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Clinicians handle a growing amount of clinical, biometric, and biomarker data. In this “big

data” era, there is an emerging faith that the answer to all clinical and scientific questions

reside in “big data” and that data will transform medicine into precision medicine.

However, data by themselves are useless. It is the algorithms encoding causal reasoning

and domain (e.g., clinical and biological) knowledge that prove transformative. The recent

introduction of (health) data science presents an opportunity to re-think this data-centric

view. For example, while precision medicine seeks to provide the right prevention and

treatment strategy to the right patients at the right time, its realization cannot be achieved

by algorithms that operate exclusively in data-driven prediction modes, as do most

machine learning algorithms. Better understanding of data science and its tasks is vital

to interpret findings and translate new discoveries into clinical practice. In this review,

we first discuss the principles and major tasks of data science by organizing it into

three defining tasks: (1) association and prediction, (2) intervention, and (3) counterfactual

causal inference. Second, we review commonly-used data science tools with examples

in the medical literature. Lastly, we outline current challenges and future directions in the

fields of medicine, elaborating on how data science can enhance clinical effectiveness

and inform medical practice. As machine learning algorithms become ubiquitous tools

to handle quantitatively “big data,” their integration with causal reasoning and domain

knowledge is instrumental to qualitatively transform medicine, which will, in turn, improve

health outcomes of patients.

Keywords: big data, data science, causal inference, the ladder of causation, machine learning

INTRODUCTION

Can “Big Data” Transform Medicine?
By now, it is increasingly recognized that “big data will transform medicine into precision
medicine.” However, data by themselves are useless (1). Data alone are insufficient to achieve
precision medicine, let alone to address its defining cause-and-effect questions—i.e., identifying the
optimal prevention or treatment strategy, the subgroup of patients who would benefit, and when
they would benefit most (2). To become useful, data should be queried, analyzed, and acted upon.
It is causal reasoning, knowledge, and algorithms—not data—that prove transformative.

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2021.678047
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2021.678047&domain=pdf&date_stamp=2021-07-06
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:yraita1@mgh.harvard.edu
https://doi.org/10.3389/fmed.2021.678047
https://www.frontiersin.org/articles/10.3389/fmed.2021.678047/full


Raita et al. Data Science and Causal Inference

Modern Statistics and Causal Inference in
the Past Century
In the recent history of science, statistics have occupied a
privileged position in learning from data and epistemically
justifying inductive reasoning (3). However, in the 1920s, the
founders of modern statistical science—such as Ronald A.
Fisher—declared that statistics could study causes and effects (i.e.,
causal inference) by using data from randomized experiments,
but not from observational studies (4). Nevertheless, clinicians
and researchers continued to leverage observational data in
order to tackle complex causal questions—e.g., the effect
of prenatal factors on bronchiolitis (5), lifestyle factors on
asthma (6), and environmental exposures on lung function
(7)—particularly when randomized experiments were unethical
or otherwise infeasible. Despite these efforts, until recently,
mainstream statistics has provided clinicians and researchers
with few approaches to explicitly articulate, let alone to
answer, causal questions (1, 8). Consequently, every student has
learnt that “correlation is not causation” (with good intention)
and causal vocabulary in observational research has been
virtually prohibited in some major journals (9, 10). These have
classified an entire category of questions (i.e., cause-and-effect
questions) in the medical science as not amenable to formal
quantitative inference.

Data Science in the Twenty-First Century
In the current “big data” era, there exists a rapidly-increasing
volume, variety, and velocity of health information [e.g., clinical,
electronic health record, and biometric (from wearable devices)
data]. In parallel, the recent emergence of “data scientists”—
most of whom are not formally-trained in traditional statistical
science—has brought a neutral mindset that does not a priori
preclude them from answering causal questions in observational
studies (11). These scientists coined a term, “data science” or
“health data science” as a component of medicine (see Glossary
in Table 1), to refer to their realm, which is widely embraced by
both of the industry and academia (11). The availability of “big
data” and the influx of data scientists—alongside of the advent in
epidemiological and statistical methods—present opportunities
to unleash the wealth of “big data” to address the fundamental
causal questions in precision medicine.

Goals of the Primer
In this primer, we (1) discuss the principles of data science
and its major tasks based on the “ladder of causation”
classification, (2) introduce the commonly-used data science
tools, with a focus on causal inference, and (3) outline current
challenges and future directions in the field of medicine. We
also elaborate on how data science can pave the way toward
the development of precision medicine, with common medical
conditions as examples.

Abbreviations: ED, emergency department; GWAS, genome-wide association
study; RCT, randomized controlled trials.

GOALS OF DATA SCIENCE AND THE
LADDER OF CAUSATION

It is key to understand what data science is (and is not). Although
data science is often characterized by its tools (e.g., machine
learning), scientific disciplines are primarily defined by their
questions and tasks. For example, we define astrophysics as the
discipline that studies the behavior and physical properties of the
universe, not as the discipline that uses telescopes. Accordingly,
we organize questions and tasks of data science into three
defining classes, according to the “ladder of causation” proposed
by a computer scientist, Judea Pear: (1, 8) (1) association
and prediction, (2) intervention, and (3) counterfactual causal
inference. Table 2 summarizes the 3-level classification, together
with corresponding scientific questions, assumptions, and tools.
A similar classification scheme has also been developed in the
field of epidemiology (11).

Association and Prediction
The first task of data science is data-driven—association and
prediction, which constitutes the first rung of the causal
ladder. Association invokes exclusively probabilistic relationships
between the variables within observed data. For example, in a
cohort study, we say that recurrent wheezing in early childhood is
associated with the development of asthma, when the probability
of observing one variable depends on that of the other (or
vice versa).

Prediction maps the derived probabilistic association to
future data in order to forecast the conditional probability
of outcome. It encompasses both relatively simple tasks [e.g.,
developing clinical risk scores, such as the Asthma Predictive
Index (12)] and more complex ones [e.g., a polygenic risk score
using millions of genetic markers to predict which patients
are at higher risk of asthma (13)]. Analytical tools range from
basic computations (e.g., correlation coefficients in multivariable
regression models), to Bayesian networks, to supervised machine
learning algorithms [e.g., random forests, neural network (or
deep learning)] (Tables 2, 3).

Machine learning algorithms excel in the association and
prediction tasks. For example, this is what Alpha Go (a computer
program that plays the board game Go) does when its deep
learning algorithms learn the existent and simulated data of
millions of Go games to determine which move is associated
with the highest probability of winning (22). However, these
algorithms have ongoing challenges, such as explainability
(or “black-box” algorithms) (23), transportability (to different
questions, populations, and settings), and particularly the lack of
causal reasoning. Accordingly, association and prediction, along
with the tools employed, are placed at the first rung of the
progressively more sophisticated rungs of the ladder (1, 8).

Intervention
The second task of data science is intervention. It constitutes
the second rung of the causal ladder because it involves not
only observing the data but also changing what we observe,
according to our causal belief (or causal hypothesis). For
example, suppose we are interested in a causal hypothesis that
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TABLE 1 | Glossary.

Causal effect In this article, causal effects refer to average causal (or treatment) effects rather than individual causal effects. In a binary exposure situation

(e.g., treatment yes vs. no), it is the average difference between two counterfactual outcomes under two different treatments across all

individuals in the population. The effect can be represented with different measures—e.g., risk difference, risk ratio, and odds ratio

Causal graphs A graphical tool for qualitatively encoding domain knowledge and a priori assumptions on the causal structure of interest. It consists of nodes

[which represent random variables (e.g., exposure, outcome, confounders, mediators, colliders)] and edges (which represent their causal

interrelations). It also qualitatively represents dependencies and independencies between the variables in the data. It is often referred as a

causal directed acyclic graph (DAG)—“directed” because the edges imply a direction and “acyclic” because there are no cycles between nodes

Causal inference The process of using data in a sample to infer cause-and-effect relationships in the target population of interest

Collider A variable that is causally influenced by two or more variables. In a causal diagram, it is a node on which multiple directed edges “collide”

(Figure 1A). Adjustment for a collider results in a non-causal association between exposure and outcome, leading to selection bias (e.g.,

birth-weight paradox)

Confounding The structural definition of confounding is the bias secondary to common causes of exposure and outcome (i.e., the bias due to confounders).

For example (Figure 1C), baseline severity is a common cause of the exposure and the outcome, which leads to confounding

Consistency One of three identifiability conditions. Consistency means that the observed outcome for every exposed individual equals his or her

(counterfactual) outcome if he or she had received the exposure. This condition requires a well-defined exposure or treatment

Counterfactual

causal inference

Causal inference based on the framework of counterfactuals to identify and estimate causal effects. For a binary exposure situation (e.g.,

treatment yes vs. no), this framework presupposes the existence of two outcome states (i.e., two counterfactual outcomes) to which all

individuals of the population could be exposed. Counterfactual framework encompasses several models, such as the Neyman-Rubin potential

outcome model and Pearl’s structural causal model

Data Information that are collected through observation [e.g., through observational studies, randomized controlled trials, biobanks, biometrics,

electronic health records (Figure 3)]

Data science An interdisciplinary concept that extracts knowledge and insights from data, using theories and techniques from many fields including

computer science, statistics, epidemiology, and other domain knowledge sciences (e.g., medicine). Its major tasks include association and

prediction, intervention, and counterfactual causal inference (and description). In this article, data science and health data science are used

interchangeably

Domain (or

subject-matter

knowledge)

The knowledge of specialists or experts in a particular field. In our situation, it represents clinical and biological knowledge (e.g., medicine,

pediatrics, pulmonology)

Effect modification The situation where the magnitude (i.e., quantitative) or the direction (i.e., qualitative) of the effect of exposure on the outcome differs

depending on a third variable—the “effect modifier.” Effect modification is sometimes called an “interaction” in statistical science

Exchangeability One of three identifiability conditions—the exposed and unexposed individuals are exchangeable with regard to their risk factors for the

outcome. In a randomized controlled trial, randomization ensures that these risk factors are equally distributed. In an observational study

(conditional) exchangeability can be achieved by adjusting for a sufficient set of confounders (i.e., no unmeasured confounding)

Identifiability

conditions

Three conditions (consistency, exchangeability, and positivity) required to identify the average causal effect of interest from data. When three

identifiability conditions hold true, an observational study can be conceptualized as a conditionally randomized experiment

Instrumental

variable (IV)

methods

An analytic approach that examines the causal effect of exposure on outcome. This approach replaces the exchangeability assumption (i.e., no

unmeasured confounding) with an alternative set of IV conditions—the relevance, independence, exclusion criterion conditions, and

monotonicity (Table 3). Commonly-used IVs in health data science are genetic variants (i.e., Mendelian randomization), provider preference,

and access to treatment

Machine learning Machine learning (particularly, statistical learning) refers a set of algorithms for modeling and understanding complex data. It encompasses

many algorithms, such as supervised learning (e.g., lasso regression, random forest, boosting, neural network [or deep learning]) and

unsupervised learning (e.g., clustering, principal component analysis). Some examples are summarized in Table 3

Mediation analysis Causal mediation analysis is an approach that aims to tease apart the total effect, natural indirect (or mediation) effect, and natural direct effect

by using a counterfactual framework. The natural indirect effect represents how much the outcome risk would change if patient were set to be

exposed, but the mediator value were changed from the value it would take if unexposed to the level it would take if exposed. The natural

direct effect represents how much the outcome risk would change if patient were set to be exposed vs. to be unexposed but for each patient

the mediator value were kept at the level it would have taken in the absence of exposure

Mendelian

randomization

An analytic approach that examines the causal effect of a modifiable exposure (e.g., physical traits, molecular biomarkers) on the outcome of

interest by using genetic variants as IVs

Positivity One of three identifiability conditions—the probability of receiving every value of treatment/exposure conditional on a set of covariates is > 0

(i.e., positive). For example, if all individuals received the same treatment/exposure level (i.e., a violation of positivity), it would be impossible to

estimate the average causal effect

treatment with a biologic agent would decrease the frequency
of severe asthma exacerbation. A very direct way to estimate
the effect of treatment is to perform an experiment under
carefully-controlled conditions, such as randomized controlled
trials (RCTs). Under a set of major assumptions specific to
interventions—e.g., perfect adherence to assigned intervention,

no selection bias due to a differential loss to follow-up, and no
post-randomization confounding [i.e., sequential exchangeability
(24) (Table 1)], an RCT would yield a consistent estimate for the
causal effect of interest. Besides, the stable unit treatment values
assumption (SUTVA)—(1) no interference and (2) no multiple
versions of treatment—is also vital for consistently estimating
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TABLE 2 | Scientific questions, required information, and analytical methods of data science according to the ladder of causation.

Examples of scientific question Required information* Examples of analytics and tools

Rung 1

association and

prediction

- What are the risk factors for developing asthma?

- What is the probability of developing asthma in a

patient with a set of predictors?

- Risk factors/predictors

- Outcomes

- Regression

- Supervised machine learning algorithms

(e.g., random forests, neural

network/deep learning)

Rung 2

intervention

Will a new biologic agent decrease the rate of

asthma exacerbation by 30%, compared to

placebo?

- Eligibility criteria

- Exposures/treatments

- Outcomes

- Elementary statistics in RCTs (e.g., risk

differences of the outcome)

- Intention-to-treat analysis

- Per-protocol analysis

- Causal Bayesian network

Rung 3

counterfactual

causal inference

What would be the preventive effect of a new drug

had it been given to a group of patients with a set of

characteristics?

- Eligibility criteria

- Exposures/treatments

- Outcomes

- Observation period and

temporality†

- Domain knowledge on the causal

structure (e.g., confounders,

mediators, colliders)

- Regression

- Propensity score matching

- Standardization/G-formula

- IPW/MSM

- Targeted learning

- IV-methods/Mendelian randomization

IPW/MSM, inverse probability weighing for marginal structure model; IV, instrumental variable; RCT, randomized controlled trial.

*For all tasks, no information bias (no measurement error or misclassification) and no model misspecification are required.
†The effect of interest must occur after the cause (and an expected delay) during an observation period.

the causal effect of interest. For example, in a simple RCT to
investigate a vaccine efficacy, SUTVA would be violated due to
herd immunity (a spillover effect). Tools used for intervention
tasks range from basic computations (e.g., risk differences by an
intention-to-treat analysis) to more-complex analytical methods
[e.g., causal Bayesian networks (25)] (Table 2).

Ideal RCTs that meet the assumptions above have been
considered the “gold standard” for establishing causal inference
(26). Why not conclude this review article here? Unlike A/B
tests performed by information technology companies, RCTs in
clinical research are often impossible to conduct for a number
of logistical, practical, and ethical reasons (e.g., examining the
causal effect of prenatal smoking exposures on health outcomes
of the offspring). Most importantly, in precision medicine,
we seek to make inferences from the existent data of a set
of patients who are similar—in as many characteristics as
possible—to the patients of interest. However, any interventional
experiment cannot tackle “what if?” or retrospective questions
(e.g., “what if this patient had received treatment X at time
t?”) using the existent data that cohorts and consortiums
possess. No experiment can remove medications from already
treated individuals and measure their outcomes. For that
reason, we must deploy a new set of tools to tackle these
important questions.

Counterfactual Causal Inference
The third task of data science—the final rung of the ladder—
is counterfactual causal inference (Table 1). In the long history
of human efforts to understand the meaning of “causality,”
stretching back to the time of Aristotle (27), the origin of
counterfactuals—a mode of causal reasoning—goes back to the
philosopher David Hume in the 1700s. Hume defined causality
to be: “if the first object had not been, the second never had
existed” in his An Enquiry Concerning Human Understanding
(28). By the beginning of the twenty-first century, a unified

framework of quantitative causal inference (i.e., counterfactual
outcome framework) was developed (15, 25, 29).

Counterfactuals are how humans naturally reason causal
effects. We instinctively apply a possible-world semantics, and
compare two outcomes: (1) the outcome—say, anaphylaxis
(yes/no)—that would have been observed with a hypothetical
treatment/exposure—say, new drug (yes/no)—vs. (2) the
outcome that would have been observed without one. These
two outcomes are referred to as counterfactual (or potential)
outcomes because they represent world(s) that may not exist—
i.e., counter-to-the-fact worlds (15). Then, the counterfactual
definition of individual causal effect is the following: the
treatment/exposure has a causal effect on the outcome if these
counterfactual outcomes differ for the individual. Note that
only one of these outcomes is observed for each individual (the
outcome that corresponds to the treatment/exposure actually
occurred in the individual), while the other outcomes cannot be
observed. Because of the missingness, individual causal effects—
as a general rule—cannot be identified. Instead, an aggregated
causal effect—the average causal effect in a population—is used
(Table 1) (15). Its definition is the following: a contrast of the
proportions of outcome (e.g., anaphylaxis) that would have been
observed (1) if all individuals had been treated/exposed (e.g.,
new drug) vs. (2) if all individuals had not been treated/exposed
in the population of interest.

The counterfactual causal inference framework enables us
to formulate causal questions, encode them in algorithms,
and to identify average causal effects from data—even
data from observational studies—under the identifiability
conditions (Table 1). Its tools range from a relatively-
simple ones (e.g., multivariable regression models adjusting
for confounders) to more-advanced methodologies [e.g.,
inverse-probability weighting for time-varying treatments
(15), targeted learning leveraging machine learning algorithms
(20, 21); Tables 2, 3].
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TABLE 3 | Major analytical tools used in data science.

Analytics and

tools

When to use? What to look for?a Advantages Disadvantages

Causal mediation

analysis (14)

Counterfactual

causal inference

- The models well-represent the hypothesized

cause-and effect process that generates the

data (e.g., temporal sequence)

- A set of exposure-outcome,

exposure-mediator, and mediator-outcome

confounders (specified in a causal diagram) is

adjusted in the models

- Identification of causal mechanisms

(e.g., direct and indirect effects)

- Interaction between the exposure

and mediator accounted

- Interpretation of natural

direct and indirect effects

is complicated (Table 1)

- Cross-world counterfactuals

Inverse probability

weighting and

marginal structural

model (15)

Counterfactual

causal inference

- Model specifications

- Violation and quasi-violation of positivity

assumption (e.g., small proportion of patients

has a disproportionately high influence)

- Time-varying effects can be

estimated

- Modeling the exposure is often less

complicated than modeling the

outcome

- Both conditional and marginal

effects can be estimated

- Inverse probability of censoring

weighting can account for potential

selection bias

- Methodologically complex

- Sensitive to quasi-violations of

positivity assumption

Machine learning algorithms (16)

Lasso regularization Association/

prediction

- Identification of hyperparameter

- Performance in a separate population

(i.e., transportability)

- Automated covariate selection

- Simple interpretability

Only linear relation can be

accommodated

Neural network/

deep learning

Association/

prediction

- Sample size

- Approaches for data pre-processing (e.g.,

normalization)

- Approaches that address overfitting (e.g.,

dropout)

- Transportability

- Large number of predictors and

non-linear relations can be

accommodated

- Superior prediction performance in

many complex tasks (e.g.,

imaging diagnostics)

- Large sample size is often

needed

- Explainability is limited (“black-

box”)

- Transportability to other

domains is often limited

Random forest Association/

prediction

Same as neural network - Applications to identification of

heterogeneous treatment effects

(causal forest)

- Transportability to other

domains is often limited

Unsupervised

learning (e.g.,

hierarchical

clustering, k-means)

Description of data

(e.g., dimensional

reduction, clustering)

- Appropriateness of the chosen distance

measure for the dataset

- Consistency across the different

hyperparameters (e.g., distance, number

of clusters)

- Hypothesis-free

- High-dimensional data can be

mapped to a lower-dimensional

space (i.e., greater interpretability)

- Hypothesis-generating in

nature

- Susceptible to

hyper-parameters (e.g.,

distance, number of

clusters chosen)

Mendelian

randomization (or IV

analysis) (17)

Counterfactual

causal inference

Four IV conditions:

(1) Relevance: strong correlation between

genetic instruments and exposure

(2) Independence: no association between

instruments and exposure-outcome

confounders

(3) Exclusion restriction: instruments affect the

outcome only through the exposure

(4) Monotonicity assumption: increasing the

number of effect alleles for an individual can

only increase the level of exposure, and can

never decrease it

- No-unmeasured- confounding

assumption is not required

- Only summary statistics of

genome-wide association studies

(i.e., no individual-level data) may

be used

- Identification of appropriate

instruments is often difficult

- Estimated effect is limited to

“compliers”

- Only life-long effects are

estimated

- Variants-exposure association

may be time-varying

Propensity score

matching (18)

Counterfactual

causal inference

- Model specifications

- Covariate balance in the matched sample

- Target population that is inferred from the

matched sample

Simple interpretability - Matched sample is often

poorly-characterized

- Time-varying effects cannot

be estimated

Randomized controlled trial

Intention-to-treat

(ITT) analysis

Intervention - Adherence to assigned treatment

- Target population of interest

- Differential loss to follow-up

- Interpretation is simple

- Estimates the effect of treatment

assignment, regardless of treatment

actually received

- May provide a more conservative

causal estimate

- The causal estimate is not

often the effect of interest in

clinicians (i.e., ITT is agnostic

about treatment decisions after

the random assignment)

- Target population may

be ill-characterized

(Continued)
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TABLE 3 | Continued

Analytics and

tools

When to use? What to look for?a Advantages Disadvantages

Per-protocol analysis Intervention - Adherence to assigned treatment

- Post-randomization confounding (e.g.,

confounder-treatment feedback)

- Target population of interest

- Differential loss to follow-up

Estimates the effect of receiving the

treatment as specified in the study

protocol (if accounted for time-varying

prognostic factors associated with

adherence).

- Post-randomization time-

varying factors are often

unmeasured or unaccounted.

- Target population may

be poorly-characterized

Regression (19) - Association/

prediction

- Intervention

- Counterfactual

- causal inference

- Model specifications

- Consideration of effect modification

- Simple interpretability

- Wide-spread use

- Only conditional effects (within

the levels of covariates) can

be estimated (i.e., not marginal

effects)

- Time-varying effects cannot be

validly estimated

Standardization/

g-formula (15)

Counterfactual

causal inference

Model specifications - Marginal effects can be estimated

- Time-varying effects can be

estimated (g-formula)

- Methodologically complex

- Computationally heavy

Targeted learning

using TMLE (20, 21)

Counterfactual

causal inference

Standard identifiability conditions (Table 1) - Use of machine learning that places

minimal assumptions on the

distribution of data and

accommodate complex non-linear

relationships

- Semiparametric estimation that

allows known asymptotic properties

of bias and variance

- Methodologically complex

IV, instrumental variable; TMLE, targeted maximum likelihood estimation.
aFor any causal inference methods (except for IV-methods), the standard identifiability conditions (Table 1) are required.

The primary difference between the first task (association and
prediction) and third task (counterfactual causal inference) of
data science is the role of domain knowledge, which in our
situation is clinical and biological knowledge. Note that the
former task invokes only the probabilities between the variables
within data, the latter task cannot be completely defined by
the probabilities in the factual world. Causal inference calls
for domain knowledge not only to define counterfactual causal
effects but to specify the causal structure of interest—e.g.,
the relationship between the treatment, outcome, confounders,
mediators, and colliders (15) (Table 1).

For example, consider the effect of maternal smoking on
infant mortality. Data-driven algorithms—which do not encode
domain knowledge on the causal structure—will learn from
data and fit a curve (very well) by using variables that are
strongly associated with maternal smoking and mortality (e.g.,
infant’s birth-weight). However, this automated adjustment
for (or stratification by) birth-weight—a potential collider
(Figure 1A)—results in a spurious correlation. Specifically,
among infants with a low birth-weight, the adjusted risk of
mortality is lower for those born to smokers [“the birth-weight
paradox” (30)]. Alternatively, it is also possible that birth-
weight serves as a mediator in the causal path. Adjustment
for birth-weight could inappropriately block the causal path,
thereby leading to biased inference. Causal effects cannot be
quantified by systems that operate exclusively in data-driven
association modes, as do most machine learning algorithms
today (1). That is, we cannot answer causal questions with the
data alone, no matter how big the data are and how deep the
neural network is.

MAJOR CAUSAL INFERENCE TOOLS

Building on the counterfactual framework, epidemiologists,
statisticians, and data scientists have developed methods
to quantify causal effects from observational data. Table 3

summarizes the major tools, their assumptions (i.e., what to
look for), advantages, and disadvantages. These tools enable us
to explicitly express causal questions, transparently encode our
causal knowledge, and leverage data to consistently estimate
the causal effect of interest. Here, we introduce several relevant
examples in simplified scenarios.

Causal Diagram: Codifying Causal
Assumptions and De-confounding
Causal diagram is an intuitive graphical tool for qualitatively
encoding our domain knowledge and a priori assumptions on
the causal structure of interest (Tables 1, 3) (15). In other words,
it qualitatively models how the cause-effect forces operate and
generate data. Stemming from the graph theory developed by the
1700s mathematician Leonhard Euler, its modern tools for causal
inference originate from the disciplines of computer science and
artificial intelligence.

Consider the following hypothesized causal structure of
treatment (a biologic agent), outcome (asthma control), and
covariates (the baseline severity of illness) in a causal directed
acyclic graph (causal DAG; Figure 1B). It consists of three nodes
and three edges. The presence of “edge” from a variable (e.g.,
biologic agent) to another (e.g., asthma control) means that we
know that there exists a direct effect. In contrast, its absence
indicates that we know that the biologic agent has no direct
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FIGURE 1 | Examples of causal directed acyclic graph that encodes a priori domain knowledge and causal structural hypothesis. (A) Birth-weight paradox. There is

no direct arrow from maternal smoking (exposure) to infant mortality (outcome), representing no causal effect. However, association/prediction-mode machine learning

algorithm would automatically adjust for variables that are associated both with smoking and mortality (e.g., low birth-weight). Graphically, a rectangle placed around

the low-birth weight variable represents adjustment. However, this adjustment for the collider (a node on which two directed arrows “collide”; Table 1) opens the flow

of association from exposure → collider → covariates (e.g., structural anomaly) → outcome, which leads to a spurious (non-causal) association. (B) Simple example

of causal diagram, consisting of exposure (biologic agent), outcome (asthma control), and covariates (e.g., baseline severity of illness). The presence of edge from a

variable to another represents our knowledge on the presence of a direct effect. (C) Example of confounding. While there is no causal effect (i.e., no direct arrow from

exposure to outcome), there is an association between these variables through the paths involving a common-cause covariate (i.e., a confounder), leading to a

non-causal association between the exposure and outcome (i.e., confounding; Table 1). (D) Example of de-confounding. This confounding can be addressed by

adjusting for the confounder by blocking the back-door path. Graphically, a rectangle placed around the confounder blocks the association flow through the

back-door path. (E) Example of mediation. The causal relation between the exposure (systemic antibiotic use), mediator (airway microbiome), and outcome (asthma

development). The confounders (e.g., acute respiratory infections) between the exposure, mediator, and outcome should be adjusted. The indirect (or mediation)

effect is represented by the path which passes through the mediator. The direct effect is represented by the path which does not pass (the broken line; Table 1). (F)

Example of mendelian randomization. Genetic variants that are strongly associated with the exposure of interest (mental illnesses) function as the instrument variable.

Note that there is no association (or path) between the genetic variants and unmeasured confounders (i.e., independent condition) and that the genetic variants affect

the outcome only through their effect on the exposure (i.e., exclusion restriction condition; Table 3).

effect on asthma control for any individual in the population.
In addition to the expressed knowledge, these causal diagrams
also encode information on the expected associations (more
precisely, their absence) between the variables. Unlike causation,
an association is a symmetric relationship between two variables.
Therefore, an association flows the path between the variables,
regardless of the direction of edge. For example, in Figure 1C,
even if there is no causal treatment effect (i.e., no direct edge
from biologic agent to asthma control), there is an association
between these variables through the path involving the severity
covariate [i.e., “back-door path” (15)]. The advancement of causal
graphs has enabled us (and machines) not only to encode these

assumptions and statistical dependencies/independencies, but
also to test whether these are compatible with the data.

Confounding—the bias due to common causes of exposure
and outcome—has long been considered the major hurdle in
causal inference (15). The term “confounding” originates from
Latin confunderemeaning “blending.” The reason why this word
was chosen is apparent from the causal diagram. In Figure 1C,
the (null) effect of a biologic agent on asthma control is “blended”
by the confounder (baseline severity of illness). This is because
patients with greater baseline severity may be more likely to
receive treatment but have worse control anyway. The apparent
spurious correlation is introduced by the open back-door path
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(i.e., the path through severity). However, this confounding can
be “de-confounded” by blocking the back-door path (Figure 1D,
in which a rectangle placed around the confounder blocks the
association flow through the path) (15). For example, we fit a
regression model “adjusting for the confounder” to estimate the
causal effect of treatment in every severity group separately [i.e.,
outcome regression method (Table 3)]. Then, we can take an
average of the effects, weighting each severity group according
to its probability, to estimate the average causal effect in the
population of interest [i.e., standardization for fixed treatments,
g-formula for time-varying treatments (15) (Table 3)].

Causal Mediation: Search for Mechanism
Another major goal of data science is to better understand
the connection (or mechanism) between a known cause and
effect. Causal mediation analysis aims to tease apart total effects,
mediation or indirect effects (which pass through amediator) and
direct effects (which do not) (Tables 1, 3). Counterfactual causal
inference needs to be involved to quantify such intermediate
mechanisms (14).

For example, there had been uncertainty about the mediating
mechanism(s) through which systemic antibiotic exposures in
the early life are linked to subsequent asthma development
(31, 32). Recently, a team of clinicians, epidemiologists, and
data scientists tested a hypothesis—the effect of antibiotic use
on asthma is mediated by the changes in airway microbiome [a
highly-functional community of microbes (33)] in a population-
based cohort (Figure 1E) (34). Statistical estimation of these
effects was not trivial given that the number of data dimensions
is large (e.g., the complexity of the microbiome) and the causal
structure is complex. However, by combining unsupervised
machine learning approaches to overcome “the curse of
dimensionality” (16) and causal inference methods to carefully
account for various confounders, the researchers identified that
part of the antibiotic effect on asthma development was mediated
by the change in airway microbiome—a modifiable factor. As
presented in this example, causal mediation analyses not only
provide better understanding on the disease mechanisms but also
present opportunities for the development of new therapeutics
targeting modifiable mediators (e.g., modulation of microbiome
for asthma prevention).

Mendelian Randomization: Instrument of
Nature
Most causal inference methods require a key unverifiable
condition—no unmeasured confounding (Table 1). For example,
identifying the effect of mental illnesses on asthma development
is a difficult question because of many fixed and time-varying
confounders (e.g., genetics, socioeconomic status, treatments)
(35). To avoid the effect of bias, social scientists have long
been using an alternative method—called instrumental variable
estimation, which validly yields causal estimates by replacing the
condition above with an alternative set of assumptions (Table 3).

In recent years, the increased availability of large-scale
genome-wide association study (GWAS) data from biobanks and
large consortiums (13, 35, 36) has accelerated the development of
an instrumental variable approach—Mendelian randomization

(Tables 1, 3). This approach is based on the random assortment
of genotypes transferred from parents to offspring at conception.
This Mendel’s “law of the independent assortment” enables
a study relating the genetic variants for modifiable exposures
(e.g., mental illnesses) with health outcomes (e.g., asthma) to
mitigate the risk of confounding (17). Accordingly, Mendelian
randomization is conceptually analogous to an RCT, of which
a random assignment of treatment/exposure is equivalent to
a randomly-assorted genotype strongly associated with the
exposure (Figure 1F). For example, in a study leveraging
GWAS datasets of childhood- and adult-onset asthma, the
use of Mendelian randomization demonstrated causal effects
of depression on asthma (35). Recently, there has been the
rise of publicly-available data that relate genetic variants to
many modifiable exposures, ranging from physical conditions to
biomarkers (e.g., proteins, metabolites) (37, 38). This availability
of expanded data sources has informed the search for new
targeted therapeutics.

Heterogeneous Treatment Effects:
Differentiating Apples From Oranges
RCTs, which have been considered the “gold standard” for
causal inference, often attempt to estimate the average treatment
effect in the target population and generate a uniform
recommendation (26). However, it is rare for a treatment effect
to be perfectly homogeneous (39). Rather, there often exist effect
modifications—either quantitative (i.e., different magnitudes
of effects between subgroups) or qualitative (i.e., subgroup[s]
having an effect in the opposite direction or no effect) (Table 1)
(40). Indeed, growing evidence have shown that various medical
disorders are heterogenous [e.g., asthma (13), autism spectrum
disorder (41), sepsis (42)] with potentially different underlying
mechanisms that lead to differential treatment effects. For
example, in preschool children with viral-induced wheezing,
most studies have shown no significant average effects of
systemic corticosteroids on symptom severity or hospitalization
rate (43–45). Yet, the question of whether this treatment
strategy is beneficial in distinct subgroups of children [e.g.,
atopic children with rhinovirus-induced wheezing (46)] remains
unclear. Recently, machine learning approaches [e.g., random
forest (47) (Table 3, Figure 2)] have been applied to health
data to (1) identify subgroups with different treatment effects,
and (2) estimate individual (heterogeneous) treatment effects
for subgroups in various disease conditions (e.g., diabetes) (48,
49). An integration of these algorithms, careful interpretation
(e.g., covariate balance between the derived subgroups, false
discoveries) and prospective validation will help precision
medicine realize preventive and treatment strategies tailored to
patients with a unique set of clinical characteristics.

THE WAY FORWARD

Toward Better Decision-Making and
Precision Medicine
A major objective of data science is to assist clinicians and
researchers in making better decisions. While its capability
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FIGURE 2 | Identification and estimation of heterogenous treatment effects. In this hypothetical example, suppose, we investigate treatment effects of systemic

corticosteroids on hospitalization rates among preschool children with virus-induced wheezing. (A) Randomized control trial (RCT) to investigate the average treatment

effect of systemic corticosteroids (conventional 1:1 RCT). (B) Investigating heterogeneous treatment effects using tree-based machine learning models. In each of the

branches (e.g., subgroup A children have specific virus infection and a history of atopy), children have a comparable predicted probability of receiving systemic

corticosteroids. Children within each subgroup function as if they came from an RCT with eligibility criteria stratified by clinical characteristics.
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TABLE 4 | Twelve major resources for clinicians who wish to learn about data science.

Topic Type Platform/Resource Content summary

Data science (in

general)

MOOC Kahn academy An online course that covers a wide range of topics about statistical analyses

MOOC Coursera: data science

specialization

An online course that provides a broad overview of data science

MOOC edX: introduction to probability

(HarvardX STAT110x)

An online course that introduces the basics of probability theories, which are fundamental for

data science, statistics, and causal inference

MOOC Stanford: statistical learning An online learning course that offers an introduction to various statistical learning (including

machine learning) approaches

Textbook An Introduction to Statistical

Learning

A well-written introductory textbook that is used in the statistical learning course (see above)

Paper BMJ: research methods &

reporting

BMJ series introduces important topics of epidemiology and biostatistics to help clinicians

interpret the medical literature

Paper JAMA: guide to statistics and

medicine

JAMA series introduces important statistical techniques to help clinicians interpret the medical

literature

Machine learning MOOC Coursera: machine learning One of the most popular machine learning courses (as of January 2021, 3.9 million students

have been enrolled). This introductory course provides an overview of various machine learning

algorithms

MOOC Coursera: Deep learning

specialization

A more detailed online course that covers the basics and applications of various deep learning

algorithms

Causal inference MOOC edX: Causal diagrams (HarvardX

PH559x)

An online course that introduces an overview of causal diagrams in clinical research

MOOC Coursera: A crash course in

causality

An online course offered that provides an introductory overview of causal inference theories

and approaches

Textbook Causal Inference in Statistics: A

Primer (64)

Introductory-level textbook that covers important topics in causal inference (e.g., causal

diagram)

Textbook Causal Inference: What if (15) Comprehensive intermediate-level textbook that provides the concepts of and methods for

causal inference in clinical research

Programming MOOC Coursera: foundations using R

specialization

An online course that provides a broad overview of R programing

Others DataCamp A collection of introductory video lectures and hand-on coding practices in several programing

languages (e.g., R, python)

MOOC, massive open online course; BMJ, British Medical Journal; JAMA, Journal of the American Medical Association.

All of the listed MOOCs are publicly-available without fee.

is often judged by its success on prediction tasks (11), the
proposition that predictive algorithms improve decisions is
uncertain. It is important to remember that a data-driven
algorithm may excel at predicting, for example, which patients
with asthma will be re-hospitalized for asthma exacerbation in
the subsequent year, but is agnostic about the reason and possible
measures to have prevented it. The algorithm may identify a past
emergency department visit for asthma exacerbation as a strong
predictor for rehospitalization. However, no clinicians would
interpret the emergency department visit as the cause or instruct
patients not to present to the emergency department. Identifying
patients with a worse prognosis (through prediction) is a different
question from identifying the optimal prevention and treatment
strategies for a specific group of patients—the defining question
of precision medicine (through causal inference). In other words,
data-driven prediction algorithms can only point out decisions to
be made, whereas causal inference can assist in decision making.

Note that these contrasts between association/prediction and
causal inference tasks would become less sharp when the
domain knowledge and counterfactual reasoning are codified in
algorithms. Within a simple system with known deterministic
rules and complete information [e.g., chess and Go games
(22)], such algorithm is possible to predict outcomes under

any hypothetical intervention (or any hypothetical move). By
contrast, clinicians and researchers in the medical fields regularly
deal with complex systems governed by non-deterministic
rules with uncertainties about available data. Suppose we are
interested in the causal effect of a new drug on infants with
severe bronchiolitis. We only have incomplete knowledge on
the causal structure through which the respiratory viruses,
host genetic and immune factors, and environments jointly
regulate and/or mediate the effect in this heterogeneous disease
condition (50). Accordingly, most clinical researchers and
epidemiologists had tended to answer carefully-developed but
relatively-narrow causal questions (e.g., the average treatment
effect of bronchodilators in infants with bronchiolitis) rather than
to elucidate the global structure of system which could enable
clinicians to make broadly optimal decisions (e.g., heterogeneous
treatment effects between different bronchiolitis subgroups with
distinct mechanisms).

In the past decade, the integration of “big data” with data
science approaches (i.e., machine learning and causal inference
equipped with domain knowledge) has begun to challenge
conventional views. An example is the recent development
of targeted treatment for asthma. There has been a growing
consensus that asthma consists of different subtypes (13).
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FIGURE 3 | Integration of “big data,” data science, and domain knowledge toward precision medicine. Development of precision medicine requires an integration of

“big data” from expanded data sources and capture with robust data science methodologies and analytics that encode domain causal knowledge and counterfactual

causal reasoning.

Collective evidence from data science, experiments, and RCTs
have already enabled clinicians to identify patients with a specific
subtype of asthma (e.g., allergic asthma, eosinophilic asthma) by
effective biomarkers (e.g., IgE, fractional exhaled nitric oxide,
eosinophil quantification) and to provide targeted treatments
(e.g., anti-IgE, anti-IL-5 therapies) (51, 52).

Another example is infant bronchiolitis, which is not only
the leading cause of infant hospitalization in the U.S. (53) but
also one of the strongest risk factors for asthma development
(54). While bronchiolitis has been considered a single disease
entity with similar clinical characteristics and mechanisms (55),
emerging evidence indicates substantial heterogeneity (56–63).
Indeed, recent studies applying data science approaches to large
bronchiolitis cohorts have identified (62) and validated (63) the
presence of different subtypes of bronchiolitis that have a higher
risk of developing recurrent wheezing (e.g., atopic infants with
rhinovirus infection who present with wheezing, compared to
“classic” RSV bronchiolitis). Further, a recent study has also
identified biologically-distinct subtypes of bronchiolitis that have
higher risks of developing asthma (e.g., infants with type 2
airway inflammation with a dominance by specific virus and
bacteria) (58). These efforts driven jointly by data scientists,
clinical and laboratory researchers, and clinicians have potential
to offer new avenues for developing prevention (e.g., early
identification of high-risk children before disease inception) and

treatment (subtype-specific treatment at a critical period of organ
development) strategies in various disease conditions in children.

Future Challenges
For the successful development and implementation of data
science approaches in clinical practice, several challenges and
limitations need to be addressed. First, there are methodological
challenges—e.g., how to fulfill standard causal inference
assumptions (e.g., consistency when there are non-homogeneous
exposures), how to model multiple molecular mediators at
multiple levels, and how to handle time-varying feedbacks
in a complex system. These are active areas of research.
Second, evidence derived from these data science by itself
is not confirmatory. We note that its promise lies in their
symbiosis with, not replacement of, conventional experimental
studies and RCTs. The derivation of novel and well-calibrated
hypotheses based on robust data science still require stringent
validations and experiments. Each approach can benefit
from the other, which will, in turn, advance medical sciences
and clinical practice. Lastly, milestones needed for data
science-assisted medicine to become a reality go beyond
methodological advents. The healthcare structure ought to
adapt to operate with inter-disciplinary teams (e.g., clinicians,
data scientists, epidemiologists, informatics specialists).
Additionally, with the growing gap between the amount
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of data and clinical expertise, the realization of precision
medicine warrants continued education for clinicians who
interpret data and translate findings into clinical practice.
For clinicians who wish to learn more, Table 4 summarizes
educational resources.

Summary
In this review, we summarize the goals, tasks, and tools
of data science. Data science is a component of scientific
disciplines, including epidemiology and medicine. Thus, the
tasks of data science are the tasks of those disciplines—
i.e., association/prediction, intervention, and counterfactual
causal inference.

In this “big data” era, clinical practice and research have
called for clinicians and researchers to handle a growing
amount of data—e.g., clinical, biometric, and biomarker data.
While machine learning algorithms become ubiquitous tools
to handle quantitatively “big data,” their integration with
domain knowledge and causal reasoning is critical to understand
how complex systems behave (Figure 3). This integration
in data science is key to qualitatively transform medicine.
Patients—whose lives shape data, knowledge, and algorithms—
will benefit the most as this new scientific discipline advances
precision medicine.
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