal pulmonary function
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with increased airway resistance as well as high dynamic and
static compliance (124). PPARγ is a nuclear receptor and
considered one of the master regulators of adipogenesis, showing
a high expression pattern in adipose tissue and in the lung
(125–127). PPARγ is essential for normal lung development
via the induction of alveolar epithelial-mesenchymal paracrine
signaling (128, 129). Murine studies with genetically deactivated
PPARγ demonstrated a spontaneous development of PAH. Here,
PPARγ has an anti-proliferative effect on smooth muscle cell
proliferation, which might give the opportunity to use PPARγ

agonists in treating PAH (130, 131). Moreover, unsaturated
fatty acids and several eicosanoids are regulators of PPARγ

and induce expression of genes encoding lipoprotein lipase,
CD36, phosphoenolpyruvate carboxykinase, aquaporin 7 and
adiponectin (132). This is of particular interest since the western
style diet has high concentrations of poly-unsaturated fatty acids
(133). In this context of western style diet and a higher rate
of obese individuals in industrial western countries, elevated
fatty acid levels in obesity may be important regulators and
modulators of normal and aberrant lung development.

Glucose Metabolism and Hyperinsulemia
Obesity is intimately linked to insulin resistance, accompanied
by elevated circulating insulin concentrations. The transduction
of insulin signaling is in part mediated through the downstream
phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)
and mTOR pathways (134–137). The mTOR cascade is
integral in orchestrating the complex mechanism of lung
development, balancing nutrient and energy supply in the early
stages of embryogenesis and fine-tuning tissue growth during
organogenesis. An elaborated and comprehensive article by Land
et al. provides a broad overview of the role of mTOR in lung
development (138). High levels of insulin from diabetic mothers
have the potential to inhibit the Sftpa gene expression in lung
epithelial cells and thereby delay the fetuses’ lung development.
This insulin-induced inhibition acts via the rapamycin-sensitive
PI3K signaling pathway and not via mitogen-activated protein
kinase (MAPK) (139). This notion is further supported by the
fact that inhibition of PI3K can contribute to insulin resistance
and diabetes (140).Moreover, Ikeda and colleagues demonstrated
that insulin reduces vascular endothelial growth factor (VEGF)
expression and the transcriptional activity of HIF-2 on the VEGF
promoter in an AKT-mTOR-dependent manner in cultured lung
epithelial cells. They further demonstrated that activation of the
AKT-mTOR pathway in mice reduced alveolar capillarization,
stressing the importance of this pathway in lung epithelium and
in the development of infant respiratory distress syndrome (RDS)
(141). Interestingly, moderate physical activity of obese mothers
can rescue maternal and the offsprings’ insulin sensitivity, overall
improving themetabolic, as well as potential pulmonary outcome
in the obese mother as well as her offspring (142).

Insulin does not only affect the alveolar epithelial cells, but
also increases the expression of genes related to the contractile
phenotype of airway SMC through a Rho kinase- and PI3K-
dependent mechanism (143). Apart from these direct effects on
pulmonary cells, insulin is involved in the modulation of the
immune response and thereby in the pathogenesis of asthma.

For example, in mast cells, insulin induces PI3K-dependent
signaling, which could contribute to allergic bronchoconstriction
(144). On the other hand, Viardot and colleagues demonstrated
that insulin influences T cell differentiation promoting a
shift toward a Th2-type response. They state, that this effect
may contribute to insulin’s anti-inflammatory role in chronic
inflammation associated with obesity and type 2 diabetes (145).
Insulin further exhibits anti-inflammatory properties in acute
Th1-type inflammation, where insulin diminishes acute lung
injury and reduces levels of inflammatory cytokines (146).
Taken together, insulin plays an important role in physiological
lung development, supporting alveolarization. In obese patients,
however, elevated insulin levels interfere with lung development
and maturation, while facilitating a pro-asthmatic immune
environment, which could affect the outcome of CLDs in
later life.

Collectively, these studies show that perinatal obesity resulting
from maternal and early childhood obesity may determine
individual susceptibility for CLDs later in life. In addition to
mechanical factors due to increased body mass, adipose tissue
dysfunction and its consequences play a particularly important
role. Low-grade chronic inflammation with increased levels of
adipocytokines, impaired insulin signaling, and altered lipid
metabolism can be important in metabolic programming of
CLDs. In the future, further elucidation of the fat-lung axis is
imperative for a better understanding of metabolic mechanisms
in the development of CLDs and to develop new preventive and
therapeutic approaches.

THE IMPACT OF PERINATAL NUTRITIVE
DEFICIENCY ON THE ORIGINS OF
CHRONIC LUNG DISEASE

Nutrient Deprivation and Lung
Development: the Role of Intrauterine
Growth Restriction
Intrauterine growth restriction (IUGR) was first described as
“dysmaturity” and indicates an abnormally low birth weight
for the gestational age. Classically, IUGR was defined as
a birthweight below 2,500 g (147). More recently, it has
been characterized as “not reaching the biologically based
potential,” often due to reduced perfusion or malnutrition in
utero (148–150). IUGR and “small for gestational age” (SGA,
birthweight of-2 SD/mean) are often used interchangeably;
however, SGA neither excludes nor proves IUGR but serves as
an easily quantifiable proxy for IUGR. Pathological intrauterine
circumstances induce IUGR, resulting in an infant with low birth
weight, often followed by a period of rapid postnatal weight gain,
also called “catch-up growth.” Catch-up growth is associated with
altered nutrient supply, and overlaps with the final stages of
pulmonary alveolarization and vascular maturation (151, 152).
Moreover, infants with catch-up growth after IUGR have a higher
risk to become overweight or obese and to develop metabolic
disorders later in life (4, 153). These clinical findings have been
supported by experimental models of IUGR (154–157).
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The etiology of IUGR can be divided in (1) fetal origins,
such as genetic abnormalities (e.g., chromosomal abnormalities),
(2) maternal factors (e.g., vascular diseases, persistent hypoxia
or undernutrition, and toxins), and (3) placental etiologies
(e.g., placental insufficiency, inflammation) (158). It is thought
that 40% of birth weight is ascribable to genetic factors
and that the remaining 60% is due to fetal environmental
exposures (159). Several historical events have caused a
surge of IUGR cases in a defined birth cohort, which has
provided deeper insight into the clinical sequelae of IUGR.
The latest temporary surge of IUGR caused by maternal
malnutrition in Europe was caused by the Second World War.
Investigations of the Dutch Famine Birth Cohort (Amsterdam,
1944-1946) have shown that low birth weight infants often
have a lower FEV1 and FVC, but not FEV1/FVC ratios,
indicative of restrictive lung alterations (160, 161). Other cohorts,
however, including an Indian study demonstrate an association
of small head circumference (indicative of early gestational
growth restriction) with reduced FEV1/FVC ratios (162, 163).
These data show the diverse impact of intrauterine nutrient
deprivation on lung health that could be in part accounted
to the window of injury or the type of nutrient restriction
(e.g., protein, vitamins). Overall, these observational and
experimental studies highlight that being born IUGR represents
a pathologic condition with far-reaching consequences for the
child’s health and disease, especially regarding metabolism and
the lung.

The Interplay Between IUGR and Obesity
Maternal obesity and GDMare often associated withmacrosomic
offspring (164). However, in uncontrolled or badly controlled
GDM, diabetic vasculopathy and nephropathy may lead to
placental insufficiency-induced IUGR (165, 166). In addition,
experimental data have shown that overnutrition of pregnant
sheep causes IUGR in the fetus, likely due to major restriction
in placental growth and relative hypoglycemia and fetal
hypoinsulinemia during late pregnancy (167). This might
be partly related to fetal hypoxia, in turn inducing fetal
catecholamine expression and reducing circulating insulin
concentrations (168). On the contrary, IUGR induces metabolic
changes to the growing fetus that cause a risk for developing
obesity, diabetes and metabolic syndrome later in life (4, 153).
These changes are passed onto the next generation; female
IUGR rat offspring exhibit symptoms of gestational diabetes,
and their offspring has increased fasting glucose and insulin
levels despite having a normal birth weight when compared
to controls (169). These transgenerational changes might be
attributed to epigenetic changes, not only affecting the IUGR
offspring, but also the second generation by direct exposition
of the offspring germ-line to the IUGR environment (170, 171).
More specifically, the increased risk for childhood and adult
obesity in IUGR offspring could be in part due to programming
of the adipocytes toward lipogenesis and proliferation (172,
173). Moreover, the combination of IUGR (induced by surgical
bilateral artery ligation) with maternal obesity increased hepatic
cholesterol accumulation and LDLR expression when compared
to non-IUGR controls (156). These data further support the

notion that maternal obesity along with IUGR provides an
additional risk for metabolic complications.

The Adverse Effects of IUGR on Pulmonary
Structure and Function
IUGR causes structural changes to the lung. Multiple animal
studies have shown that IUGR impairs alveolar formation
and lung growth, leading to reduced lung function (155,
174–179). In addition, a recent study from our group has
demonstrated that IUGR also negatively influences angiogenesis
and extracellular matrix formation (157). The intimate link
between angiogenesis and alveologenesis has been shown in
various animal studies, where alveolar formation was reduced
after blocking angiogenesis (180–182). Conversely, the positive
influence of angiogenesis on alveolar growth and regeneration
is of great therapeutic importance (181, 183). Structural
alveolar and vascular changes during lung development could
account for the functional alterations that were reported after
IUGR in epidemiological studies: several cohort studies have
shown that school-children born IUGR have a significantly
lower FEV1 and airway resistance as well as a higher
susceptibility to airway infections, independent of catch-up
growth (184–189). Moreover, in long-term follow-up studies
it was shown that a low birthweight decreases lung function
in adulthood, with a reduction of lung capacity and elasticity,
resembling a COPD phenotype (9, 190). In summary, there
is compelling epidemiological and experimental evidence that
IUGR determines lung structure and function and could thereby
predispose for CLDs.

Endocrine Effects of IUGR and Catch-Up
Growth Resemble those of Obesity
Children born SGA have an increased risk of reduced embryonic
β-cell growth, glucose intolerance, insulin resistance, type II
diabetes and obesity in childhood as well as later in life
(191–197). The effect of IUGR on the regulation of insulin
levels has been extensively studied, as insulin is not only
important for euglycemia in the fetus but also serves as
a major fetal (pulmonary-) growth factor (159). The stable
glucose flow over the placenta during healthy pregnancy causes
fetal insulin secretion that regulates normal adipose tissue
development and deposition (198). As stated before, IUGR fetus
can exhibit hypoglycemia and hypoinsulinemia due to inhibition
of endocrine signaling by catecholamines (168). In addition, the
pancreatic function can be decreased after IUGR, resulting in
lower levels of intrauterine insulin secretion as well (199). In
contrast, reports on postnatal insulin levels in IUGR newborns
are contradictive, they might be slightly lower or equal to
healthy controls (200, 201). Thus, IUGR causes a deregulation
of intrauterine insulin levels, an important mediator in adipose
tissue development and fat deposition.

The phase of catch-up growth after IUGR appears to be a
strong determinant of future (lung) health. A key fetal adaptation
to nutrient deprivation is the intrauterine upregulation of the
insulin receptor under hypoinsulinemic circumstances in
fetal skeletal muscle (202). After birth and under nutrient
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surplus, this upregulated receptor is activated by an abundance
of glucose and insulin, inducing accelerated body growth
(202, 203). The closely related insulin-like growth factor 1
(IGF-1) is induced by growth hormone (GH)/somatropin and
is an essential regulator of body growth. The inhibition of the
GH/IGF-1 axis has been shown to dysregulate alveologenesis,
mainly through disruption of the physiological deposition
of the extracellular matrix (204). Work by our group has
shown that inhibition of the GH/IGF-1 axis by IUGR was
associated with an arrest of lung development; in contrast,
catch-up growth caused a significant increase of GH/IGF-1
expression (174). Interestingly, recent work demonstrated that
postnatal treatment with recombinant human IGF-1 improves
lung growth and structure in a model for bronchopulmonary
dysplasia (BPD) (205). In conclusion, there is a postnatal reactive
upregulation of both the insulin receptor and the insulin-
signaling (including IGF-1) pathway after IUGR, resulting in an
initially increased insulin sensitivity during postnatal catch-up
growth (4). However, school-aged and adolescent children
with accelerated weight gain and catch-up growth after IUGR
show increased levels of insulin and reduced insulin sensitivity,
indicating the long-lasting effects of prenatal metabolic
programming (206, 207).

In addition to the dysregulation of prenatal and postnatal
insulin signaling, leptin has been identified to be dysregulated
after IUGR as well. Animal studies have shown that IUGR rat
pups rapidly develop leptin resistance during their catch-up
growth, thereby stimulating weight gain through hyperphagia
(208–210). An important molecular link between nutrient status,
insulin/leptin signaling and metabolic outcome is the mTOR
pathway, controlling cell growth in response to its environment
(e.g., stress, oxygen, nutrient status) through protein synthesis
as well as lipid, nucleotide, and glucose metabolism (211, 212).
A study from our group has shown that nutrient sensing via
the mTOR signaling pathway is dysregulated in lungs from a
rat model of nutrient deprivation-induced IUGR (157). Recent
reports demonstrated that the mTOR signaling pathway is
also altered in the placenta of humans and in experimental
IUGR studies, enforcing adaptive mechanisms from both the
maternal nutrient supply and the fetus’s energy demands
(213, 214). These studies suggest that both the placenta and
the fetus react to nutrient availability by regulating this key
nutrient sensor. The mTOR pathway is postnatally essential
for pancreatic β-cell and islet maturation (215). Furthermore,
mTOR is a potent mediator of endocrine responses, translating
signals from leptin and insulin to a negative feedback for
insulin (216). Interestingly, studies demonstrate that mTOR
is involved in lung development as well, by regulating cell
growth for proper organ development (211, 212) and by
interfering with essential developmental signaling pathways,
such as pulmonary angiogenesis (VEGF) and extracellular
matrix deposition (bone morphogenetic protein, BMP) (217,
218). Collectively, these data highlight the eminent impact of
intrauterine nutrient deprivation on endocrine function. Of note
are the converging similarities between IUGR and obesity with
regard to the endocrine system and the long-term metabolic and
pulmonary sequelae.

IUGR Causes Transgenerational Metabolic
Programing
Epidemiological studies as well as animal studies have shown
transgenerational effects of IUGR on metabolic function (219–
221). In part, these effects can be attributed to epigenetic
programming (222, 223). For example, Fu et al. as well as
Tosh et al. described histone modification along the IGF-1
gene and subsequently altered mRNA expression of IGF-1 in
a rat model for IUGR induced by placental insufficiency or
maternal malnutrition, respectively (224, 225). In addition, Tosh
et al. showed that the restriction of early postnatal nutrient
intake partly prevents these epigenetic changes (224). Park et al.
observed consistent epigenetic adaptations related to differential
binding of dinucleotide methyl transferase 1 and 3a together with
changes in histone acetylation and methylation in the promoter
region of the Pdx1 homeobox gene in a rat model of IUGR
(226). Recent studies by Gonzalez-Rodriguez et al., demonstrated
the genetic imprinting of H19/IGF2 in second-generation IUGR
offspring. This genetic imprinting was associated with altered
H19 and IGF2 expression, which is in turn related to an increased
risk for obesity and associated metabolic diseases (220, 227).
Interestingly, this effect is reversible with postnatal essential
nutrient supplementation (220, 228). These studies highlight
the influence of perinatal nutrition in the development but
also the primary prevention of metabolic diseases, including
their secondary pulmonary complications as described in the
previous chapter. In summary, these data indicate the great
potential of perinatal nutrition and metabolism as a preventive
and therapeutic target for metabolic health and CLDs.

Chronic Inflammation in IUGR-Associated
CLD
One of the vital connections between themetabolic consequences
of intrauterine nutrient deprivation and altered lung
development is chronic inflammation. Chronic inflammation
has been associated with (1) IUGR (229–232), (2) obesity, type
2 diabetes and metabolic syndrome (233–235) as well as (3)
CLDs (236–239). IUGR, followed by catch-up growth, shows
similar endocrine dysregulation and activation of inflammatory
mechanisms as obesity. For example, both obesity and IUGR
exhibit similar levels of leptin and insulin resistance in response
to their prenatal nutritional status and postnatal accelerated
weight gain (191–197). A possible shift of the Th2 immune
response might be another link between CLDs and metabolic
changes, e.g., elevated leptin (240) and insulin (206, 207) levels
after IUGR. Interestingly, a study in IUGR mice has shown
that the Th2 shift and consequent recruitment of macrophages
cause inflammation in the pancreatic β-cell islets, causing type 2
diabetes (230). To date, there is no conclusive evidence whether
IUGR-associated chronic inflammation is causative for or a
consequence of metabolic distress, but the reports support an
intimate link between both conditions.

A clinical study on the cord blood of 20 SGA neonates
showed that IUGR causes a low-grade inflammatory response:
infants born IUGR had significantly increased levels of
inflammatory markers IL-6, TNF-α, CRP and thrombopoetin
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(232). Moreover, animal studies have demonstrated IUGR-
associated systemic inflammation in various organs: adult
(uteroplacental) IUGR rats exhibited increased pancreatic β-
cell inflammation, increasing the risk of diabetes (230, 241); a
sheep model for hypothermia-induced IUGR showed a decrease
of NF-κB as key regulator of immune-responses (231); and
finally, a recent study in IUGR lambs demonstrated increased
inflammatory markers and expression of inflammatory as well
as pro-apoptotic genes in liver tissue (229). Along with these
reports, prior work from our group has shown that IUGR
causes dysregulation of key developmental signaling pathways
such as NPY(neuropeptide Y)/PKC(protein kinase C), IL-
6/AMPKα and TGFβ (transforming growth factor β) signaling
as well as the associated inflammatory response (178, 179,
242).

A highly relevant comorbidity for IUGR infants is
prematurity. About 30–50% of all extremely premature
infants display symptoms of IUGR (243, 244). The causes
of prematurity are multifactorial, but there is a strong
correlation with maternal obesity. A meta-analysis of 84 clinical
studies has shown a significantly increased risk of (induced)
preterm labor in overweight and obese pregnancies (245). In
addition, the risk of neonatal respiratory complications after
premature birth is higher in obese vs. non-obese pregnancies
(246, 247).

Premature birth and perinatal inflammatory responses have
been intimately linked to pathological processes (248). The lungs
of preterm infants are often in the late-saccular to early-alveolar
phase at birth and require respiratory support (249). Mechanical
ventilation, continuous positive airway pressure (CPAP) or
oxygen supplementation are necessary treatments, but cause
inflammation, acute lung injury and lead to a neonatal CLD,
also known as BPD (250–254). Lungs of infants with BPD are
characterized by vascular and alveolar hypoplasia (255). As stated
previously, IUGR alone adversely affects lung microvascular
and alveolar formation. Interestingly, the combination of IUGR
with the immature lung in premature infants increases the
risk for the clinical manifestation of BPD (i.e., prolonged
need of oxygen supplementation >36 weeks of gestation) (251,
256). These reports indicate that IUGR might be an initial
“hit” to the organism, raising susceptibility to CLDs such
as BPD.

In conclusion, similar to perinatal obesity and GDM, IUGR
leads to acute as well as long-term functional and structural
changes in the lung. A distinction must be made between
an intrauterine and a postnatal phase in the process of
perinatal programming caused by IUGR. While the intrauterine
phase is characterized by nutritional deprivation, the postnatal
phase is usually characterized by a catch-up growth. With
regard to the pathomechanisms, metabolic signaling pathways,
inflammation, and nutrient-sensing processes play an essential
role, ultimately controlling alveolar and vascular formation and
lung growth. However, the different phases of injury in IUGR
also provide windows of opportunity for preventive strategies,
therapeutic interventions and reprogramming in the future
(Figure 2).

THE MICROBIOME AS A LINK BETWEEN
NUTRITION AND LUNG HEALTH:
OPPORTUNITY FOR INTERVENTION

As stated before, obesity represents a state of low-grade
chronic systemic inflammation, as illustrated by the increased
amount of circulating inflammatory cells (83, 84) as well as
elevated expression levels of inflammatory factors (85–88).
External influences on the lung health such as airway pollution
and cigarette smoking have been extensively studied in the
last decade. Recently however, another field of interest has
gained momentum: the gut-lung microbiome. This represents
an extremely important link between nutrition, chronic
inflammation and pulmonary health. In the following, we will
detail the role of the microbiome in the early origins of CLDs.

The infant’s microbiome is predominantly established during
and shortly after birth, where it is exposed to the maternal
and environmental microbiome (257). The introduction of solid
foods into the children’s diet is the next essential step in the
microbiome development. Western diet (rich in meat and fat)
has been linked to decreased bacterial gut richness, whereas a
diet-based on fruits and vegetables is associated with increased
bacterial richness (258, 259). The human microbiome is closely
related to the nutritional status and chronic inflammatory
processes of the individual (260, 261). Studies have shown that
it is possible to predict if an individual is lean or obese based
on a classification of the gut microbiome with an accuracy
of over 90% (262). In humans for example, the abundance
of bacteria of the taxa Christensenella is negatively correlated
with BMI; in contrast, in in vivo experiments feeding mice
Christensenella bacteria induces weight loss (263). Another
human study revealed that the gut microbiome can influence
leptin concentrations, indicating that the microbiome might
regulate appetite (264). Interestingly, it has been shown that
the same dietary ingredients have different effects on the blood
glucose levels in humans, which is thought to be mediated by the
microbiome as well (265). In addition, new studies have shown
that the fecal transplantation of lean to obese patients improves
insulin sensitivity (266).

The microbiome alters the immune system and future
immune response. For example, it has been shown that the
yeast Candida Albicans in particular has a prominent effect
on the TNF-α response of the host; and the palmitoleic acid
metabolism of bacteria has been associated with lower systemic
responses (267). An overall decrease of bacterial richness is linked
to a variety of diseases including obesity, coronary vascular
disease, metabolic syndrome insulin resistance, dyslipidemia, and
inflammatory disorders (268, 269). When the development of
the infants’ microbiome is perturbed by the use of antibiotics it
can lead to the development of obesity or asthma in later life
(270). These examples highlight the mutual relationship between
the immune system and the microbiome, creating a finely tuned
balance (271). As a result, an imbalance between both creates a
lifelong signature of the infants’ microbiome (272).

The gut microbiome has been extensively studied, but the
lung microbiome has only recently gained interest with the
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FIGURE 2 | Maternal obesity as well as intrauterine growth restriction (IUGR) increase the risk of (catch-up growth mediated) early childhood obesity. Maternal and

early childhood obesity are associated with long-term adverse metabolic effects, including type 2 diabetes mellitus and metabolic syndrome. These pathological

metabolic processes are not only intimately linked to an increased risk for pulmonary diseases, but can cause a transgenerational effect from mother to child, to

second-generation offspring.

first reports of altered microbiome in asthma (273). The
lung microbiome has a strong influence on the susceptibility
to a wide array of chronic lung diseases, including COPD,
asthma, Idiopathic Pulmonary Fibrosis (IPF) as well as
altering the prognosis of cystic fibrosis (CF) (274). In
healthy individuals, the lung microbiome is well-regulated by
the environment (high clearance, low immigration and low
nutrient availability). However, processes that favor alterations
of the microbiome and inflammation include the increased
production of mucus, creating a moist and warm bacterial
niche, increased vascular permeability which increases the
nutrient availability and selective growth promotion as well
as selective clearance due to the altered immune response
to airway colonization (275, 276). These factors promote the
bacterial colonization of the airways as well as the selective
overgrowth of certain well-adapted species, thereby creating
a shift of the microbiome from healthy to diseased and
inducing the “dysbiosis-inflammation cycle” as introduced
by Dickson et al. (275–278). Thus, a perpetual cycle of
microbial changes, possibly due to initial nutritional changes
before and early after birth, along with inflammation has
a significant impact on the development and prognosis
of CLDs.

To date, the gut-lung axis remains elusive, especially
with regard to clinical interventions. Nonetheless, several
initial successes have been reported in the recent years. For
example, stimulation of the gut microbiome with a high-
fiber diet in COPD patients has been shown to increase
the production of anti-inflammatory short chain fatty acids
(SCFAs). These anti-inflammatory factors might reduce chronic
inflammation of the lungs, prevent or decrease lung remodeling
and therefore improve the lung health of COPD patients
(279). Meanwhile, the Canadian Healthy Infant Longitudinal
Development (CHILD) Study revealed that bacterial genera
Lachnospira, Veillonella, Faecalibacterium, and Rothia are
significantly reduced in infants at risk for asthma. Inoculation
with these four bacteria reduced airway inflammation in a
mouse model, possibly lowering the risk for asthma (280). These
studies highlight the promising benefits of dietary changes or
adjustment of the gut microbiome for the improvement of
lung health.

The virome, including the genes of pathogenic viruses,
resident viruses and bacteriophages, is of interest for CLDs
as well (281, 282). Viral infection is the predominant reason
for acute respiratory infections and the exacerbation of CLDs
such as asthma, COPD and CF (283, 284). Next generation
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FIGURE 3 | Overview of the converging inflammatory signaling and nutrient sensing pathways of obesity and intrauterine growth restriction (IUGR). Obesity or IUGR

lead to chronic inflammation and hyperinsulinemia, which induces mTOR, TNF-α, PAI-1, IL-6, Leptin, and HIF-α signaling. In the lung, these signaling molecules cause

for example tissue remodeling, reduce alveolarization and induce smooth muscle cell hyperreactivity. These features are characteristics for a higher susceptibility to

develop a chronic lung disease in later life. [mTOR (mechanistic target of rapamycin), TNF-α (tumor necrosis factor alpha), PAI-1 (plasminogen activator inhibitor-1),

IL-6 (interleukin-6), HIF-α (hypoxia inducible hypoxia-inducible factor alpha)].

sequencing has made it possible to assess the viral DNA
or RNA load in respiratory samples (285, 286). Obesity
influences the virome of the host; it has been reported
that increased viral RNA abundance is closely correlated
to an increase of fat mass and hyperglycemia in mice
(287). In line with this finding, obese patients show a
higher susceptibility to dengue fever (288). Moreover, the
adenovirus Ad-36 interferes with adipocyte differentiation,
leptin production and glucose metabolism (289). Special
interest is drawn to the fact that viral presence in the gut
influences the host’s immune response (290) by interfering
with the host’s microbiome and immune-modulatory actions
(e.g., through the TNF-α pathway) (267, 291). This crosstalk
between the bacterial microbiome and virome and their
immune-modulating properties have also been reported in the
lung (277, 292).

In conclusion, nutritional changes can directly and
indirectly influence the intestinal and pulmonary microbiome
(including the virome), modulating the immune response
and increasing inflammation, and ultimately the risk
of severe CLD. Targeting the microbiome might offer
new preventive and therapeutic avenues for CLDs early
in life.

SYSTEMIC CONSEQUENCES OF FETAL
PROGRAMMING

Maternal obesity, maternal malnutrition or fetal nutrient
deficiency through placental insufficiency naturally not only
affect the lung, but all other organs as well. The organ-specific
susceptibility to metabolic influences varies, and the “window
of exposure” plays a crucial role. In other words, the timeframe
during which organ development and/or -function is especially
vulnerable differs from organ to organ.While a lot of research has
been performed with traditional technologies, the ever-growing
possibilities of bioinformatics will improve the longitudinal
integration of transcriptomic, proteomic and lipidomic data with
clinical parameters. These analyses will help to increase the
understanding of the complex interaction of internal and external
variables during development, resulting in a healthy individual
or one with programmed disease. While the strength of animal
models lies in the possibility to elucidate molecular mechanisms,
it will be a challenge for clinicians to identify individuals at
risk. Harmonization and standardization of cohorts like in the
LifeCycle-Project (293) improves the epidemiological basis to
translate hypotheses on the early origins of disease from animal
models in to the human context and to confirm their clinical
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TABLE 1 | Overview of the signaling molecules and pathways involved in the perinatal nutritional and metabolic origins of chronic lung diseases.

Disease Regulator Obesity IUGR Effector Outcome and reference

Pulmonary arterial hypertension (PAH) HIF-α ↓ X Endothelin-1 ↑ Vascular remodeling (65, 66)

IL-6 ↑ X X Stat3 ↑

FoxO1 ↓

SMC proliferation (92, 93, 178)

PPARγ ↓ X Reduced SMC proliferation

(130, 131)

Protective

mTOR ↓ X VEGF ↓

BMP ↓

Reduced angiogenesis Altered

ECM disposition (157, 218)

COPD and emphysema IL-6 ↑ X X ATII apoptosis (91, 232)

Leptin Sftpa ↑ ATII maturation (104, 105) Protective

↑ X X Col1a1, Col3a1,

Col6a3, Mmp2,

Tieg1, Stat1 ↑

Enlarged alveoli (106, 157)

Respiratory distress syndrome (RDS) Insulin ↑ X X VEGF ↓

HIF-2 ↓

mTOR ↑

Reduced angiogenesis (141)

X X PI3K ↑

Sftpa ↓

Increased alveolar surface

tension (139)

X GH/IGF-1 ↓

↑

Reduced alveologenesis

Lung- and bodygrowth

(174, 204)

Protective

PPARγ Promotes Lung maturation

(128, 129)

Protective

Leptin ↓ X X Leptin resistance ↑

mTOR ↓

Reduced alveolar surface

(173, 210, 213, 214)

Asthma TNF-α ↑ X X G-proteins ↑ Hyperreactivity in SMC (96, 232)

Adiponectin ↓ X NF-κB ↑ Enhanced TNF-α activity (97)

PAI-1 ↑ X Collagen, fibrin deposition (89)

Insulin ↑ X X Th2 shift Enhanced immune response

(145)

X X PI3K-signaling ↑ Contractile SMC phenotype

(143)

Leptin ↑ X X mTOR ↑

MAPK ↑

Hyperreactivity (114)

relevance. In this context, research on biomarkers is of high
relevance to improve the diagnostic options in early detection
of aberrant organ development. Candidates have been studied in
clinical situations of known organ damage, e.g., BDP (294, 295)
and neonatal kidney injury (296–298) and will have to be tested
in the context of metabolic programming. Importantly, the goal
is not to label an individual organ function as pathological
beyond classical criteria but to identify individuals who are at
risk to develop disease later in life in order to provide targeted
prevention strategies.

Looking at molecular mechanisms, it is important to note
that early metabolic origins of disease are based on a complex
encounter of small-scale dysregulations rather than one single
dysregulated pathway. Interestingly, apparently distinct causes of
nutritional programming can cause similar molecular alterations.
As discussed in detail for the lung, both IUGR (299) andmaternal
obesity-associated (300) models seem to induce inflammation
in other organs as well. Briefly summarized, it is demonstrated
that neuroinflammation is an importantmechanism contributing
to neurocognitive impairment after IUGR and maternal obesity
(301, 302) and the window of vulnerability extends well-beyond

birth (303, 304). Circulating inflammatory proteins were even
tested as biomarkers for later cognitive impairment in preterm
infants (305). Experimental studies have also linked perinatal
inflammation to adverse kidney development (306, 307) and
cardiac dysfunction (308). Taken together, these studies highlight
the need to consider inter-organ communication as an important
contributor to health and disease.

CONCLUSION

The mission of this article was to provide a comprehensive
review of the impact of perinatal nutrition and metabolism
on lung development and early origins of CLD. The current
literature provides compelling evidence that maternal obesity,
early childhood obesity and IUGR are intimately linked to
increased risk for lung disease. These perinatal nutritional
alterations of the fetus and infant converge in similar metabolic,
endocrine, nutrient sensing and inflammatory signaling
pathways. Key regulators are insulin and leptin, and their
respective downstream signaling cascades. Both hormones
are essential for physiological growth and development
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during pregnancy; in contrast, interruption of the concerted
interaction and balance of hormones, cytokines and growth
factors during a critical window of development can disrupt
developmental processes and adversely affect child (lung)
health throughout life. For example, maternal obesity and early
childhood obesity cause hyperinsulinemia and hyperleptinemia
combined with insulin- and leptin-insensitivity. On the
other hand, IUGR is characterized by a transient prenatal
downregulation of insulin- and leptin signaling, followed by
a postnatal upregulation during catch-up growth resulting in
the same pathology as obesity. These two endocrine factors
subsequently cause a cascade of pro-inflammatory programing
with the release of (adipo-) cytokines and can contribute to
metabolic and pulmonary disease (Figure 3, Table 1). These
pulmonary sequelae span from aberrant alveolarization and
angiogenesis to remodeling of the extracellular matrix and
ultimately reducing lung function. While the present review
primarily focused on the lung, other organs are affected as well,
highlighting the importance of inter-organ communication.
Beyond the metabolo-inflammatory stress response after
perinatal nutritional alterations, smoking, air pollution as well
as a consecutive dysbiosis of the intestinal and pulmonary
microbiome contribute to the susceptibility and early origins of
CLDs such as COPD, PAH and Asthma.

Both obesity-related comorbidities and CLDs are a relevant
socioeconomic and individual burden. The alarmingly increasing
rates of overweight and obese adults, pregnant women, and
children emphasize the need to investigate and decipher the

crosstalk between nutrition metabolism and the early origins
of CLDs. Elucidation of the metabolo-pulmonary axis with
subsequent identification of novel targets will provide new
avenues to prevent metabolic programming and the early origins
of CLDs.
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