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One year after the start of the COVID-19 pandemic it has become clear that some

groups of individuals are at particular high risk of a complicated course of infection

resulting in high morbidity and mortality. Two specific risk factors are most prominent,

old age and the presence of co-morbidity. Recent studies have shown that patients with

compromised renal function, especially those treated with renal replacement therapy

or having received a kidney transplant are at a much higher risk for severe COVID

infection and increased mortality. This may be in part due to the increased prevalence of

co-morbid conditions in these patients but specific alterations in their immune system,

reflecting premature immunological aging, may be equally important. In this review

the different aspects, in particular thymus function and memory T cell expansion, of

uremia-associated immunological aging are reviewed with respect to COVID 19 infection.

In essence, the decreased generation of naïve T cells may be instrumental in suboptimal

anti-viral immune responses while the relatively uncontrolled expansion of effector T

cells may facilitate the feared phase of the COVID-19 infection with excessive and

live-threatening inflammation of the lung parenchyma.
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aging, COVID-19

UREMIA-ASSOCIATED IMMUNOLOGICAL AGING

General Aspects
End-stage renal disease is associated with increased risks for infections, cancer and a poor
vaccination response to vaccines like Hepatitis B surface antigen (HBsAg) (1). The accumulation
of uremic toxins and increased oxidative stress leads to a pro-inflammatory state which is believed
to underlie the impaired immune system. Uremia affects all aspects of both the innate and adaptive
immune system [reviewed in (1)]. Cell numbers of innate immune cells like monocytes and
granulocytes are normal to increased. However, these cells have a more activated profile with
expansion of, for example, the subset of pro-inflammatory monocytes CD14posCD16pos while
their functionality may be comprised (2, 3). Dendritic cells are professional antigen presenting
cells and at the crossroad of the innate and adaptive immune response. In particular the subset
of lymphoid dendritic cells is affected by aging and uremia as opposed to the myeloid dendritic
cells (4–7). These lymphoid dendritic cells produce large amounts of type 1 interferon and are key
for adequate antiviral responses (8). In addition, there are less dendritic cells present in the skin
and circulation which may contribute to a less efficient adaptive immune response (5, 9).
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Progressive lymphopenia with relatively more highly
differentiated memory T cells is observed in association with
more advanced stages of chronic kidney failure (10–12). Tracking
the anti-HBsAg T cells after vaccination in patients with renal
failure showed an insufficient CD4T cell response which
correlated closely with an impaired serological response (13).

The changes within the adaptive immune system and
consequences for immune responses closely resembles the
effects of aging (Figure 1) (14). A shift in favor of myeloid
vs. lymphoid precursor hematological stem cells in the bone
marrow may be important (15). This process is driven by
epigenetics which in turn is under the influence of systemic
inflammation and oxidative stress as observed in end-stage
renal failure (16, 17). However, the adaptive immune system
is more broadly affected by aging with thymus involution as
a major cause of a decreasing output of naïve T cells, in
combination with increasing numbers of memory T cells and
changes in the regulatory T cell compartment. The first two
observations are consistently found in the elderly and patients
with end-stage renal failure. The expansion of memory T cells
in elderly individuals is usually associated with a slight increases
in markers of systemic inflammation and therefore frequently
named inflamm-aging (18).

The T cell system is studied the most intense in aging research
as peripheral blood is an easily accessible source of abundant
T cells and many assays are available to study phenotype,
differentiation status and function of T cells. In fact, such
an integrative analysis of the T cell system of ESRD patients
showed immunological aging by an average of 15–20 years,

FIGURE 1 | Progression of chronic renal failure is associated with immunological aging affecting the adaptive immune system. The typical hall marks of immunological

aging are given with an uncertain role for regulatory T cells. The changes of uremia-associated immunological aging can contribute to the substantially increased

COVID-19 infection-associated morbidity and mortality of patients with chronic renal failure.

meaning that the composition of the population of circulating
T cells of a 50-year old hemodialysis patient resembles that of
a 70-year old healthy individual (11, 19). Of note, the inter-
individual variation is substantial and for instance individuals
with a genetic background of longevity show less signs of
immunological aging (20).

Thymus Function and Aging
The thymus is important in producing naïve T cells which all have
a specific T cell receptor (21). Naïve T cells leaving the thymus
are called recent thymus emigrants (RTE) and were positively
selected for the capacity to interact with the HLA molecules of
the antigen-presenting cells but deleted if this interaction was to
strong, thereby preventing potential dangerous autoreactivity. In
addition, regulatory T cells (Tregs) are also generated which are
called natural Tregs (22). Essentially, the thymus continuously
generates the enormous diversity of T cell receptors which is
needed to combat efficiently the wide variety of pathogens that
may be encountered while controlling autoreactive T cells (23).

Aging is invariably associated with involution of the thymus
leading to a steady decline in RTEs. The RTEs can be detected
in the circulation by, for example, expression of CD31 on naïve T
cells and there is on average an almost linear relationship between
decreasing numbers of CD31 positive naïve T cells and age (24,
25). Homeostatic proliferation, particularly of CD4 naïve T cells,
is able to maintain the volume of the naïve T cell compartment
but naïve CD8T cells become severely depleted in the elderly
(26–29). This may lead to a contraction of the TCR repertoire
which in turn can limit the diversity and thereby the efficacy of
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the immunological response (30). For instance, thymus output is
crucial in the formation of protective immune responses during
the early formation of a Salmonella infection but is dispensable
once persistent Salmonella infection is established (31). Whether
the output of natural Tregs is in line with the decrease in RTE’s is
not known.

Progressive severity of renal failure is associated with
decreased numbers of naïve T cells which can be attributed
to both a decrease in RTE’s and a decrease in compensatory
homeostatic proliferation (11, 32, 33). Activation-induced cell
death of naïve T cells is increased and likely underlies part of
the pathogenesis (11). As a result, at all decades of life end-stage
renal failure results in a significant contraction of the circulating
naïve T cell compartment (33, 34). Recent studies have shown
that lymphoid and non-lymphoid tissues may also harbor naïve
T cells and the relation with circulating naïve T cells is not
clearly established (28, 35). However, comparing the percentage
of lymph node naïve T cells with the percentage of peripheral
blood naïve T cells showed a very close correlation (36).

Why the production of RTE’s is affected by uremia is not
known but from animal experiments it is clear that loss of
renal function leads to volume loss of lymphoid organs like the
thymus (37). The thymus and in particular the thymus epithelial
cells appear to be very sensitive for inflammatory and oxidative
stress which translates into an increased tendency for apoptosis
(38–43). This may not only explain the thymus involution with
normal aging, as a result of prolonged and variable exposure
to these conditions, but also the uremia-associated decrease in
thymus function in parallel with the increased pro-inflammatory
environment observed with progressive loss of renal function.

Naïve T cell numbers in both healthy individuals as in
recipients of kidney transplants were independently associated
with all-cause mortality (19, 33, 44). Although this implies a
causal relationship, this is not without uncertainty. Life events
leading to episodes of increased inflammation and oxidative
stress could accelerated thymus involution leading to “low for
age” numbers of naïve T cells but also have a broad negative
impact on the physical robustness of an individual. Therefore,
the possibility exists that low naïve T cell numbers not only
contribute to a weakened immune system but also point to a life
history with harmful events leading to frailty (45–47).

Memory T Cell Expansion and
Immunological Aging
The second hall mark of an aged T cell system is the expansion
of memory T cells which may show signs of senescence and/or
exhaustion which can be defined as the loss of proliferative
capacity and specific effector functions like cytokine production
and cytotoxicity (48). The increased numbers of memory T
cells arise during life as a natural consequence of an immune
system that has reacted to specific pathogens. When infections
persist, like chronic hepatitis C or HIV, it may lead to progressive
differentiation of virus-specific memory T cells into senescence
and susceptibility for cell death (49–51). With increasing
age, the memory T cells have undergone many rounds of
replication with consequent shortening of their telomeres (52).

Measuring telomere length therefore provides another measure
of immunological aging (11).

Expansion of particular populations of memory T cells in the
elderly persons may lead to a skewed TcR repertoire and may
cause gaps in the TcR repertoire (53–56). The latter could fit
in the concept of immunological space, which postulates that
the immune system can only support the survival of a certain
quantity of immune cells (57, 58). Of note, in recent years it
has become evident that all tissues harbor a large quantity of
resident T cells that do not circulate and that provide local
protection against pathogens (59). As a first line of defense, the
resident T cells are enriched in antigen-specific T cells that react
to pathogens which are frequently encountered within that tissue,
for example influenza-specific T cells in the lungs (60, 61). In
contrast, relatively few highly differentiated T cells are present
in the lymph nodes (36). Thus, the population of circulating T
cells is only one of the many compartments of T cells, but easy to
monitor and in general reflecting an ongoing immune response
by increased frequencies of antigen-specific T cells.

Several studies have shown that an expanded population
of differentiated effector memory T cells which have lost the
expression of the co-stimulatory molecule CD28 is associated
with less efficient vaccination and a decreased risk for rejection
after kidney transplantation (14, 62–65). The underlying
mechanisms may be multiple as the pool of CD28null T cells
harbors many different cell types including senescent T cell and
cells with a regulatory function (66, 67).

Circulating numbers of natural Tregs may increase with age
as a result of an expanded population of memory Tregs. These
inflated numbers of Tregs in the elderly can limit immune
responses like vaccination response to influenza but could also
foster autoimmunity and chronic inflammation (68). Chronic
renal failure per se does not affect numbers and function of
circulating natural Tregs (69).

Of interest is the observation from animal experiments
and young adults after thymectomy at childhood, that lower
numbers of naïve T cells facilitate an expansion of circulating
memory T cells which may be a relevant phenomenon in
immunological aging (70–72).

In patients with chronic renal failure the immunological aging
of the memory T cells is more advanced as can be shown by
the increased reduction in T cell telomere length and a higher
frequency of highly differentiated T cells (2, 11, 19, 73). In
addition, as in healthy individuals, the important intracellular
signal pathway involving the MAP kinases ERK, p38 and DUSP6
is unfavorably changed by aging (74, 75).

IMPLICATIONS FOR COVID-19 INFECTION

Increasing morbidity and mortality associated with COVID-19
infection is highly associated with elderly age and co-morbid
conditions (76). Patients on dialysis, with CKD and recipients
of organ transplant represented three of the four comorbidities
associated with the highest mortality risk from COVID-19
(77). Most likely, this is at least in part associated with their
prematurely aged immune system as a coordinated adaptive T
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cell response is associated with less severity of disease (78). Of
note, changes at many levels of the immune system other than the
adaptive T cell response have been described in association with
aging and could contribute to severity of COVID-19 infection,
but their relative importance has as yet not been established.

Fatality of COVID-19 infection is highly associated with
a dysregulated immune response with progressive and severe
inflammation of the lung parenchyma leading to extreme hypoxia
(79–81). Several mutually not exclusive scenarios may lead to
this outcome in the context of immunological aging. First, the
aged immune system may be slow or inefficiently responding to
this new viral pathogen as a result of a contracted TcR repertoire
in the naïve T cell population and a general decline in T cell
function by less effective intracellular signaling. In addition, the
decreased numbers of plasmocytoid dendritic cells may have a
profound negative effect on viral control as type 1 interferon is
important in COVID-19 clearance in an experimental hamster
model of infection (82).

Both deficiencies would lead to delayed clearance of the virus
and prolonged stimulation and expansion of memory T cells that
are COVID-19 reactive. On average lower numbers of T cells
have been found in hospital-admitted COVID-19 patients and
lower cell numbers, specifically naïve T cells, are related to disease
severity (78, 83–88). Although of considerable interest, these
observations are most likely caused by the COVID-19 infection
itself which leads to decreased T cell numbers which may restore
with clinical improvement (85, 89).

Second, immunological aging can lead to a T cell system prone
to expansion of highly reactive memory T cells as regulation
by Tregs is less efficient, low numbers of naïve T cells facilitate
such a response and time to resolution of the viral infection is
relatively slow. This scenario is not just hypothetical as shown by
the large number of studies on infection with cytomegalovirus.
Infection with this herpes virus typically leads to a strong T
cell immune response which can be recognized by an expansion
in the peripheral blood of both highly differentiated memory
CD8 and CD4T cells (90, 91). The CMV reactive CD4T
cells can be readily detected as they are negative for the co-
stimulatory molecule CD28 (CD4posCD28null T cells)(90). Both
the infectious dose and the age of the individual are related to the
expansion of CMV-specific memory T cells (92, 93). Specifically,
in elderly patients with chronic renal failure the expansion of
CD4posCD28null T cells which normally comprise <1% of the
CD4T cell population may be such that over 50% of CD4T
cells become CD28null (94, 95). The CD4posCD28null T cells
are highly cytotoxic and express the chemokine receptor CXCR3
which allows for migration over endothelial cells (96). These
cells are not without harm as they have been identified as a
non-classical risk factor for atherosclerotic disease probably by
their capacity to destabilize atherosclerotic plaques (97, 98). Thus,
CMV infection in immunologically aged individuals like patients
with chronic renal failure may cause poorly controlled memory T
cell expansion with subsequent collateral damage in patients with
atherosclerotic plaques.

Such an exaggerated and harmful T cell immune response in
elderly COVID-19 patients with a severe course of disease is of
course much more acute and intense leading to expansion of

highly activated memory T cells in association with a cytokine
storm (88). In the case of COVID-19 the large expansion of
highly reactive effector T cells is likely primarily present in the
lung parenchyma as has, for example, been shown for influenza-
specific T cells. Therefore, peripheral blood COVID-19 antigen-
specific T cells are a reflection of the intensity of the immune
response which may show different characteristics and may be
much worse at the tissue level (99–102).

In the case of severe COVID-19 infection, controlling the
inflammatory response by high dose steroid is currently the
best option (103). A recent study among recipients of a
liver transplant with COVID-19 infection showed that the
use of tacrolimus was associated with a significant reduction
of mortality (104). This findings underlines that limiting the
excessive T cell response, in this case by tacrolimus, is a key
element in harnessing themorbidity andmortality of COVID-19.

THERAPEUTIC STRATEGIES TO
INFLUENCE UREMIA-ASSOCIATED
IMMUNOLOGICAL AGING

Reversing immunological aging in humans is currently not
possible although some interventions may be beneficial (40, 105).
As thymus involution underlies ever decreasing naïve T cell
numbers with aging and possible contributes to memory T cell
expansion it would be of prime importance to control this
process. The biological process of thymus involution is now
better understood and it is clear that loss of thymus epithelial
cells is essential.

Recent studies have shown that thymus involution involves
the aging of the stromal microenvironment formed by thymus
epithelial cells (TEC)(105). Many factors like cytokines, sex
steroids and transcription factors are likely involved in TEC
aging (106). Expression of the TEC autonomous transcription
factor FOXN1 is pivotal for differentiation and maintaining TEC
integrity. A null mutation of FOXN1 in mice results in a lack of
hair and thymus, and gradual excision of FOXN1 over time in an
experimental model results in thymus involution (107, 108).

This process can be favorably attenuated by transfecting
thymus cells with FOXN1(70) and cellular therapy with FOXN1
producing stem cells or cytokine-to-TEC-based therapies using
IL-22 or keratinocyte growth factor have shown promising
results in experimental models. These approaches offer at
least proof of the concept that thymus function can be
(partially) restored (106).

Interleukin 7 is an important cytokine for T cell proliferation
and homeostasis. Administration of recombinant IL-7 in humans
appears to be safe and increases peripheral T cell numbers.
However, there is little direct impact on thymus function which
limits its use as a regenerative cytokine for the involuted thymus
(109). Of interest, targeting of IL-7 to the thymus, for example,
by a plasmid-delivered IL-7 fusion protein, was able to restore
the thymus architecture and cellularity in aged animals (110).

Restoring renal function by kidney transplantation leads
to a rapid clearance of inflammatory cytokines and relieves
oxidative stress in ESRD patients. However, there is no reversal
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in any of the markers of T cell aging even at 1 year after
transplantation (111). Thus, once established, thymus involution
seems irreversible, leaving the ESRD patient with premature
aging at a persistent increased risk for mortality, even after
regaining adequate renal function with a GFR over 60 mL/min.
The underlying mechanisms are likely epigenetic changes
induced by any combination of inflammation and oxidative stress
associated with uremia, which are not easily reversible (1).

Of considerable interest is a recent observation that a healthy
lifestyle may slow down thymus involution. Smoking and obesity
are associated with fattening of the thymus (112) and bariatric
surgery can partly reverse immunological aging (113). An
observational study showed that elderly individuals with a high
intensity of daily exercise had a better preservation of thymus
function and less senescence of their immune system (114, 115).
Having a healthy lifestyle with sufficient exercise will likely not
reverse an atrophied thymus in ESRD patients but may delay
further involution. Differences in lifestyle may also be part of
the explanation for the substantial inter-individual variation

observed at every decade of life in the number of naïve T
cells and RTE’s.

CONCLUSION

Aging of the T cell system has specific hall marks and is largely
characterized by a progressive decrease of thymus function and
expansion of highly differentiated memory T cells. Patients
with renal failure, even after successful kidney transplantation
may have severe premature immunological aging in particular
in association with CMV infection. Immunological aging may
explain why severity of COVID-19 infection is both age
dependent and significantly increased in patients with chronic
renal failure.
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