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Inflammatory bowel diseases (IBD), including Crohn’s disease (CD) and ulcerative colitis
(UC), are complex, multifactorial disorders that lead to chronic and relapsing intestinal
inflammation. The exact etiology remains unknown, however multiple factors including
the environment, genetic, dietary, mucosal immunity, and altered microbiome structure
and function play important roles in disease onset and progression. Supporting this
notion that the gut microbiota plays a pivotal role in IBD pathogenesis, studies in
gnotobiotic mice have shown that mouse models of intestinal inflammation require
a microbial community to develop colitis. Additionally, antimicrobial therapy in some
IBD patients will temporarily induce remission further demonstrating an association
between gut microbes and intestinal inflammation. Finally, a dysfunctional intestinal
epithelial barrier is also recognized as a key pathogenic factor in IBD. The intestinal
epithelium serves as a barrier between the luminal environment and the mucosal
immune system and guards against harmful molecules and microorganisms while being
permeable to essential nutrients and solutes. Beneficial (i.e., mutualists) bacteria promote
mucosal health by strengthening barrier integrity, increasing local defenses (mucin
and IgA production) and inhibiting pro-inflammatory immune responses and apoptosis
to promote mucosal homeostasis. In contrast, pathogenic bacteria and pathobionts
suppress expression and localization of tight junction proteins, cause dysregulation of
apoptosis/proliferation and increase pro-inflammatory signaling that directly damages
the intestinal mucosa. This review article will focus on the role of intestinal epithelial cells
(IECs) and the luminal environment acting as mediators of barrier function in IBD. We will
also share some of our translational observations of interactions between IECs, immune
cells, and environmental factors contributing to maintenance of mucosal homeostasis,
as it relates to Gl inflammation and IBD in different animal models.

Keywords: IBD, microbiota, dog, mouse, intestinal permeability, epithelial barrier

INTRODUCTION

The inflammatory bowel diseases (IBD), including Crohn’s disease (CD) and ulcerative colitis (UC),
are complex, multifactorial inflammatory diseases affecting the gastrointestinal (GI) tract (1, 2).
IBD is an immune-mediated disorder comprising two distinct phenotypes having varying clinical,
endoscopic, immunologic and histopathologic features (3, 4). Crohn’s disease is characterized by
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patchy, transmural inflammation that primarily affects the
terminal ileum but can also involve the small intestine. Ulcerative
colitis causes diffuse superficial mucosal ulcerative inflammation
restricted to the rectum and colon. The cause for IBD remains
unknown but it is likely that genetically susceptible individuals
develop an aberrant immune response to their microbiota,
leading to chronic inflammation and repetitive injury to the
intestines (2). The onset of IBD typically occurs in the second
or third decade of life but rising incidence worldwide suggest a
prominent role for environmental factors (5).

The intestinal epithelium is composed of a monolayer of
columnar epithelial cells that communicate continually with the
luminal microbiota and an underlying network of innate and
adaptive immune cells. This mucosal barrier normally prevents
the entry of pathogenic microbes and toxins while regulating the
absorption of nutrients, electrolytes, and water from the lumen
into the systemic circulation (6). There is a growing body of data
indicating that dysfunction of the intestinal barrier is a causative
factor in the pathogenesis of IBD. For example, numerous IBD
genetic risk loci affect pathways active in epithelial cells involved
in essential functions such as innate immunity, autophagy and
endoplasmic stress (7). Moreover, epithelial barrier dysfunction
secondary to chronic inflammation and recurring “flares” is
characteristic of IBD (8). During active disease, inflammatory
mediators (cytokines/bacterial products) released in the intestinal
mucosa progressively damage the epithelium and expose mucosal
immune cells to luminal antigens that amplify the inflammatory
response (3, 9). Finally, the intestinal epithelium is actively
involved in repair mechanisms that promote mucosal healing
through re-epithelialization to patch defects and maintain
mucosal homeostasis (10, 11). Also contributing to maintenance
of the mucosal barrier is the controlled replenishment of
intestinal epithelial cell (IEC) subtypes (e.g., columnar cells,
goblet cells, enteroendocrine cells and Paneth cells) from LGR5
intestinal stem cells (12). In this review, we will focus on the role
of IECs and the luminal environment (including the microbiota)
to act as mediators of barrier function in IBD. We will also share
some of our translational observations of interactions between
IECs, immune cells, and environmental factors (including the
gut microbiota) contributing to loss of mucosal homeostasis as
it relates to GI inflammation and IBD in different animal models.

Intestinal Barrier and Mucosal

Homeostasis

Structural Components of the Epithelial Barrier

The term mucosal barrier was first proposed by Cummings in
2004 and describes the complex structure that separates the
luminal environment from the internal milieu (13). The intestinal
mucosal barrier is a functional entity consisting of separate
but interlinked components, including physical elements (e.g.,
the underlying vascular endothelium, epithelial cells, and the
mucus layer), along with a chemical layer composed of digestive
secretions, immune molecules, and cellular products (cytokines,
inflammatory mediators, and antimicrobial peptides). Apart
from these layers, the microbiota also contributes to barrier
integrity along with immune functions and GI motility. The

intestinal epithelium is composed of a single layer of columnar
cells and different specialized cell subtypes: enterocytes, goblet
cells, Paneth cells, enteroendocrine cells and immune cells,
including intraepithelial lymphocytes (IELs) and dendritic cells
(Table 1; Figure 1) (15). Three types of junctional complexes
[tight junctions (T7), adherens junctions (AJ) and desmosomes]
provide mechanical cohesion to these columnar cells and seal the
paracellular space to regulate the movement of water ions and
small molecules across the intestinal mucosa (16-18).

Tight junctions form the most apical adhesive (JP) and
are continuous around the IEC at the border between apical
and lateral membrane regions (16-18). They function as a
semi-permeable paracellular barrier that move ions and solutes
through the intercellular space while excluding luminal antigens,
bacteria and their toxins. Within T] complexes are integral
transmembrane proteins, occludin and members of the claudin
family, that link adjacent cells to the actin cytoskeleton to
regulate paracellular permeability (16). Claudins represent a
family of TJ proteins that regulate the movement of water and
electrolytes through sealing molecules and pores. Experimental

TABLE 1 | Components of the intestinal epithelial barrier and their perturbation in
IBD.

Components Function Known defects

Physical Barrier

Mucus layer Adherent and loose layers, Reduced thickness to mucus
contain AMPs and microbiota layer, bacterial biofilm with
(loose layer) CD, altered composition to

mucus layer

Enterocytes Digestion, macromolecule Defective defensin production,
transport, secrete B-defensins mucosal ulceration/erosions

Goblet cells Secrete mucin and trefoil Decreased number of goblet
factors cells

Paneth cells Secrete a-defensins, Reg3 Reduced antimicrobial activity
proteins, lysozyme, BMPs for
ISC niche

Enteroendocrine  Produce serotonin and 5-HT;  Altered enteroendocrine

cells sense microbial metabolites  secretion

Intercellular Intercellular transport, regulate Altered expression and

junctions barrier function localization

Intra-epithelial Immune surveillance,
lymphocytes (IELs) cytotoxic activity

Imbalance in IEL cytolytic and
regulatory functions
Increased activation
promoting inflammation

Dendritic cells Antigen sampling

Plasma cells Increased in number,
increased granzyme B and
cytotoxic activities

Produce secretory IgA (slgA),
help maintain ISC niche

Chemical Barrier

Digestive Degrade nutrients and Altered secretions

secretions bacteria

Anti-microbial Bacterial degradation and Reduced antimicrobial activity
peptides (AMPs)  exclusion

Cytokines, Promote inflammation Increased production
inflammatory contributing to repetitive
mediators mucosal injury

BMPs, bone morphogenic proteins; 5-HT, 5 hydroxytryptamin; ISC, intestinal stem cell;
CD, Crohn'’s disease.
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(14) with permission.

FIGURE 1 | Physical and chemical components of the intestinal epithelial barrier. See text for component specifics. With epithelial barrier dysfunction (insert), intestinal
permeability increases which allows for antigens and macromolecules (bacteria) to pass into the lamina propria where innate and acquired immune cells reside. From:

studies indicate that differential claudin expression (either
up- or down-regulation) is associated with impaired barrier
function (19, 20). The important T] adapter proteins, zonulin
occludens (ZO) -1, -2 and -3, connect the cytoskeleton to the
transmembrane TJ proteins. Underneath the TJs are the AJs that
are important for cell-to-cell signaling and epithelial restitution,
while desmosomes provide structural stability between the IECs
(16, 21). Summarizing, the intestinal epithelium maintains its
selective barrier function through the formation of complex
protein-protein networks that mechanically link adjacent IECs to
selectively seal the intercellular space.

The expression pattern of JPs is tightly regulated and
varies by intestinal compartment (small vs. large intestines),
villus/crypt location, and cell membrane location (apical, lateral
or basolateral). The expression of A] and TJ proteins is a dynamic
process that is steadfastly regulated by phosphorylation causing
both beneficial and harmful consequences (22-24). For example,
phosphorylation can either promote TJ protein formation to
enhance barrier function or alternatively it can disrupt and
redistribute T] and AJ proteins to increase intestinal permeability
(25, 26).

The human intestinal epithelium constantly renews itself
every 4-5 days under normal homeostasis, with the pace of

renewal increasing following damage. Regulating this process are
pluri-potential stem cells that give rise to all GI epithelial cell
lineages and can generate whole intestinal crypts (12). At the tips
of villi and along the epithelia of the colon, mature cells undergo
apoptosis and are normally shed into the GI lumen. Intestinal
stem cells (ISCs that express LGR5) can differentiate into four
specialized cell types, including columnar cells (enterocytes and
colonocytes), goblet cells, enteroendocrine cells and Paneth cells
(the latter cell type found only in the small intestine) (15).
Columnar cells are the most abundant epithelial cell found in
the small and large intestines and are involved in absorption.
Goblet cells produce and secrete mucin (e.g., mucin-2) which
covers the surface of the intestinal epithelium. Antimicrobial
peptides and lysozyme further fortify the antimicrobial properties
of the mucus compartment to promote antigen elimination.
Paneth cells produce lysozyme and several antimicrobial peptides
to protect against microbial infection including o-defensins
and Reg3 proteins (27, 28). They also reside adjacent to ISCs
and provide the necessary growth factor (e.g., Wnt, EGF or
Notch) signals to the ISCs and constitutes the stem cell’s
niche (12). Epithelial cells secrete p-defensins in response to
sensing of microbes by their pattern recognition as either
commensal bacteria or pathogens. Secretory immunoglobulin
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A (sIgA) is produced by plasma cells to mediate protection at
mucosal surfaces by binding bacteria and viruses to prevent their
attachment to or invasion of IECs (i.e., immune exclusion) (29).
Finally, the resident bacteria provide a deterrent to microbial
invasion and maintenance of mucosal homeostasis through
competitive exclusion, nutrient utilization, niche localization and
their production of bacteriocins (30).

Intestinal Barrier Permeability Pathways

The intestinal epithelium serves as the primary compartment of
the mucosal barrier and uses both transcellular and paracellular
mechanisms to transport substances from the lumen into the
lamina propria. The transcellular pathway primarily transports
nutrients and compounds having high molecular weight (>600
Da) by means of endocytosis or carrier-dependent transport
systems. The protein complexes interconnecting enterocytes (i.e.,
TJ, AJ, and desmosomes) are dynamic key modulators that
allow for the paracellular transport of water, small solutes and
electrolytes between enterocytes while restricting the passage
of microbes and large molecules (31, 32). Since paracellular
transportation occurs through the space between cells, it is
less selective as compared to the transcellular pathway which
is regulated by membrane channels. Taken together, these two
pathways selectively regulate the degree of permeability for
substances having different physiochemical properties, such as
variable size and ionic charge, into the lamina propria. Any
impairment in the integrity or function of these transporting
routes increases intestinal permeability which is implicated in the
pathogenesis of several GI and extra-GI diseases (i.e., having local
or systemic manifestations) such as IBD, celiac disease, type I
diabetes, and emotional stress (33, 34).

The gut microbiome, which contains 10'* bacteria and
100-fold more genes than the entire human genome, has a
pivotal role in development of the host immune system and
metabolism (35). A well-balanced symbiotic relationship between
the gut microbiota and the host is required for maintenance of
mucosal homeostasis. There are approximately 1,000 different
bacterial species within five dominant phyla (i.e., Bacteroidetes,
Firmicutes, Actinobacteria, Proteobacteria, and Verrucomicrobia)
that comprise the healthy human fecal microbiota (36). In
contrast, the core gut bacteria in the feces of specific pathogen
free (SPF) mice contains 37 genera (37). In this group,
Anaerostipes spp were present in all mice and are an important
butyrate producing bacterial species contributing to mucosal
barrier integrity. Another murine microbe with high prevalence
is Parabacteroides spp which are important in stimulating
host immunity. The other dominant murine bacteria include
carbohydrate-utilizing and lactate and/or acetate-producing
microbes such as Bifidobacterium spp and Lactobacillus spp.
These observations suggest that the composition of a core
microbiome within a species is essential for maintaining gut
homeostasis and are reflective of overall host health to a
variable extent.

Methods to Investigate the Intestinal Epithelial Barrier
The intestinal epithelial barrier remains selectively permeable
if its integrity is not compromised. Following mucosal barrier

disruption, intestinal permeability increases and delivers
phlogistic dietary and/or microbial products to the mucosal
immune system which provoke host responses. Therefore,
the normally tolerogenic crosstalk between the host and the
microbiota becomes perturbed resulting in the generation of an
overactive immune response. Overtime, this continuous immune
stimulation gives rise to intestinal inflammation which triggers
the onset of chronic GI disease, such as IBD. Longitudinal
studies in patients with IBD indicate that altered intestinal
permeability precedes relapse of CD, suggesting a pathogenic
role for barrier dysfunction in IBD as well as an indicator
of impending symptoms (38). There are several methods for
assessment of intestinal permeability via administration of oral
probes, in vitro or tissue measures, and endoscopic evaluation
of the intestinal epithelial barrier (mucosa) in humans (Table 2)
(14, 21).

Our own work using a defined microbiota [colonized with the
altered Schaedler flora (ASF)] mouse model shows that healthy
ASF mice have increased intestinal permeability as compared
to conventionally reared (CONV) mice. Using RNA in situ
hybridization, we provide evidence that greater concentrations
of bacteria (EUB probe) and/or their products translocate into
the cecal lamina propria vs. bacterial products that translocate in
CONV mice (Figure 2). Furthermore, ASF mice demonstrated
greater IgG antibody response against members of their resident
microbiota when compared to the antibody response directed
against these same bacteria in CONV mice (unpublished
observations). Our findings are in accordance with previously
published data confirming that mice harboring a less diverse
gut microbiota have an altered mucosal barrier and increased
intestinal permeability (40).

Microbiota Alterations in IBD

Observations in Human IBD

Abundant clinical studies indicate a dysfunctional interaction
between the gut microbiota and the host response in the onset
and pathogenesis of IBD. Increased risk of IBD is associated with
changes in composition/structure of the intestinal microbiota or
genetic predisposition that impairs normal microbial sensing,
both of which can cause altered host-microbe interactions (2, 3,
41-48). CD and UC are not considered single gene disorders,
as over 240 susceptibility and IBD risk loci have now been
identified (49, 50). Twin studies showed that while there is a
genetic basis for IBD, it is not inherited in a simple Mendelian
fashion (51). Genetic linkage analysis studies have identified
nine disease loci, five of which meet the most stringent linkage
analysis criteria, the remaining of which were at least suggestive
(49). Mutations in several genes responsible for innate immune
sensing of the intestinal microbiota, including NOD2/CARD15,
IL-23R and ATGI16L1, can also lead to increased risk for IBD
(52-54). CARD15/NOD2 was the first IBD susceptibility gene
that was identified emphasizing the importance of mucosal-
microbial disturbances in the pathogenesis of IBD (53). CARD15
encodes an intracellular protein expressed in multiple immune
system components including Paneth cells, monocytes, tissue
macrophages and intestinal epithelial cells (52, 55-57). In Paneth
cells, NOD2 mediates activation of NF-kB that leads to the
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induction of defensins. With NOD2 mutations in CD, selective
a-defensin production is attenuated which predisposes intestinal
epithelial cells to microbial infection (58). Additionally, two
autophagy genes, ATG16L1 and IRGM—both of which have roles
in the processing of microbial antigens as part of the innate
immune system—were identified as susceptibility genes (54, 59).
Polymorphisms in these genes promote deranged innate immune
responses leading to persistent intracellular bacterial infection
that promote the development of IBD. IBD has also been linked
to IL-10 deficiencies in humans. In the study by Glocker et al.,
investigators found that mutations in either ILI0RA or IL10RB
are associated with severe early onset enterocolitis in children
(60). In a separate study, investigators reported NOD2 mutations
in patients with IBD that were linked to inhibition of IL-10 in
human monocytes (61).

The host microbiota plays an important role in the
pathogenesis of IBD as evidenced by numerous clinical studies.
Antibiotic use, both in early childhood and in adults, has
been associated with increased risk for development of IBD
(62). Moreover, the risk for IBD increases following an episode
of infectious gastroenteritis (63). There are other observations
implicating the microbiota including reports that mucosal
inflammation is localized to gut segments with the greatest
bacterial loads (2, 42). Furthermore, antibiotic treatment may
be effective in a subset of IBD patients (post-surgical, CD and
in pouchitis patients). Antibiotics have been used with varying
degrees of success and longevity of response in patients with CD
having luminal disease, fistulizing disease, and secondary septic
complications such as post-operative infections (64). Results
from large scale clinical trials and meta-analyses have been
mixed with some analyses finding mild to moderate benefits
in disease activity scores (65, 66) and others finding no benefit
(67). Furthermore, probiotics and fecal microbiota transplant (in

UC patients) may induce or maintain remission in some IBD
patients (68-70).

Importantly, many studies have shown consistent alterations
in microbial communities characterized by reduced microbial
diversity in patients with IBD compared to controls (41, 71). The
fecal microbiota of both CD and UC patients contains a depletion
of Bacteroidetes and Firmicutes phyla (in particular Clostridium
spp), which are the dominant normal fecal microbiota, and an
increased abundance in Proteobacteria (42, 45, 72). Moreover, a
metagenomic analysis of microbiomes demonstrated 25% fewer
mucosal microbial genes from IBD patients compared with the
microbiomes of healthy controls, suggesting that lower microbial
diversity is present and contributing to disease (73). Several
studies have found decreased abundance of Faecalibacterium
prausnitzii (74), a major butyrate producing bacteria in the gut,
and an increase in sulfate-reducing bacteria (SRB) which cause
decreased expression of epithelial TJPs to increase intestinal
permeability in IBD (75).

Still other studies have focused on the role of the mucosal
microbiota that is different than the fecal microbiota between
controls and patients with IBD. Using fluorescence in situ
hybridization, high concentrations of bacteria were shown
adherent to the epithelium of IBD patients as a thick biofilm,
mainly composed of Bacteroides fragilis (43). In one seminal
study, a depletion of Lactospiraceae and Bacteroidetes but
increased abundance of Proteobacteria and Actinobacter
were present in colonic biopsy specimens from both CD
and UC patients, relative to control tissue samples (45).
The distribution of operational taxonomic units (OTUs)
was associated with disease state but not anatomy (small
vs. large intestine) or gross pathology. Furthermore, the
microbiome collected in multiple GI locations from a large
cohort of treatment naive patients with new-onset CD found

FIGURE 2 | RNA in situ hybridization for total bacteria (EUB probe) in murine cecal tissue specimens. Red staining indicates the presence of bacteria and/or their
products within the cecal lamina propria of ASF colonized mice (A) and conventional mice (B). From: Parvinroo et al. (39) with permission.
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an increased abundance of Enterobacteriaceae, Pasteurellacaea,
Veillonellaceae and Fusobacteriaceae and a reciprocal decrease
of Erysipelotrichales, Bacteroidales and Clostridiales in pediatric
IBD samples as compared to controls (45). These changes
also correlated with disease status, that is, inflammation
had a significant impact on microbial composition. Since
several of the underrepresented bacterial phyla in IBD
patients are Dbutyrate-producing microbes, depletion of
these organisms might reduce butyrate production, which
is an important energy source for colonic epithelial cells
and may enhance epithelial barrier integrity and mediate
GI immune responses (42). Loss of significant quantities of
these bacteria that provide key metabolic products (i.e., short
chain fatty acids) to the host could exacerbate some forms of
IBD (76-78).

TABLE 2 | General means for assessment of intestinal permeability in humans

and animals.
Method Human Animal Material Comments
needed

Orally administered probes

Lactulose/mannitol X X Urine Time consuming

FITC-dextran X Serum Time consuming

51Cr-EDTA X X Urine Time consuming; radiation
hazard

In vitro/tissue measures

Ussing chamber X X Biopsies  Invasive; requires
specialized equipment

TEER X X Biopsies  Invasive; requires
specialized equipment

Histology X X Biopsies  Invasive; permits specialized
testing (IHC, confocal
microscopy) for TJP
expression

Scanning electron X X Biopsies  Invasive; specialized fixative;

microscopy expensive

DNA/RNA X X Biopsies  Invasive; permits gPCR for

extraction TJP expression

Biomarkers

LAL assay (LPS) X X Plasma May have technical
limitations

Citrulline X X Plasma Reliability in the dog is
questioned

FABP X X Plasma ELISA performed on plasma

or urine

Endoscopic measures

Confocal X X* *As performed in dogs;

endomicroscopy specialized equipment;
expensive

Endoscopic X Directly measures duodenal

mucosal impedance; specialized

impedance equipment; expensive

Modified from references 20 and 38; TEER, trans-epithelial electrical resistance; LPS,
lipopolysaccharide; FABR, fatty acid binding protein; IHC, immunohistochemistry; TJR,
tight junction protein.

*denote that this intervention is only used in dogs.

Pathobionts, such as adherent-invasive Escherichia coli
(AIEC), are present within the mucosa in 21-62% of patients with
ileal CD and 0-19% of healthy individuals (79, 80). Dysbiosis
is associated with increased levels of oxygen in the intestinal
lumen (81), possibly due to increased intestinal permeability
and/or mucosal inflammation (82). In the inflamed gut, increased
colonic oxygen levels restrict obligate anaerobic populations
(e.g., Firmicutes) and increase the abundance of facultative
anaerobes, including members of the family Enterobacteriaceae
(83). Patients with CD have specific NOD2 variants that
lead to defective innate sensing, autophagy, and immune
responsiveness to CD-associated AIEC (7, 84). The adhesion
molecule CEACAMG6 is over expressed in ileal CD patients
which also makes individuals more susceptible to mucosal
colonization by AIEC (85). AIEC pathobionts strongly adhere
to and invade IECs inducing robust pro-inflammatory cytokine
secretion (e.g., IFN-y, TNF-a) which causes direct damage to the
intestinal barrier and promotes inflammation. Once within the
ileal mucosa, AIECs can reside and replicate within macrophages,
leading to an increased pro-inflammatory response (86). In
contrast, AIEC colonization does not occur in colonic CD and the
lack of AIEC mucosal translocation in UC patients would suggest
that E. coli does not play a primary role in UC pathogenesis (87).

Observations in Murine Models of Intestinal
Inflammation
Most different mouse models support a role for the microbiota
in experimental intestinal inflammation. Early studies in mice
treated with dextran sodium sulfate (DSS), a chemical irritant
that disrupts the colonic intestinal epithelial barrier to contribute
to the development of colitis, reported significant increases
in intestinal Bacteroidaceae and Clostridium spp, in particular
Bacteroides distasonis and Clostridium ramosum, in both acute
and chronic colitis DSS models (88). In another study, increased
numbers of colonic mucin-degrading Akkermansia muciniphila
and Enterobacteriaceae were correlated to disease activity in
DSS-treated mice resembling UC (89). Interleukin-10 knockout
(IL-10~/7) mice develop spontaneous colitis that is entirely
dependent on gut bacteria (90), and where colonic inflammation
is attenuated when treated with antibiotics before disease onset
(91) or is eliminated altogether in mice housed in a germ free
environment (92). Animal models have also shown that intestinal
inflammation is transferable through the intestinal microbiota.
Germ-free IL-10~/~ mice colonized by the intestinal microbiota
of IBD patients exhibit increased colitis as compared to mice
colonized with the intestinal microbiota derived from healthy
human controls (93). In IL-10~/~ mice, loss of regulatory IL-
10 secretion results in intolerance to their intestinal microbiota,
unbalanced pro-inflammatory responses contributing to mucosal
barrier disruption, and the development of spontaneous colitis.
The administration of broad or narrow spectrum antibiotics
shows different therapeutic activities in various regions of
the colon in SPF colonized IL-107/~ mice. Narrow spectrum
antibiotics, such as ciprofloxacin or metronidazole, prevented
cecal and colonic inflammation in IL-10~/~ mice following SPF
colonization. Ciprofloxacin was most effective in treating cecal
inflammation by reducing aerobic bacteria, including, E. coli
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and E. faecalis; whereasmetronidazole was superior in reducing
colitis and eliminated anaerobic bacteria (e.g., Bacteroides spp) in
both the cecum and colon (94). Importantly, while ciprofloxacin
and metronidazole prevented the induction of typhlocolitis in
IL-107/~ SPF-colonized mice, these antibiotics had little effect
after the onset of intestinal inflammation. In contrast, the
broad-spectrum combination antibiotic vancomycin-imipenem
decreased total luminal bacteria and prevented and treated both
cecal and colonic inflammation. Taken together, these studies
demonstrate that gut bacteria have differing inflammatory roles
with some species initiating onset of intestinal inflammation
while other microbe subsets drive chronic colitis (95).
Additional evidence supporting the role of the microbiota in
colitis development is provided by studies using transfer animal
models of colitis induced by deficiency of T-bet in innate immune
cells. T-bet is a transcription factor that plays a crucial role in
development of Thl cells and in the regulation of innate and
adaptive immunity (96). In certain murine models, loss of T-bet
in mice lacking B and T cells (T-bet~/~/RAG-1"/7) results in
transmissible colitis in conventionally raised wild-type mice by
co-housing, presumably caused by microbiota transmission (97).
In similar fashion, Casp3/11-deficient mice, which are normally
protected against DSS-induced colitis, lose this protection and
become more sensitive to DSS on co-housing with WT mice (98).
Specific pathogenic bacteria have been associated with the
development of intestinal inflammation in murine models.
Proteus mirabilis and Klebsiella pneumoniae correlate with
colitis in T-bet™/~/Rag2~/~ mice, a mouse model resembling
UC (97). Different Helicobacter spp, including infection with
H. hepaticus and H. bilis or exposure to their antigens,
trigger IBD-like disease in susceptible mice. For example,
H. hepaticus induces chronic colitis in SPF-housed IL-107/~
mice accompanied by increased expression of pro-inflammatory
biomarkers IFN-y, TNF-a and nitric oxide (99). In a separate
study, the combination of H. hepaticus infection and CD45RB
high CD41 T-cell reconstitution resulted in marked disease
expression in severe combined immunodeficiency (SCID) mice
similar to that observed in human IBD (100). Still other
experiments employing targeted infection with H. hepaticus
were able to produce colitis and sometimes colonic tumors
in different mouse strains having defects in immune function
and/or regulation (101). Our group has previously shown that
defined microbiota [i.e., altered Schaedler flora (ASF)] mice
are a useful tool to investigate the impact of specific members
of the Proteobacteria (e.g., E. coli, Helicobacter spp) on the
development of colitis. The induction of typhlocolitis in ASF
mice colonized with either H. bilis or Brachyspira hyodysenteriae
was accompanied by induction of ASF-specific antibody (102).
Using a “multiple-hit” mouse model of colitis, we have shown
that colonization of ASF mice with H. bilis increased host
susceptibility to onset of severe colitis following low dose
(1.5%) DSS administration (i.e., inflammatory trigger) (103). An
analysis of the molecular/cellular mechanisms revealed increases
in mucosal gene expression involving lymphocyte activation
and inflammatory cell chemotaxis, with infiltration of more
mucosal immune cells in H. bilis-colonized mice prior to
DSS treatment vs. DSS treatment alone. A subsequent study

with a similar experimental design used microarray analysis
to demonstrate differential mucosal gene expression associated
with alterations in fatty acid metabolism and detoxification in
a time course following H. bilis colonization (104). This latter
study provided preliminary evidence as to the types of factors or
changes in the intestinal mucosa (i.e., alterations in housekeeper
genes) that potentially predispose the host to the development
of typhlocolitis.

Citrobacter rodentium is an attaching and effacing (non-
invasive) bacterial pathogen that primarily causes acute
typhlocolitis in mice, except when barrier function is impaired
or in animals that are genetically susceptible to inflammation
where infection can trigger chronic disease (105). The C.
rodentium infection model was one of the first mouse models to
show that composition of the intestinal microbiota influences
susceptibility to infection (106), and that infection can alter the
composition and spatial distribution of the resident microbiota
post-infection (107). Finally, Fusobacterium varium isolated
from the colonic mucosa of patients with UC was shown to
induce experimental ulcerative colitis in mice (108). Collectively,
these experimental studies provide compelling evidence that
individual resident species are capable of inducing colitis in
susceptible mouse models.

Novel Animal Model Observations
Implicating Epithelial Barrier Dysfunction
in IBD

Here we relate some of our own work utilizing different animal
models to investigate host-microbe interactions mediating
chronic intestinal inflammation and the role of the mucosal
barrier in these different model systems.

The Dog as a Naturally Occurring Model of Chronic
Inflammatory Enteropathy

Dogs represent a well-recognized large animal model that
naturally develops CIE (also referred to as idiopathic IBD in the
veterinary literature), sharing remarkable similarities in etiology,
clinical course, histologic lesions and interventional strategies to
human IBD (Table 3) (109-116). The obvious advantages of the
dog in relation to other common animal models (e.g., rodents,
zebra fish) include their large body size, longer life span, and
they possess a GI tract of similar size, structure and function
to that of humans. Of key importance for translational studies,
pet dogs are exposed to the same environmental conditions
and even share similar microbiota composition with their
owners (117, 118). Clostridialis, Fusobacteria, Bacteroides and
Proteobacteria are the dominant bacteria comprising the healthy
canine fecal microbiota (119, 120). Metagenomic analyses in a
small cohort of healthy dogs indicate that diet induced changes
in microbial composition are not associated with changes in
function, and that the fecal microbiota of dogs, mice and humans
exhibit a high degree of metabolic and phylogenetic similarity
(121). Considering the common microbiota and environmental
exposures with humans, there is growing interest in whether
similar mechanisms of CIE pathogenesis are shared between
species (122).
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Certain dog breeds show a predisposition to the development
of CIE suggesting a role for host genetics in this disorder.

TABLE 3 | Comparative features of IBD in different animal models.

Feature Human Dog Rodent
Genetic basis Yes Yes Engineered
Etiology Multifactorial and ~ Multifactorial and 4/~ Multifactorial
complex complex
Intact immune Yes Yes +/-
system
Resident Yes Yes Yes
microbiota role
Blood in stool Yes Yes Yes
Diarrhea Yes Yes Yes
Disease activity Clinical indices, Clinical indices, Laboratory
measures biomarkers biomarkers markers
Definitive Gl mucosal biopsy Gl mucosal biopsy Gl mucosal biopsy
diagnosis
Longitudinal Yes: endoscopy + Yes: endoscopy +  Difficult to perform
studies histology histology
Primary therapy Anti-inflammatory  Diet + Anti-inflammatory
drugs anti-inflammatory  drugs
drugs
Disease Yes Yes Variable
heterogeneity
Spontaneous Gl Yes Yes +/-

flares

Gl, gastrointestinal.

The German shepherd dog, Soft-coated wheaten terrier and
Boxer dog/French bulldog have an increased incidence of
CIE clinically that has been linked to mutations in innate
immune genes, including TLR5, NOD2, and autophagy gene
NCF2 (123, 124). Importantly, several of the same breeds
(i.e., German shepherds, Boxer/French bulldog) show positive
clinical response to administration of antimicrobials, indicating
a potential interaction of host susceptibility with the intestinal
microbiota in affected dogs. Intestinal biopsies are required
to confirm histopathologic inflammation of CIE, with GI
endoscopy being the preferred modality to visually inspect the
GI mucosa and to acquire targeted biopsy samples. Mucosal
lesions of erosions, friability and increased granularity are
observed most frequently during endoscopy and correlate
best to histopathologic inflammation (Figure3) (113, 126).
Lympho-plasmacytic enteritis of varying severity is the most
common type of inflammation often accompanied by changes in
mucosal architecture, including villous atrophy/fusion, erosions,
ulceration, cryptal changes and/or depletion of colonic goblet
cells (Figure 4) (127). Mixed cellular infiltrates are also observed
in dogs with epithelial disruption (neutrophils) or in response
to invasive mucosal bacteria (macrophages) as occurs with
granulomatous colitis.

Like experimental models and human IBD, the intestinal
microenvironment is implicated in the development of CIE in
dogs. Numerous studies have shown that intestinal inflammation
in dogs is accompanied by dysbiosis, where the proportions
of Clostridiales, Fusobacteria, Bacteroidetes and Prevotellaceae
are decreased, but the proportion of Proteobacteria, including

FIGURE 3 | Endoscopic evidence of intestinal barrier disruption in dogs with CIE. Multifocal erosions are evident within the ileal (A) and colonic (B) mucosae of
different dogs with moderate-to-severe CIE. From: Jergens et al. (125), with permission.
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in a dog with CIE. Hematoxylin and eosin (HE) stain. From: (110), with permission.
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FIGURE 4 | Histopathologic evidence of intestinal barrier disruption. Duodenal biopsy showing focally extensive villus erosions covered by neutrophils and cell debris

Enterobacteriaceae, is significantly increased compared to
healthy dogs (128-130). Mucosal associated E. coli are
significantly increased with intestinal inflammation of CIE,
granulomatous colitis and colorectal cancer (adenocarcinoma) in
dogs (114, 131). Granulomatous colitis (GC) is a unique variant
of CIE, causing chronic colitis with small volume diarrhea,
straining, hematochezia and mucoid feces in predominantly
young Boxer dogs. Here, a possible genetic defect in innate
immune sensing confers increased susceptibility to E. coli
invasion of colonic tissues (124). With this immune defect,
ineffective respiratory burst impairs the host’s ability to eliminate
intracellular pathogens, including catalase-positive bacteria. A
diagnosis of canine GC is confirmed by mucosal culture and/or
fluorescence in situ hybridization that identify invasive E. coli
within the colonic mucosa of affected dogs (Figure 5). In Boxers
with GC, long-term remission is observed with antimicrobial
eradication of mucosally invasive E. coli, suggesting a causal
relationship between this bacterial strain and clinical disease
(131). Of interest, the observed phylotype of E. coli isolated from
Boxer dogs with GC bears strong phylogenetic resemblance to
the pathobiont E. coli strain isolated from CD patients (132).
The intestinal barrier of dogs with CIE has been investigated
to a limited extent. Using duodenal biopsy samples obtained
endoscopically from healthy dogs and dogs with CIE, the

mucosal expression of claudin-1, -2, -3, -4, -5, -7, and -8; E-
cadherin; and B-catenin was determined by immunoblotting
and compared between dog groups (133). Results showed no
difference in expression of each claudin and B-catenin between
healthy dogs and dogs with CIE; while the expression of E-
cadherin was reduced in dogs with CIE. Immunofluorescence
microscopy (in a subset of CIE dogs) showed decreased intensity
of E-cadherin labeling in the apical villi of dogs with CIE.
In humans with IBD, a significant correlation between low E-
cadherin expression and disease activity has been previously
demonstrated (134). In another study, the ratio of IL-1f to IL-
1 receptor antagonist (Ra), and the effect of IL-1p on occludin
mRNA expression in the duodenal and colonic mucosa were
investigated in healthy dogs and dogs with CIE (135). The ratio
of IL-1P to IL-1Ra in the colonic mucosa was higher in dogs
with CIE vs. healthy dogs. Ex vivo cultures of duodenal and
colonic biopsies incubated with IL-1f showed reduced expression
of occludin mRNA in colonic, but not duodenal, cultures of
dogs with CIE. These findings are similar to observations in
humans where both occludin mRNA and protein concentrations
are reduced in the intestines of CD and UC patients (136).
Finally, another study investigated intestinal pro- and active
metalloproteinase (MMP) -2 and -9 activities in healthy dogs and
dogs with chronic enteropathy (CE) using gelatin zymography.
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In dogs with CE, there was a greater number of samples
positive for pro- and active MMP2 and -9 in the duodenal,
ileal and colonic mucosa as compared to healthy dogs (137).
Similar findings of elevated matrix metalloproteinases have been
reported in dogs with CIE and in humans with IBD (138,
139).

Clinical trials evaluating drug or probiotic therapy have
provided indirect evidence on the role of the intestinal barrier
in canine CIE. In one trial, the effects of a hydrolyzed diet
and oral prednisone on the spatial distribution of mucosal
bacteria in dogs with CIE was investigated using FISH
(140). Medical therapy was associated with beneficial changes
in microbial community structure and enhanced mucosal
junctional protein expression in dogs with CIE. The spatial
distribution of mucosal bacteria differed with increased numbers
of Bifidobacteria, Faecalibacteria and Streptococci found within
adherent mucus of dogs with CIE post-treatment compared
to healthy dogs. Using immunohistochemistry (IHC), the
expressions of occludin and E-cadherin were increased but
zonulin decreased in dogs with CIE following prednisone
therapy. Still other studies using multi-strain probiotics for
the treatment of canine CIE have shown potential beneficial
alterations in junctional proteins that are associated with
remission. In one trial, probiotic therapy with VSL#3 was
investigated in comparison to combination treatment with
prednisone and metronidazole administered continuously to
dogs with CIE for 90 days (115). Dogs treated with probiotic
showed remission accompanied by changes in beneficial mucosal

responses (i.e., increased numbers of FoxP3+ and TGF-
B+ cells) and increased mucosal expression of occludin.
Another probiotic trial using FISH to investigate the mucosal
microbiota showed that remission of dogs with CIE was
associated with changes in beneficial bacterial species and
up-regulated expression of junctional proteins following 6
weeks of probiotic therapy (141). Both probiotic and standard
therapy for CIE (e.g., hydrolyzed diet 4+ oral prednisone)
were associated with rapid remission without improvement in
histopathologic inflammation. Probiotic therapy was associated
with increased expression (IHC) of junction proteins E-cadherin,
occludin and zonulin vs. dogs with CIE that received standard
therapy (Table 4; Figure 6). Collectively, these observations of
increased barrier integrity in dogs receiving glucocorticoid
or probiotic therapy for CIE are in broad agreement with
studies in UC patients and experimental models of intestinal
inflammation (142-145).

TABLE 4 | Probiotic therapy modulates TJP expression in dogs with IBD.

Colon Claudin-2 E-cadherin Occludin Zonulin
Healthy dogs 91" 1,031* 1,119* 371*
Pre-VSL #3 IBD 1,212» 575 131 61
Post-VSL #3 IBD 82 902" 859" 326"

*P < 0.05 for healthy dogs vs. Pre-VSL #3 IBD dogs; P < 0.05 for Pre-VSL #3 IBD dogs
vs. Post-VSL #3 IBD dogs; TJR, tight junction protein. From reference 129.

et al. (125), with permission.

FIGURE 5 | Granulomatous colitis in a 2-year-old English bulldog. (A) Endoscopic image of severe colonic granularity (increased texture) involving the descending
colon. (B) Colonic biopsy from this dog shows clusters (yellow fluorescence) of mucosal associated E. coli following fluorescence in situ hybridization. From: Jergens
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magnification. From: White et al. (141), with permission.

FIGURE 6 | Immunohistochemistry for expression of tight junction proteins in colonic biopsies of healthy dogs and dogs with CIE before and after probiotic VSL #3
therapy. Healthy dogs generally express increased TJPs as compared to dogs with CIE at diagnosis (pre-VSL #3). A reciprocal increase in TJP expression is observed
in dogs with CIE following probiotic treatment (post-VSL #3). (A) Claudin expression; (B) E-cadherin expression; (C) Occludin expression. All images at 20X
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Other Murine Model Observations

Brachyspira hyodysenteriae is a Gram-negative anaerobic
spirochete and is the causative agent of swine dysentery. The
pathogenesis of disease has been studied in mice and pigs
and has been shown to rely on the presence of a resident
microbiota (146, 147), production of a 3-hemolysin (148), local
inflammatory response of the host (149, 150), and recruitment
of host inflammatory cells (151). With respect to the need for
other resident bacteria, our own research has shown that the
colonization of GF mice with B. hyodysenteriae failed to induce
typhlocolitis in mice, even when mice were observed for 110
days post-colonization. The need for at least one member of
the resident microbiota was demonstrated by administering
Bacteroides vulgatus to GF mice previously colonized with B.
hyodysenteriae (i.e., no disease) and typhlocolitis developed
within 5 days. This result suggested that the presence of B.
vulgatus either enhanced the virulence of B. hyodysenteriae or
induced host innate immune responses that contributed to the
resultant inflammatory response. Furthermore, treatment of
mice with an antibiotic cocktail to which the spirochete was
resistant in their drinking water for 7 days, prior to colonization
with B. hyodysenteriae, prevented the onset of disease even
though the numbers of spirochetes colonizing the cecum and
colon were like that of untreated mice with typhlocolitis. In these
conventionally reared mice, the role of the resident microbiota
was further shown by replacing the antibiotic-containing
drinking with normal drinking water and the severe typhlocolitis
developed within 15 days. It was shown that the antibiotics
significantly reduced the numbers of bacteria in the feces and
cecal contents by six to seven logjo with the dominant bacterial
types remaining being Gram-negative facultative anaerobes
and strict anaerobes. One conclusion to be drawn from these
results would suggest that the crosstalk between the host and the
resident microbiota contributes to disease susceptibility and the
severity of the inflammatory response (152, 153).

It has also been shown that disease caused by B. hyodysenteriae
can be inhibited by treating mice orally with an extract (ie.,
hypoxoside) from Hypoxis hemerocallidea corm (also known as
Hypoxis rooperi, African Potato). Beginning seven days prior

to challenge, the oral administration of hypoxoside did not
prevent the colonization of B. hyodysenteriae, but prevented the
onset of typhlocolitis as evidenced by the lack of inflammatory
cell infiltration, absence of crypt hyperplasia, and reduction
in the expression of cytokine-specific genes regulated by NF-
kB activation (149). As with the administration of antibiotics
mentioned above, the administration of hypoxoside prevented
disease and expression of TNF-a-specific mRNA when treatment
began at least 7 days prior to colonization with B. byodysenteriae.
The need to initiate treatment 7 days prior to colonization with B.
hyodysenteriae coincides with the turnover of colonic epithelial
cells and suggests that the host inflammatory set-point can be
altered in the new epithelial cells by affecting which bacteria are
present (i.e., antibiotic use) or by changing the responsiveness
of the epithelial cells to phlogistic stimuli (i.e., hypoxoside).
In this regard, administration of hypoxoside also inhibited
crypt epithelial cell hyperplasia following colonization with B.
hyodysenteriae (Figure 7). The ability to affect epithelial cell
responsiveness was further demonstrated by adding conjugated
linoleic acid (CLA) to the diet of pigs prior to colonization
with B. hyodysenteriae. It has been shown that CLA is a ligand
for peroxisome proliferator-activated receptor gamma (PPAR-g)
and that the activation of PPAR-g promotes mucosal epithelial
health by suppression of inflammation and facilitating metabolic
reprogramming (i.e., oxidative phosphorylation) of colonic
epithelial cells associated with the use of SCFAs derived from
microbial metabolism (150, 154). To further demonstrate that
the interaction of B. hyodysenteriae with the colonic epithelium-
induced inflammatory cell recruitment, mice that were treated
with anti-CD18 or anti-CD29 to prevent extravasation of
neutrophils from blood failed to develop typhocolitis (151).
Using B. hyodysenteriae as a model of bacterial induced colitis,
these studies have demonstrated that the colonic epithelium in
association with the resident microbiota is a key contributor of
mucosal health or disease.

In the context of IBD, epithelial barrier function is a critical
component of maintaining mucosal homeostasis and tissue
health. It has been shown that mice (i.e., mdrla™/~) lacking
the multiple drug resistance gene P-glycoprotein 170 (Pg-170)
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Control

B. hyo colonized

FIGURE 7 | Immunohistochemical detection of proliferating epithelial cells in mice treated with hypoxoside. Mice were either sham treated orally with sterile drinking
water (Control) or hypoxoside (Colonized and treated). The mice treated daily with either saline or hypoxoside (15 mg) beginning 8 days prior to colonization with
Brachyspira hyodysenteriae (B. hyo). Mice were necropsied 3 days after colonization. One h prior to necropsy, mice received an IP injection of BrDU. Proliferating
epithelial cells were identified by labeling their DNA with anti-BrDU using immunohistochemistry. From: (149), with permission.

Colonized and treated

develop spontaneous colitis between 8 and 30 weeks of age
associated with epithelial barrier dysfunction. As an efflux
pump, Pg-170 is highly expressed in colonic epithelial cells
and contributes to the removal of xenobiotics and phlogistic
compounds from the cytosol (155). As with many murine
models of colitis, GF mdrla~/~ mice do not develop colitis
and administration of metronidazole in the drinking water
ameliorates the colitis, indicating a role for the resident
microbiota in the disease process (156, 157). Like the studies
performed using hypoxoside, we have shown that treating
mdrla~/~ mice with botanical extracts from either Prunella
vulgaris or Hypericum gentianoides prevented or significantly
attenuated colitis in mdrla™/~ mice (158, 159). The reduction
in colonic inflammation was consistent with the reduction
of NF-kB regulated cytokines and chemokines (e.g., CXCL1,
CXCL9, CCL2, CCL20, and TNF-a). In companion studies,
we demonstrated that administration of caffeic acid to mice
increased the expression to Cyp4bl (i.e., cytochrome P450)
in the colonic mucosal and ameliorated DSS-induce colitis
(160). Analogous to Pg-170, CYP4B1 controls the metabolism
of proinflammatory compounds in the GI epithelium and
contributes to maintenance of the mucosal barrier. Again, this
demonstrates the central role colonic epithelial cells have in
the attenuation of mucosal inflammation induced by microbial
compounds and in the maintenance of mucosal homeostasis and
GI health.

As IECs are also able to take up antigen and PRR
ligands, they contribute to the maintenance of mucosal
immunity and intestinal health. The importance of the epithelial
response to luminal antigens was elegantly demonstrated by
examining the inflammatory response in MyD88~/~ mice

(161). Initially, the authors had reasoned that since much of
the mucosal inflammation associated with IBD was associated
with production of pro-inflammatory cytokines; the absence of
MyD88 should reduce the severity of disease due to impaired
recognition of MAMPs derived from the microbiota. However,
these authors demonstrated that the MyD88~/~ mice developed
more severe colitis than the wild-type counterparts. These
observations indicated that there is a cytoprotective aspect to the
local inflammatory response that is key to mucosal homeostasis.
As mentioned above, we had reported that the administration
of anti-CD18 or anti-CD29 attenuated lesion severity in mice
colonized with B. hyodysenteriae. However, if mice were
administered a cocktail containing both anti-CD18 and anti-
CD29 or neutrophils were depleted, lesions were more severe
than in sham treated mice colonized with B. hyodysenteriae (151).
Like the MyD88~/~ mice, the inability to recruit inflammatory
cells resulted in a more severe lesion supporting the importance
of epithelial cell responses to inflammatory stimuli, at least in
moderation. Similarly, the administration of hypoxoside likely
had a beneficial effect in inhibiting the typhlocolitis associated
with B. hyodysenteriae colonization because it attenuated the
local inflammatory responses as opposed to inhibiting that
response, thus, retaining the cytoprotective benefit of the residual
inflammatory response.

The role of the epithelial cells to support antigen uptake and
maintenance of mucosal tolerance is partially mediated by the
induction of regulatory T cells (Tregs) and the secretion of IgA
(sIgA) in the the GI lumen. Functionally, one of the features
of the sIgA is to provide for immune exclusion which would
reduce, but not eliminate, microbial antigen interactions with
epithelial cells and underlying immune cells (162). To this end,
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we evaluated the ability of orally administered serum-derived
bovine immunoglobulin (SBI) to inhibit DSS-induced murine
colitis (163). The SBI would function to bind to bacterial antigens
and reduce the innate and/or adaptive immune activation
contributing to colitis. Results demonstrated that mucosal
inflammation was significantly reduced, there was a decrease
in secretion of pro-inflammatory cytokines and a reduction in
intestinal fatty acid binding protein and serum amyloid A. As
with the use of botanical extracts, dietary CLA and attenuation
of neutrophil recruitment, the use of SBI to reduce mucosal
inflammation by lessening the phlogistic potential of luminal
content on the mucosa while allowing for the beneficial (i.e.,
cytoprotective) expression of host inflammatory responsiveness.

CONCLUSIONS

Host-microbe interactions play important roles in maintaining
homeostasis of the mucosal epithelial barrier as well as
contributing to the development of IBD. The concept that
the intestinal epithelium serves as a “translator” between the
intestinal microbiota and the immune system seems both logical
and plausible (164). Here, the epithelium is responsive to
signals from the microbiota by means of pathogen recognition
receptors and translates these messages into signals that
direct mucosal immune cells. Conversely, IECs receive signals
from the underlying immune system and translate them into
signals that shape intestinal barrier function and the structure
and function of the gut microbiota. Dysregulation of the
intestinal barrier is a salient feature of IBD in humans and
animal models of inflammation, regardless of species. As
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