
ORIGINAL RESEARCH
published: 18 June 2021

doi: 10.3389/fmed.2021.673876

Frontiers in Medicine | www.frontiersin.org 1 June 2021 | Volume 8 | Article 673876

Edited by:

Xiaoli Lan,

Huazhong University of Science and

Technology, China

Reviewed by:

Salvatore Annunziata,

Catholic University of the Sacred

Heart, Italy

Lidia Strigari,

Regina Elena National Cancer Institute

(IRCCS), Italy

*Correspondence:

Shuo Hu

hushuo2018@163.com

Specialty section:

This article was submitted to

Nuclear Medicine,

a section of the journal

Frontiers in Medicine

Received: 28 February 2021

Accepted: 11 May 2021

Published: 18 June 2021

Citation:

Zheng K, Wang X, Jiang C, Tang Y,

Fang Z, Hou J, Zhu Z and Hu S (2021)

Pre-Operative Prediction of

Mediastinal Node Metastasis Using

Radiomics Model Based on 18F-FDG

PET/CT of the Primary Tumor in

Non-Small Cell Lung Cancer Patients.

Front. Med. 8:673876.

doi: 10.3389/fmed.2021.673876

Pre-Operative Prediction of
Mediastinal Node Metastasis Using
Radiomics Model Based on 18F-FDG
PET/CT of the Primary Tumor in
Non-Small Cell Lung Cancer Patients

Kai Zheng 1,2,3, Xinrong Wang 4, Chengzhi Jiang 2, Yongxiang Tang 1, Zhihui Fang 1,

Jiale Hou 1, Zehua Zhu 1 and Shuo Hu 1,5,6*

1Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China, 2 Positron Emission

Tomography/Computed Tomography (PET/CT) Center, Hunan Cancer Hospital, Changsha, China, 3 The Affiliated Cancer

Hospital of Xiangya School of Medicine, Central South University, Changsha, China, 4General Electric (GE) Healthcare

(China), Shanghai, China, 5National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South

University, Changsha, China, 6 Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya

Hospital, Central South University, Changsha, China

Purpose: We investigated whether a fluorine-18-fluorodeoxy glucose positron emission

tomography/computed tomography (18F-FDG PET/CT)-based radiomics model (RM)

could predict the pathological mediastinal lymph node staging (pN staging) in patients

with non-small cell lung cancer (NSCLC) undergoing surgery.

Methods: A total of 716 patients with a clinicopathological diagnosis of NSCLC

were included in this retrospective study. The prediction model was developed in a

training cohort that consisted of 501 patients. Radiomics features were extracted from

the 18F-FDG PET/CT of the primary tumor. Support vector machine and extremely

randomized trees were used to build the RM. Internal validation was assessed. An

independent testing cohort contained the remaining 215 patients. The performances

of the RM and clinical node staging (cN staging) in predicting pN staging (pN0 vs. pN1

and N2) were compared for each cohort. The area under the curve (AUC) of the receiver

operating characteristic curve was applied to assess the model’s performance.

Results: The AUC of the RM [0.81 (95% CI, 0.771–0.848); sensitivity: 0.794; specificity:

0.704] for the predictive performance of pN1 and N2 was significantly better than that

of cN in the training cohort [0.685 (95% CI, 0.644–0.728); sensitivity: 0.804; specificity:

0.568], (P-value = 8.29e-07, as assessed by the Delong test). In the testing cohort, the

AUC of the RM [0.766 (95% CI, 0.702–0.830); sensitivity: 0.688; specificity: 0.704] was

also significantly higher than that of cN [0.685 (95% CI, 0.619–0.747); sensitivity: 0.799;

specificity: 0.568], (P = 0.0371, Delong test).

Conclusions: The RM based on 18F-FDG PET/CT has a potential for the pN staging in

patients with NSCLC, suggesting that therapeutic planning could be tailored according

to the predictions.
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INTRODUCTION

Among all cancers, lung cancer remains the most commonly
diagnosed (11.6% of the total cases) and leading cause of cancer
death (18.4% of the total cancer deaths). Non-small cell lung
cancer (NSCLC) accounts for 85% of the cases (1, 2). For
patients newly diagnosed with NSCLC, the exact evaluation of
the pathological lymph node (LN) status plays an important
role in the choice of therapy regimen. There is a consensus
that lobectomy combined with systemic nodal dissection is
the recommended surgical treatment for early-stage NSCLC;
however, sublobar resection and stereotactic body radiation
therapy (SBRT) are possible alternatives for patients who are
ineligible for lobectomy (3–5). Thus, accurate differentiation of
pathological node-negative from positive is critical for selecting
the optimal therapeutic plan.

Currently, one of the most widespread modalities used for the
clinical LN (cN) staging of patients with NSCLC is fluorine-18-
fluorodeoxyglucose positron emission tomography/computed
tomography (18F-FDG PET/CT) (6, 7). Unfortunately, the
accuracy of 18F-FDG PET for the direct evaluation of each
mediastinal LN for the presence of metastasis is inherently
limited by an avid FDG uptake that can be caused by
inflammation due to infectious or non-infectious etiologies
such as tuberculosis, pneumoconiosis, or chronic obstructive
pulmonary disease (8–10). To improve the diagnostic ability of
false-positive signs, several studies have analyzed the differences
in parameters such as morphology, density, metabolism,
and radiomics between benign and malignant LNs (11, 12).
Nevertheless, because of the low FDG uptake, occult LN
metastasis (OLM) in patients with NSCLC fails to be detected by
18F-FDG PET (13) and, hence, imaging is prone to false-negative
signs. Accordingly, some researchers have tried to predict OLM
by analyzing the 18F-FDG metabolic parameters of the primary
tumor in NSCLC (14, 15). To the best of our knowledge, few
researchers have dealt with both problems of false-positive signs
and OLM in mediastinal LN staging. Furthermore, few studies
have investigated whether radiomics features derived from the
primary lesion of NSCLC might provide useful information for
mediastinal LN staging.

Therefore, we constructed and validated a radiomics model
(RM) to predict the pathological mediastinal LN staging (pN0 vs.
pN1 and pN2) based on the 18F-FDGPET/CT imaging of NSCLC
primary tumors.

MATERIALS AND METHODS

Patients
This study involving human participants was reviewed and
approved by the Ethical Commission of Medical Research
Involving Human Subjects at the Region of Xiangya Hospital,
Central South University, China, and the requirement for
informed consent was waived. We reviewed the electronic
medical records of 716 consecutive patients with NSCLC
[adenocarcinoma (ADC) and squamous cell carcinoma (SCC)]
who underwent both 18F-FDG PET/CT staging and surgical
resection with a curative intent from February 2007 to November

2019. All the patients underwent surgical resection with
systematic mediastinal (N2) and hilar (N1) LN dissections within
2 weeks of 18F-FDG PET/CT examination. Pre-operative cN
staging and post-operative pN staging of the patients were
performed and recorded according to the eighth edition of the
Union for International Cancer Control TNM classification (16).
Histological types were diagnosed according to theWorld Health
Organization classification. We excluded patients from the study
if they had (i) histology other than ADC or SCC, (ii) history
of other cancer, (iii) received any treatment before 18F-FDG
PET/CT, and (iv) undergone pre-operative lung biopsy.

18F-FDG PET/CT Acquisition and
Reconstruction
All 18F-FDG PET/CT scans were performed on a dedicated
PET/CT scanner (Discovery ST8, GE Healthcare, Chicago, IL).
All patients fasted for at least 6 h before imaging, and a
blood glucose level of <110 mg/dL was confirmed before the
administration of 18F-FDG. PET/CT was performed ∼60min
after the intravenous injection of 370 MBq/kg of 18F-FDG. First,
a low-dose CT scan without contrast enhancement (120mA, 150
kV, 512 × 512 matrix, the pitch of 1.75, reconstruction thickness
and interval of 3.75mm) for a precise anatomical localization and
attenuation correction was performed. Next, a three-dimensional
PET scan (thickness of 3.27mm) was performed from the skull
base to the proximal thighs with an acquisition time of 3min per
bed position.

The PET data sets were iteratively reconstructed using an
ordered-subset expectation maximization (OSEM) algorithm
with attenuation correction. All collected images were displayed
on the GE Healthcare Xeleris 3.0 to reconstruct the PET, CT, and
PET/CT fusion images.

Image Interpretation and Lesion Segment
Two experienced nuclear medicine physicians who were blinded
to the patient’s clinical information retrospectively reviewed the
18F-FDG PET/CT scans. Any difference of opinion was resolved
by consensus. Mediastinal and hilar LNs with a short axis of
≥10mm in the short axis on CT and with a high accumulation of
18F-FDG compared with that of the adjacent mediastinal tissue
were considered as cN2 or cN1 at our institution. Fused PET/CT
images were viewed on the Advantage Workstation (version AW
4.7, GE Healthcare).

The region of interest (ROI) for each patient was delineated
initially around the tumor outline for the largest cross-sectional
area of the primary lung lesion on both the CT and PET images.
The ROIs were segmented manually by a single experienced
nuclear medicine physician, and the final ROIs were checked
by another nuclear medicine physician with more than 10 years
of experience in PET/CT diagnosis. The open-source imaging
platform ITK-SNAP software (version 3.6; www.itksnap.org) was
used to plot the ROIs of the corresponding lesions (17). The
feature data were extracted, pre-processed, modeled, evaluated,
and validated using the scikit-learn (sklearn, scikit-learn.org)
packages in the python platform (18).
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Radiomics Feature Extraction
Data pre-processing: to ensure that the features were comparable,
training/testing cohort division, missing-value filling, and
data standardization were performed. First, to maintain the
distribution of the original data, a stratified samplingmethod was
applied to identify the training (501 samples, 70%) and testing
cohorts (215 samples, 30%) (19). Moreover, the missing values
(0 and 5) were filled with the median in the training and testing
cohorts, respectively, and then, the same normalization was used
for the data.

There were 1,438 features of primary tumors that were
automatically extracted using the sklearn packages. The
Spearman rank order correlation coefficient was used to calculate
the relationship between features, and the redundant features
were eliminated with an average absolute correlation of 0.85
as the threshold. Support vector machine–recursive feature
elimination, and the extremely randomized trees were applied
to reduce the dimensions and select optimized features for
the radiomics model (RM) to avoid the impact of redundant
and unconnected features. The relevance of the association
between each radiomics feature was established using heat maps
(Figure 1). Consequently, a total of 25 principal correlative
features, obtained through dimension reduction, were identified
for inclusion in the RM to distinguish pN0 from pN1 and pN2.
The results of the feature selection are shown in Table 1.

Radiomics Modeling and Evaluation
Extremely randomized trees was used as a classifier to model and
optimize the radiomics signature in the modeling process. The
25 selected features were put into the classifier to build the RM to
predict the pathological status of mediastinal LNs in the training
cohort. Thereafter, a five-fold cross-validation of the training
cohort was used to identify differences in the results. The training
model was applied to the testing cohort for model validation.
The area under the curve (AUC) of the receiver operating
characteristic (ROC) curve was used as a means of quantitatively
identifying the effective performance of the RM. The confusion
matrix in the testing cohort was calculated (Figure 2).

Statistical Analysis
Statistical analyses were conducted using the SPSS software,
version 23.0 (IBM Corm., Armonk, NY), and P-values < 0.05
were deemed statistically significant.

The predictive abilities of the RM and cN were investigated
using ROC analysis. The statistical significance of the
improvement in the AUC after adding an explanatory factor was
evaluated using the Delong test (20).

The clinicopathologic characteristics of the patients with a
pN0 status were compared with those of the patients with
pN1 and pN2. The training and testing data cohorts were
compared to identify factors contributing to nodal metastasis

FIGURE 1 | Heat map showing the correlation of radiomics features in the training cohort. The intensity of the relevance of each feature is displayed as a certain color.

The darker the color, the higher the relevance, and the lighter the color, the lower the relevance.
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TABLE 1 | The list of selected radiomics features.

Characteristic type Description Selected features

Histogram feature Histogram parameters are related to the properties of individual pixels. They describe

the distribution of voxel intensities within the images through the commonly used and

basic metrics. Let X denote the 3D image matrix with voxels and the first-order

histogram divided by discrete intensity levels.

PET_original_firstorder_Minimum

Textural phenotype

features

Texture is one of the important characteristics used in identifying objects or regions of

interest in an image. Texture represents the appearance of the surface and how its

elements are distributed. It is considered an important concept in machine vision; in a

sense, it assists in predicting the feeling of the surface (e.g., smoothness,

coarseness, etc.) from image.

PET_textural_phenotype_level_H

Intra-peri-nodular

textural transition

features

Intra-peri-nodular textural transition features represents a minimal set of quantitative

measurements which attempt to capture the transitional heterogeneity from the intra-

to the peri-nodular space.

PET_Ipris_shell0_ge_mean

Partial local pattern

binary feature

Partial local pattern binary feature is a local descriptor of the image based on the

neighborhood for any given pixel. The neighborhood of a pixel is given in the form of

P number of neighbors within a radius of R.

PET_PLBP_hist_tumor_orient6_0

CT_PLBP_hist_tumor_orient2_7

CT_PLBP_hist_tumor_orient2_3

PET_PLBP_hist_tumor_orient3_1

PET_PLBP_hist_tumor_orient4_3

CT_PLBP_hist_tumor_orient1_2

High order texture

feature based on

wavelet transform

By using a family of functions localized in terms of time and frequency, wavelet

transforms can centralize the energy of the original image within only a few

coefficients after wavelet decomposition. These coefficients have high local relativity

in three directions of different sub-band images: horizontal, vertical, and diagonal.

CT_wavelet-LHL_lbp-3D-

m2_firstorder_90Percentile

CT_wavelet-LLL_lbp-3D-

m2_firstorder_InterquartileRange

PET_wavelet-HLL_lbp-3D-

m2_firstorder_Median

PET_wavelet-HHL_lbp-3D-

m1_firstorder_Skewness

CT_wavelet-LHH_lbp-3D-

m1_firstorder_Median

PET_wavelet-LHL_lbp-3D-

m1_firstorder_Median

CT_wavelet-HLL_lbp-3D-

m1_firstorder_90Percentile

CT_WL_lbp_hist_cH1_1

PET_WL_lbp_hist_cD1_4

PET_wavelet-HLL_lbp-3D-

m1_firstorder_Median

CT_wavelet-HLL_lbp-3D-

m2_firstorder_Range

PET_wavelet-HHL_lbp-3D-

k_firstorder_Minimum

PET_WL_lbp_hist_cH2_2

CT_wavelet-LLL_lbp-3D-

m1_firstorder_Median

CT_WL_lbp_hist_cV2_7

using the χ
2-test for categorical data and the one-sample t-test

for continuous variables.

RESULTS

Characteristics of All Patients
The clinicopathological characteristics of the 716 patients
enrolled in the study are shown in Table 2. Figure 3 shows the

patient recruitment pathway. Among them, 220 were female and
496 were male, with an age range from 25 to 78 years. ADC was
the most common histological type of NSCLC (417/716). The
number of patients with SCC was 329. In the training cohort, the
number of patients with pN0, pN1, and pN2 were 315, 74, and
112, respectively. In the testing cohort, the number of patients
with pN0, pN1, and pN2 were 135, 43, and 37, respectively.
The age of the training cohort, sex of the testing cohort, and
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FIGURE 2 | Confusion matrix of the radiomics model in the testing cohort. The abscissas and ordinates represent the true and predictive labels, respectively.

TABLE 2 | Clinical characteristics.

Characteristic Training cohort P Testing cohort P

pN0 (n = 315) pN1&2 (n = 186) pN0 (n = 135) pN1&2 (n = 80)

Age, mean ± SD, years 60 ± 9 58 ± 9 0.005a 60 ± 9 58 ± 9 0.152a

Gender, No. (%) 0.627 0.041

Male 212 128 90 66

Female 103 58 45 14

Smoking history 0.810 0.206

Yes 181 108 78 52

No 134 78 57 28

Lobar distribution 0.214 0.385

LUL 77 45 40 25

LLL 46 28 25 15

RUL 57 52 17 21

RML 28 13 11 1

RLL 107 48 42 18

Anatomical classification 0.02 0.008

Central lung cancer 53 52 25 27

Peripheral lung cancer 263 133 110 53

Histologic cell type 0.696 0.697

SCC 109 67 52 38

ADC 207 119 83 42

RUL, right upper lobe; RML, right middle lobe; RLL, right lower lobe; LUL, left upper lobe; LLL, left lower lobe.
aone sample T-test.

anatomical classification of the two cohorts were statistically
significantly different between the pN0 status and pN1 and
pN2 status (P < 0.050). However, no significant difference was
observed in the age of the testing cohort and in the sex of
the training cohort (P > 0.050). Moreover, smoking history,
lobar distribution, and histologic cell type were not significantly
different between the two cohorts.

RM Performance
The diagnostic efficiency of the RM and cN were evaluated
by the ROC curve. The AUC of the RM [0.81 (95% CI,
0.771–0.848); sensitivity: 0.794; specificity: 0.704] for the
predictive performance of the pathological node status
was significantly better than that of the cN in the training
cohort [0.685 (95% CI, 0.644–0.728); sensitivity: 0.804;
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FIGURE 3 | Flow diagram shows patient selection details.

specificity: 0.568], (P = 8.29e-07, as assessed using the
Delong test).

In the testing cohort, the AUC of the RM [0.766 (95%
CI, 0.702–0.830); sensitivity: 0.688; specificity: 0.704] was also
significantly higher than that of the cN [0.685 (95% CI, 0.619–
0.747); sensitivity: 0.799; specificity: 0.568], (P = 0.0371, as
assessed using the Delong test).

The above-mentioned nuclear medicine physicians excluded
the patients with LNs significant enlargement and intense 18F-
FDG uptake in PET/CT, and confirmed N1 or N2 by pathology
from the whole population. The remaining 634 patients were
defined as the cN ± group. Then, the sensitivity, specificity,
and AUC of the cN and the RM in the cN ± group were
calculated, respectively.

The RM showed the AUC of 0.802 (95%CI, 0.683–0.921)
for the prediction of mediastinal LNs malignancy using the
optimum cutoff value of 0.382 in the cN± group. The sensitivity
and specificity of the RM were 0.718 and 0.767, respectively.
In comparison, the cN showed the AUC of 0.611 (95%CI,
0.572–0.650) using the optimum cutoff value of 0.500. The
sensitivity and specificity of the cN were 0.819 and 0.404,
respectively. The results demonstrated that the performance of
the RM was effective in discriminating pN0 from pN1 and
pN2 using the 18F-FDG PET/CT images. The performances
of the RM and cN in the training and testing cohorts
and the cN ± group are displayed in detail in Figures 4,
5, respectively, and the representative cases are presented
in Figure 6.

DISCUSSION

In cases of NSCLC with a chance of cure, the standard surgical
procedure is a pulmonary lobectomy with systemic mediastinal
nodal dissection. However, some patients are not eligible for this
therapy because of their advanced age or the presence of severe
medical diseases, and some patients refuse surgical treatment.
Limited surgery (wedge resection or segmentectomy) or SBRT
would be alternatives for such patients. Sublobar resection helps
preserve more healthy lung tissue, shortens the operative time,
and improves the post-operative quality of life. Perioperative
mortality and operative complication morbidity do not differ
significantly between lobar and sublobar resection (3). SBRT
has emerged as the preferred management strategy for patients
who are not surgical candidates; however, for the selection of
SBRT or restrictive surgery, accurate prediction of a pathological
LN-negative status is a pre-requisite.

The diagnosis of NSCLC mediastinal LN metastasis is
generally based on several parameters such as metabolism,
size, morphology, and attenuation, which leads to dependence
on clinical experience. In other words, the traditional practice
involves treating medical images as pictures intended solely for
visual interpretation (21). False-positive findings of mediastinal
LNs are not uncommon in functional imaging with 18F-
FDG PET/CT because the modality can mistakenly identify
inflammation in patients with NSCLC due to infection,
inflammation, or granulomatous diseases (8–10). The main
molecular and pathological mechanisms of an avid FDG uptake
in benign mediastinal LNs are lymphoid follicular hyperplasia
and histiocyte infiltration associated with glucose transporter-1
overexpression (22). When benign mediastinal LNs manifest as a
false-positive finding on PET imaging, and the CT morphology
is not informative enough to support a judgment, there is an
increased risk of an incorrect diagnosis. Benign high-uptake LNs
can coexist with occult metastasis, making an accurate cN staging
more difficult. In the clinical practice of mediastinal LN staging in
NSCLC, nuclear medicine physicians are faced with the challenge
of suspected positive LNs and possible OLM almost every day,
which is difficult to deal with by relying solely on experience.

In the existing studies, for the accuracy of the cN staging
in NSCLC, radiologists and nuclear physicians often analyzed
parameters such as morphology and glucose metabolism or
radiomic features of visible mediastinal LNs to improve the
diagnostic ability of 18F-FDG PET/CT for metastasis (23–25).
Gao et al. researched the method and efficacy of support vector
machine classifiers based on texture features and a multi-
resolution histogram to evaluate mediastinal LNs (11). Flechsig
et al. used density as a threshold for the detection of malignant
LN infiltration in a radiomics analysis of patients with NSCLC
(12). Likewise, Lee et al.’s research indicated that the risk of
mediastinal LN metastasis in NSCLC patients could be further
stratified using both 18F-FDG uptake and LN density (24). Cho
et al. attempted to determine the optimal cut-off values of the
mediastinal LN standardized uptake values (SUV-LN)/primary
tumor SUV (SUV-T) ratio to discriminate metastatic LNs from
benign LNs (26). However, these researchers faced the common
problem of an unpredictable OLM. Some algorithms for the
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FIGURE 4 | ROC curves of the training and testing cohorts. (A) ROC curves for the RM and cN of the training cohort. (B) ROC curves for the RM and cN of the

testing cohort.

FIGURE 5 | ROC curves of the cN ± group. (A) ROC curve for the RM. (B) ROC curve for the cN.

analysis of parameters based on 18F-FDG uptake have been
proposed in light of these limitations. Ouyang et al. used the
primary tumor-to-blood SUV ratio and metabolic parameters
in clinical N0 lung ADC to predict OLM (14). Kim et al.

investigated the OLM’s predictability using SUV, metabolic
tumor volume (MTV), and total lesion glycolysis (TLG) in
patients with cN0 lung SCC before surgery (15). There are
no current studies of 18F-FDG PET/CT primary tumor-based
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FIGURE 6 | Patient 1: male, 55 years old, ADC, PET/CT showed lymph nodes

in 4R (yellow arrow) with an intense FDG uptake, which was evaluated as cN2,

predicted as N0 by the RM, and confirmed as pN0 after radical resection. The

red arrow indicates the tumor in the right lower lobe (CT, PET) and the

segmentation on ITK-SNAP. Patient 2: male, 66 years old, ADC, evaluated as

cN0, but predicted as N+ by the RM, and confirmed as pN1 after radical

resection. The black arrow indicates the primary lesion in the left upper lobe

(CT, PET) and the segmentation on ITK-SNAP.

radiomics classifiers of the LN staging (N0 vs. N1 and N2)
in NSCLC. Therefore, if our solution proves to be feasible, it
can be used to either differentiate benign and malignant LNs
or determine OLM, thus leading to an informed therapeutic
decision-making in the face of the challenge of false-positive and
false-negative images.

Huang et al. have developed and validated a radiomics
nomogram based on the primary tumor in a contrast-enhanced
CT for pre-operative LN metastasis prediction in colorectal
cancer (27). Inspired by their research achievement, we aim to
introduce the radiomics modeling approach based on the 18F-
FDG PET-CT images of the primary lesion into the LN staging in
NSCLC. On the basis of the radiomics hypothesis, intratumoral
heterogeneity detected by imaging could be the expression of
genomic heterogeneity, which implies a worse prognosis because
tumors with more genomic heterogeneity are more likely to be
resistant to treatment metastasis (28). Mediastinal LN staging
in NSCLC is highly correlated with prognosis; therefore, we
assumed that LN metastasis information may be obtained from
intratumoral heterogeneity. Some studies had discovered pre-
therapy 18F-FDG PET/CT or CT-based radiomics classifiers of
survival or response in patients with NSCLC (29–32). Therefore,
it can obtain information from the primary lesion that is helpful
for diagnosis or prognosis.

Nevertheless, the present study has several limitations too.
Due to its retrospective design and performance at a single
center, there is a risk of selection bias. A larger, multi-
institutional prospective randomized study is needed to confirm
these results.

CONCLUSIONS

A Radiomics Model based on the 18F-FDG PET/CT analysis
provided useful information for mediastinal LN staging in
patients with NSCLC. Therefore, therapeutic planning could be
tailored according to predictions, and limited surgery or SBRT
could be helpful in patients with cN0.
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