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Cognitive decline is common in chronic kidney disease (CKD). While the evidence

of vascular cognitive impairment in this population is robust, the role of Alzheimer’s

pathology is unknown. We evaluated serum cystatin C-estimated glomerular filtration

rate (eGFR), brain amyloid-β positron emission tomography (PET) imaging, and cognitive

function in 166 participants from The 90+ Study. Mean age was 93 years (range 90-107)

and 101 (61%) were women; 107 participants had normal cognitive status while 59

participants had cognitive impairment no dementia (CIND) or dementia. Mean± standard

deviation cystatin C was 1.59 ± 0.54 mg/L with eGFR 40.7 ± 18.7 ml/min/1.73m2.

Higher amyloid-β burden was associated with dementia, but not with age, diabetes,

hypertension, or cardiovascular disease. We found no association between brain

amyloid-β burden and cystatin C eGFR. We previously reported that kidney function

was associated with cognition and cerebral microbleeds in the same cohort of oldest-old

adults (90+ years old). Collectively, these findings suggest that microvascular rather than

Alzheimer’s pathology drives CKD-associated cognitive dysfunction in this population.
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INTRODUCTION

Chronic kidney disease (CKD) is increasingly recognized as an independent risk factor for
cerebrovascular disease and cognitive decline (1–3). This association appears to be robust even
with advanced age: in an oldest-old cohort of community-dwelling adults aged 90+ years, our
group recently reported a significant association between CKD and incident dementia as well
as infratentorial cerebral microbleeds (4). Microvascular disease in CKD includes blood-brain
barrier dysfunction, cerebral microbleeds, gray matter atrophy, and arteriolar neuropathology; it
is driven by factors such as chronic inflammation, uremic toxins and impaired cerebral blood flow
autoregulation (5–7).
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Cystatin C, a lowmolecular weight (13 kDa) protease inhibitor
produced by all nucleated cells in the body, is freely filtered
through the glomeruli and degraded by proximal tubular cells (8).
Cystatin C accumulates in CKD and is a more valid estimation
of kidney function (estimated glomerular filtration rate, eGFR)
than creatinine in older individuals since it is not affected by diet
or muscle mass (9, 10). Compared with creatinine-based eGFR,
cystatin C-based eGFR is a stronger predictor of mortality and
frailty outcomes in elderly cohorts (11, 12).

While cerebral small vessel disease is a well-established
phenomenon in CKD (7, 13), the potential relationship between
CKD and brain amyloid-β deposits is less clear. Of note,
cystatin C has been reported to co-localize with amyloid-β,
which aggregates in the hippocampus and entorhinal cortex in
individuals suffering from Alzheimer’s disease (14). In addition,
a common polymorphism of the cystatin C gene has been linked
to risk of Alzheimer’s disease (15, 16). We therefore hypothesized
that higher blood cystatin C (more advanced CKD) would be
associated with increased brain amyloid-β burden.

Imaging of amyloid-β densities through positron emission
tomography (PET) is an emerging tool for non-invasive
monitoring of amyloid deposition (17). Amyloid-β PET is being
explored for diagnosis of Alzheimer’s pathology and may have
utility in tracking treatment response (18, 19). This imaging tool
has previously been explored in a small cohort of 90+ year-olds
(17). In the current study we examined the association between
amyloid-β imaging with (a) cognitive function and (b) cystatin
C, in an oldest-old cohort of community-dwelling adults.

MATERIALS AND METHODS

We report results from a subset of participants of The 90+ Study,
an ongoing longitudinal study of aging and dementia in people
aged 90 or older (4, 20, 21). Participants of The 90+ Study were
recruited from two groups: (1) survivors of the Leisure World
Cohort Study (20), an epidemiological health study established
in the 1980s of the residents of Leisure World, a retirement
community in Orange County, California, who were aged 90 or
older on or after January 1, 2003, when enrollment into The 90+
Study commenced, and (2) 90+ year-old residents of Orange
County, California, who lived within a 2-h drive of the study
location, and joined the study through open recruitment (21).
Participants self-reported their birthdate, education, and medical
history. The Institutional Review Board (IRB) of the University
of California, Irvine (UC Irvine) approved this study.

Amyloid PET Scan
Imaging of amyloid-β densities through PET scan is an emerging
tool for non-invasive monitoring of amyloid deposition (17).
Between 2009 and 2020, 308 participants underwent a 10-min
PET scan at ∼50min after injection of 370 MBq of Florbetapir
F18 (17). After quality control and alignment of all native PET
images to a standard template space, standard uptake value ratios
(SUVR) were computed using an eroded cerebral white matter
region reference. To obtain brain indices of amyloid-β deposition
we used a statistically defined region of interest (statROI)
consisting of precuneus and posterior cingulate cortices. This

region was chosen because the distribution of mean SUVR
produced a maximal separation of normal from cognitively
impaired individuals.

Cystatin C and eGFR
Blood draw for cystatin C was added to the IRB protocol in
July 2014, was collected at the time of the PET scan until April
2017. Since May 2017 cystatin C has been measured at the
time of a regularly scheduled follow-up visit. Cystatin C taken
at or near the time of the PET scan was available for 166 of
the 308 participants. Serum cystatin C was measured using the
Latex Enhanced Immunoturbidimetric Method by the Pathology
and Laboratory Services of the UC Irvine Medical Center.
Estimated glomerular filtration rate (eGFR) was calculated from
cystatin C based on the Chronic Kidney Disease-Epidemiology
Collaboration (CKD-EPI) equation which accounts for age and
sex (22). The blood sample taken closest to the PET scan was
selected for analysis.

Neuropsychological Examination and
Cognitive Status Evaluation
Participants were seen every 6 months and given a standard
battery of 10 neuropsychological tests indexing multiple
cognitive domains and including theModifiedMini-Mental State
Examination (3MS), by trained and certified psychometrists.
Participants also underwent a neurological exam by neurological
examiners (trained physicians or nurse practitioners) to
determine cognitive status (normal, cognitive impairment no
dementia [CIND], or dementia) (4, 23). During this visit, medical
history was also updated. The visit closest to the PET scan was
selected for analysis.

Data Analysis
Means and standard deviations (SD) of PET statROI were
calculated for demographic, medical history, and cognitive
status categories. Differences in means were tested using t-tests
and analysis of variance (with post-hoc analysis for multiple
comparison tests of means). Spearman rank correlation and
partial correlation coefficients were calculated for age, eGFR
and PET statROI. Spearman rank correlation coefficient between
PET statROI and CKD stage was also calculated. With 166
participants, the study was powered to detect a significant
correlation of >0.22. All statistical analyses were performed
using SAS software version 9.4 for Windows (SAS Institute Inc.,
Cary, NC).

RESULTS

Of the 308 participants with an amyloid PET scan, cystatin C
measurement was available in 166 participants. Of these 166,
101 (61%) were women and average age was 93 years. The
majority of participants (n = 94) completed blood-draw for
cystatin C and the amyloid PET scan on the same day; all but
10 participants completed amyloid PET scan within 90 days
of cystatin C measurement. Cystatin C ranged 0.72-3.02 mg/L
(mean 1.59, SD 0.54) and eGFR ranged 14 to 92 ml/min/1.73 m2

(mean 40.7, SD 18.7). The number of participants by CKD stage
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TABLE 1 | Mean + standard deviation (SD) of brain amyloid-β burden measured via positron emission tomography statistically defined region of interest scores (PET

statROI) by participants’ characteristics, The 90+ Study.

Category Number Mean + SD (range) P-value†

All 166 0.76 + 0.07 (0.59-0.93)

Sex Male 65 0.75 + 0.07 (0.59-0.93) 0.27

Female 101 0.76 + 0.07 (0.60-0.92)

Education: college grad No 77 0.75 + 0.07 (0.60-0.91) 0.17

Yes 89 0.77 + 0.07 (0.59-0.93)

Smoking history Never 80 0.77 + 0.07 (0.59-0.93) 0.10

Past 85 0.75 + 0.07 (0.60-0.92)

Medical history

High blood pressure No 75 0.75 + 0.07 (0.59-0.92) 0.32

Yes 91 0.76 + 0.07 (0.62-0.93)

Diabetes No 148 0.76 + 0.07 (0.59-0.93) 0.52

Yes 18 0.75 + 0.09 (0.62-0.90)

Coronary artery disease No 151 0.76 + 0.07 (0.59-0.92) 0.87

Yes 15 0.76 + 0.07 (0.68-0.93)

Heart attack No 155 0.76 + 0.07 (0.59-0.93) 0.69

Yes 11 0.77 + 0.09 (0.62-0.90)

Heart valve disease No 159 0.76 + 0.07 (0.59-0.93) 0.39

Yes 7 0.74 + 0.08 (0.65-0.90)

Congestive heart failure No 154 0.76 + 0.07 (0.59-0.93) 0.32

Yes 12 0.74 + 0.08 (0.60-0.92)

Stroke No 150 0.76 + 0.07 (0.59-0.93) 0.45

Yes 16 0.75 + 0.06 (0.66-0.86)

TIA No 137 0.76 + 0.07 (0.60-0.92) 0.14

Yes 29 0.78 + 0.08 (0.59-0.93)

Any of above No 44 0.77 + 0.07 (0.64-0.92) 0.52

Yes 122 0.76 + 0.07 (0.59-0.93)

Depression No 151 0.76 + 0.07 (0.59-0.93) 0.59

Yes 15 0.77 + 0.07 (0.68-0.86)

Cognitive status Normal 107 0.75 + 0.07 (0.60-0.92) 0.004

Cognitive Impairment No Dementia (CIND) 52 0.76 + 0.08 (0.59-0.93)

Dementia 7 0.84 + 0.06 (0.71-0.89)

†
For test for difference in mean statROI between groups. Bold values were statistically significant P < 0.05.

were: CKD stage 2, n = 29 (17%); CKD stage 3a, n = 27 (16%);
CKD stage 3b, n = 54 (33%); CKD stage 4, n = 53 (32%); and
CKD stage 5, n = 3 (2%). PET statROI ranged 0.59-0.93 (mean
0.76, SD= 0.07).

Table 1 gives the mean ± SD of the PET statROI by the
participants’ characteristics in the 166 participants with cystatin
C measurements. Neither sex, education, smoking nor any
of the medical history variables was related to PET statROI.
Examining the larger cohort of 308 participants with PET
imaging, participants with vs. without cystatin C measurement
(166 vs. 142 participants) differed only on coronary artery disease
(9 vs. 18%, p = 0.02; data not shown). The two groups did not
differ on body mass index nor thyroid stimulating hormone,
factors which can modify cystatin C levels (24, 25). We had no
information on inflammatory markers such as C reactive protein.

Mean statROI was significantly higher in those with dementia
(0.84) than in those with normal cognition (0.75) or CIND

(0.76), p = 0.004. In subgroup analysis of the 94 participants
who had same-day cystatin C blood-draw and amyloid PET scan,
the association with cognitive impairment remained consistent
and significant (p = 0.01). PET statROI was not correlated with
cystatin C (r = 0.09), eGFR (−0.09) or age (r = 0.12) (Table 2
and Figure 1) or with CKD stage (r= 0.05) (Table 3).

DISCUSSION/CONCLUSION

The current study demonstrates a significant association
between brain amyloid-β burden (measured on PET scan)
and cognitive impairment in an oldest-old cohort from The
90+ Study, but no association between cystatin C eGFR or
CKD stage and brain amyloid-β burden. We have previously
reported significant association between CKD, indices of cerebral
microvascular disease, and cognitive decline in the same cohort
(4). Collectively, our work suggests that decreased kidney
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TABLE 2 | Spearman correlation and partial correlation coefficients of estimated glomerular filtration rate (eGFR), brain amyloid-β positron emission tomography

statistically defined region of interest scores (PET statROI), and age (years), The 90+ Study.

Mean + SD (range) Spearman correlation (and partial correlation) coefficients

eGFR StatROI Age

eGFR 40.7 + 18.7 (14–92) 1.00 −0.09 (−0.06) −0.33 (−0.32)†

StatROI 0.76 + 0.07 (0.59-0.93) 1.00 0.12 (0.10)

Age 93 + 2.8 (90-107) 1.00

†
p < 0.0001 for correlation of eGFR and age.

FIGURE 1 | Brain amyloid-β burden assessed non-invasively on positron emission tomography (statistically defined region of interest score, statROI) was not

correlated with estimated glomerular filtration rate (eGFR) in a cohort of community-dwelling 90+ year-olds.

function and brain amyloid-β burden impact cognition via
different pathophysiologic pathways.

Although higher serum amyloid-β levels have been reported in
CKD patients (26), this may be due to decreased renal clearance
of amyloid-β (27). Our current study in a non-dialysis elderly
cohort is consistent with the report by Reusche et al. of a post-
mortem analysis from 50 patients with end-stage kidney failure
on chronic hemodialysis (28). No increase in Alzheimer’s disease
morphology, compared with age-matched controls, was observed

(28). In the current study we found no relationship between
CKD and brain amyloid-β burden, assessed non-invasively.
Similarly, in a French cohort of community-dwellers >70 years
old where eGFR was relatively preserved (median eGFR 73 with
interquartile range 60-84 ml/min/1.73 m2), CKD was associated
with cognitive decline over time but was not associated with
imaging features of Alzheimer’s disease (cortical amyloid-β and
hippocampal atrophy) (29). A strength of the current study is the
use of cystatin C eGFR measurements, which are not modified
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TABLE 3 | Mean + standard deviation (SD) of PET StatROI by CKD stage, The

90+ Study.

CKD stage Mean + SD (range) Number

2 0.73 + 0.07 (0.59-0.86) 29

3a 0.78 + 0.07 (0.68-0.93) 27

3b 0.76 + 0.06 (0.65-0.90) 54

4 0.76 + 0.08 (0.62-0.92) 53

5 0.73 + 0.11 (0.60-0.81) 3

Spearman rank correlation = 0.05, p = 0.54

by diet or muscle mass and thus are more valid than creatinine-
based eGFR in elderly individuals (9, 10).

In contrast to the lack of association with Alzheimer’s-
associated pathology, prior work by us and others have shown
an association between CKD and cerebral microvascular disease
(4, 6, 13, 30, 31). CKD-associated cerebral small vessel disease
includes microbleeds, microinfarcts, lacunes, white matter or
global atrophy, and arteriolosclerosis (5). In a prior analysis
of The 90+ Study cohort, lower kidney function correlated
with impaired global cognition, executive function, and visual-
spatial ability; infratentorial microbleeds; and lower gray matter
volume (4). Risk of incident dementia in the highest cystatin C
tertile was 3.81 (adjusted for age, sex, education, and comorbid
conditions) and was attenuated when microbleeds were included
in the risk model, suggesting that the impact of CKD on
cognitive dysfunction is partly mediated by microbleeds (4).
In 2,526 participants from the population-based Rotterdam
Study, lower cystatin C-based eGFR was associated with a
higher prevalence of lacunes and larger white matter lesion
volume (31). It is important to note that certain risk factors for
Alzheimer’s disease are prominent in CKD, including vascular
dysfunction (27) and elevated serum homocysteine (32–34).
Given these shared risk factors, studies that correlate CKD with
risk of Alzheimer’s disease require careful interpretation (27,
35). In the current study, evaluation of amyloid-β which is a
pathological substrate for Alzheimer’s was not correlated with
kidney function.

We acknowledge several study limitations. The 90+ Study
provides robust longitudinal data on individuals aged 90 years
and older, but as the majority of participants are white,
highly educated and moderately affluent the results may not
be generalizable to other population groups. We cannot rule
out survival bias, as community-dwelling individuals in The
90+ Study have relatively good cardiovascular health and do
not have advanced CKD. Our study may be underpowered to
detect an association between CKD and brain amyloid-β burden.
Finally, although most participants (n = 94) had cystatin C

measurement and amyloid PET imaging on the same day, the
interval between PET imaging and blood collection for cystatin C
did vary. However, subgroup analysis limited to participants who
had same-day measurement of cystatin C and amyloid-β PET
imaging demonstrated a consistent positive association between
higher statROI with worse cognitive impairment, suggesting that
the overall group analyses remain representative.

In summary, cystatin C-estimated kidney function was not
associated with brain amyloid-β burden in adults > 90 years
of age. Prior work by us and others have demonstrated an
independent association between CKD with cognition (2–
4, 36, 37) and cerebral microvascular disease (4, 6, 30,
31). These findings suggest that cognitive impairment in the
CKD population largely reflects vascular rather than amyloid-
β pathology.
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