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Carnitine is an amino acid-derived substance that coordinates a wide range of biological

processes. Such functions include transport of long-chain fatty acids from the cytoplasm

to the mitochondrial matrix, regulation of acetyl-CoA/CoA, control of inter-organellar

acyl traffic, and protection against oxidative stress. Recent studies have found that

carnitine plays an important role in several diseases, including non-alcoholic fatty liver

disease (NAFLD). However, its effect is still controversial, and its mechanism is not

clear. Herein, this review provides current knowledge on the biological functions of

carnitine, the “multiple hit” impact of carnitine on the NAFLD progression, and the

downstream mechanisms. Based on the “multiple hit” hypothesis, carnitine inhibits

β-oxidation, improves mitochondrial dysfunction, and reduces insulin resistance to

ameliorate NAFLD. L-carnitine may have therapeutic role in liver diseases including

non-alcoholic steatohepatitis, cirrhosis, hepatocellular carcinoma, alcoholic fatty liver

disease, and viral hepatitis. We also discuss the prospects of L-carnitine supplementation

as a therapeutic strategy in NAFLD and related diseases, and the factors limiting its

widespread use.

Keywords: carnitine, non-alcoholic fatty liver disease, L-carnitine supplementation, targeted therapy, therapeutic

diet

INTRODUCTION

Carnitine (3-hydroxy-4-N-trimethylammoniobutanoate) is an essential water-soluble molecule
with multiple functions in the human body (1). Examples of such functions include reducing
oxidative stress, increasing expression of pro-inflammatory cytokines (2–4), and improving
mitochondrial dysfunction (5) and insulin resistance (IR) (6, 7). Moreover, it plays an important
role in the development of many metabolic diseases, such as hypertension, diabetes, polycystic
ovary syndrome (8), and osteoarthritis (9). Besides, carnitine has been reported to be closely
associated with the development of non-alcoholic fatty liver diseases (NAFLD). Numerous studies
have shown that NAFLD has become a major healthcare concern and economic burden worldwide
(10); therefore, its prevention and treatment have gained increased attention among researchers.
In this review, we summarize and discuss the relationship between carnitine and NAFLD, effects
of L-carnitine (the biologically active form of carnitine) supplementation in NAFLD, and related
diseases, including non-alcoholic steatohepatitis (NASH), cirrhosis, hepatic cellular cancer (HCC),
alcoholic fatty liver disease, and viral hepatitis.
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BIOLOGICAL CHARACTERISTICS OF
CARNITINE

Classification and Distribution in Human
Body
Carnitine is an amino acid belonging to a quaternary ammonium
cationic complex. It has two stereoisomers: bioactive L-carnitine
and abiotic enantiomeric isomer D-carnitine. L-carnitine is the
predominant carnitine used in biological and medical fields
and is commonly referred to as “carnitine.” The human body
contains about 300 mg/kg of L-carnitine, 98% of which is
intracellular, with 80% present in the muscles, 5–10% in the
gastrointestinal tract, and 3% in the liver (11). Although D-
carnitine has no biological activity in humans, it adversely
impacts biochemical processes by inhibiting the carnitine
acetyltransferase (12). D-carnitine supplementation has been
found to induce liver inflammation, oxidative stress, and
apoptosis in animal studies (13). In addition, D-carnitine can
cause secondary carnitine deficiency (SCD), so researchers often
use D-carnitine supplements to feed mice to establish carnitine
lack animal models (14, 15). For these reasons, D-carnitine has
been rarely studied in humans.

Endogenous Synthesis and Exogenous
Sources
In the average adult diet, it is estimated that about 75% of
the daily carnitine requirement mainly comes from meat, fish,
and dairy products (16), while the remaining 25% is derived
from endogenous synthesis (1). In strict vegetarians, more
than 90% of the daily carnitine requirement is obtained by
endogenous synthesis (17–19), whereby humans can synthesize
∼1–2 µmol carnitine/kg/day (20). The synthesized carnitine
is formed when 6-N-trimethyl-lysine (TML) is released during
protein degradation (Figure 1) (21). After release, TML is
hydroxylated into 3-hydroxyl-6-N-trimethyl-lysine (HTML)
by trimethyl dioxygenase (TMLD), which is then broken
down into 4-N-trimethyl-butylaldehyde (TMABA) and glycine

Abbreviations: ACS, acyl-CoA synthetase; ALT, alanine aminotransferase;

AMPK, adenosine monophosphate-activated protein kinase; AST, aspartate

aminotransferase; BMI, body mass index; CACT, carnitine-acylcarnitine

translocase; CAT, catalase; CHB, chronic hepatitis B; CHC, chronic hepatitis

C; COT, carnitine octyltransferase; CPT I, carnitine palmitoyltransferase I; CPT

II, carnitine palmitoyltransferase II; CRP, C-reactive protein; ER, endoplasmic

reticulum; FBG, fasting blood glucose; FFAs, free fatty acids; GPx, glutathione

peroxidase; GR, glutathione reductase; HbA1c, glycosylated hemoglobin;

HC, hip circumference; HCC, hepatocellular carcinoma; HDL-C, high dense

lipoprotein cholesterol; HE, hepatic encephalopathy; HOMA, homeostatic

model assessment; IGF-1, insulin-like growth factor-1; IMM, inner mitochondrial

membrane; IR, insulin resistance; LCFA, long-chain fatty acids;LDL-C, low density

lipoprotein cholesterol; NAFLD, non-alcoholic fatty liver disease; NASH, non-

alcoholic steatohepatitis; NCT-A, number connection test-ANf-κB, nuclear factor

kappa B; NOX, nicotinamide adenine dinucleotide phosphate oxidase; OMM,

outer mitochondrial membrane; PCD, primary carnitine deficiency; PDHC,

pyruvate dehydrogenase complex; PPARγ, peroxisome-activated receptor-γ; PT,

prothrombin time; ROS, reactive oxygen species; SOD, superoxide dismutase;

SOD2, superoxide dismutase 2; TACE, transarterial chemoembolization; TB, total

bilirubin; TC, cholesterol; TG, triglyceride; TNF-α, tumor necrosis factor-α; UPR,

unfolded protein response; WC, waistline circumference; XO, xanthine oxidase;

αSMA, α-smooth muscle actin; γ-GT, γ-glutamyl transpeptidase.

FIGURE 1 | The endogenous synthesis of carnitine.

by HTML aldolase (HTMLA) (1). TMABA produces 4-N-
trimethylaminobutyrate (γ-butyrobetaine) under the action of
dehydrogenase (11). Finally, γ-butyrobetaine dioxygenase (BBD)
is used to hydroxylate γ-butyrobetaine to produce endogenous
carnitine (Figure 1) (22, 23). BBD is confined to the human liver,
kidneys, testis and brain, thus the biosynthesis of carnitine occurs
only at these locations (24). Other tissues, such as skeletal muscle,
obtain carnitine from the blood (25).

The distribution and homeostasis of carnitine within the
body is controlled by organic cationic transporters (OCTN) (26).
OCTN act on intestinal absorption and renal reabsorption of
carnitine, and plays an important role in tissue distribution by
catalyzing carnitine to enter cells in vivo (27). Among these,
OCTN2 is the most important physiologically transporter of
carnitine due to its high affinity and wide expression (27).
OCTN2 plays a crucial role in carnitine homeostasis. Notably,
BB, a direct precursor of carnitine, is also a good substrate for
OCTN2. The liver and kidneys have a strong ability to convert
BB to carnitine. Loss or mutation of OCTN2 function results in
primary systemic carnitine deficiency (PCD) with severe clinical
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consequences such as cardiac and skeletal myopathy, cardiac
hypertrophy and NAFLD (28).

Biological Functions
Transport of Long-Chain Fatty Acids Into the

Mitochondrial Matrix
The essential function of carnitine is to transport LCFAs from
the cytoplasm to the mitochondrial matrix for subsequent
degradation by β-oxidation, known as “carnitine shuttle” (5).
LCFA activation occurs in the cytosol, but the enzymes required
to catalyze LCFA oxidation exist in the mitochondrial matrix
(29). In this process, LCFA must be first activated into lipoyl-
CoA via acyl-CoA synthetase (ACS) (30). Then, lipoyl-CoA is
transported into themitochondria. Since the innermitochondrial
membrane is impermeable to lipoyl-CoA (29), the entry of lipoyl-
CoA relies on a shuttle system, which requires carnitine.

The carnitine shuttle has three main steps. First, CoA must be
transferred from lipoyl-CoA to the hydroxyl group of carnitine
to form lipoyl-carnitine. This transesterification is catalyzed by
carnitine palmitoyl transferase I (CPT I) in the outer membrane
(1). Second, the lipoyl-carnitine ester enters the matrix by
facilitated diffusion through carnitine-acylcarnitine translocase
(CACT) located in the inner mitochondrial membrane (31).
In the final step, lipoyl-CoA is enzymatically transferred from
carnitine to intramitochondrial CoA by carnitine palmitoyl
transferase II (CPT II) (32). This isozyme, located on the inner
face of the inner mitochondrial membrane, regenerates lipoyl-
CoA and releases free carnitine into the matrix. Carnitine enters
the intermembrane space again via CACT (Figure 2).

Regulation of Acetyl-CoA/CoA Ratio
Under physiological conditions, carnitine can buffer excess
acetyl-CoA in the mitochondria via the formation of acetyl-
carnitine (33), which requires the presence of carnitine
acyltransferase and carnitine acylcarnitine translocase. Acetyl-
CoA is either metabolized through the tricarboxylic acid cycle
(TCA cycle) or exported as acetyl-carnitine by carnitine. When
there is persistent excess or underutilization of certain fatty acids,
non-metabolizable acyl-CoAs accumulate. In such situations,
carnitine acts as a receiver for these acyl groups by removing
them from the tissues and excreting them in the urine (20),
or they get separated from carnitine and reused (34). Carnitine
regulation of acetyl-CoA/CoA reduces the inhibition of many
intramitochondrial enzymes involved in glucose and amino acid
catabolism (35).

Inter-organellar Acyl Transfer
Long-chain fatty acids (LCFA) and branched chain fatty acids
are oxidized in peroxisomes. In contrast to mitochondrial β-
oxidation, incomplete peroxisomal oxidation of fatty acids yields
acetyl-CoA and shortened medium-chain acyl-CoAs. In order
to completely oxidize these substances into CO2, the products
of peroxisome fatty acid oxidation must be transported to the
mitochondria (20). Since CoA and CoA esters cannot penetrate
the cell membrane, they must be converted into their respective
carnitine esters by catalase and carnitine octyltransferase (COT)
in peroxisomes. Therefore, the carnitine esters are transported

from peroxisomes to mitochondria through peroxisome and
mitochondrial carnitine-acylcarnitine translocase (CACT), then
reconverted into CoA esters by mitochondrial CPT II in the
mitochondrial matrix (20). These are then oxidized into CO2

and H2O through mitochondrial β-oxidation, TCA cycle, and
electron transfer.

Reduction of Oxidative Stress
Carnitine has several protective effects on oxidative stress. These
include direct scavenging of free radicals, such as 2,2-diphenyl-
1-picrylhydrazyl (DPPH), superoxide dismutase and hydrogen
peroxide, and metal chelation to catalyze free radical formation,
such as Fe2+; inhibition of reactive oxygen species-producing
enzymes such as xanthine oxidase (XO) and nicotinamide
adenine dinucleotide phosphate oxidase (NOX); upregulation of
antioxidant enzymes like catalase (CAT), superoxide dismutase
(SOD), glutathione reductase (GR) glutathione peroxidase
(GPx), heme oxygenase, endothelial nitric oxide synthase, and
other protective proteins (5).

In addition to the above biological functions, carnitine also
plays an important role in anti-apoptosis and protection of
mitochondrial biogenesis and integrity, which are beyond the
scope of this study (5).

Application in Diseases
Carnitine, a natural compound closely related to the above-
mentioned functions, has recently been found to alter the
underlying disease pathology with fewer side effects (5, 36). It
has been reported that L-carnitine as a supplement can be useful
in the treatment of hypertension (37), diabetes mellitus (6, 7),
NAFLD (34), heart failure (38), coronary artery disease (39), liver
cirrhosis (40), muscle injury (41), dyslipidemia (42), migraine
(43), Alzheimer’s disease (44), and other chronic diseases.

ROLE OF CARNITINE IN THE
PATHOGENESIS OF NAFLD AND
ASSOCIATED DISEASES

Carnitine and “Multiple Hit” Hypothesis in
the Pathogenesis of NAFLD
The prevalence of NAFLD is increasing at a tremendous rate,
currently affecting about 24% of the world’s population. It has
been pinpointed as the most common cause of liver disease
globally (45). In the last decade, the clinical burden of NAFLD
has been associated to liver-related morbidity and mortality
and also to the extra-hepatic manifestations involving other
organs and regulatory pathways. The pathogenesis of NAFLD
is multifactorial and only partially understood (46). At present,
the highly recognized pathogenic mechanism is a “multiple hit”
hypothesis, which considers the combined effects of multiple
insults on genetically susceptible subjects to induce NAFLD
and provides a reasonable explanation for the development of
NAFLD (47). The first hit is the accumulation of fat in the
liver, followed by the development of necrotic inflammation and
fibrosis. In addition, nutritional factors, intestinal microflora, and
genetic and epigenetic factors exhibit significant influence (48).
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FIGURE 2 | The mechanism by which long-chain fatty acids enter the mitochondria. CPT I, carnitine palmitoyltransferase I; CPT II, carnitine palmitoyltransferase II;

ACS, acyl-CoA synthetase; CACT, carnitine-acylcarnitine translocase; OMM, outer mitochondrial membrane; IMM, inner mitochondrial membrane.

Inhibition of β-oxidation, mitochondrial dysfunction, and
insulin resistance (IR) are the three most important links in
these “hits” as well as targets for carnitine to ameliorate NAFLD.
Herein, we attempt to explain the role of carnitine in the
pathogenesis of NAFLD, as shown in Figure 3.

Supplementation with carnitine may have a positive effect
on the β-oxidation of fatty acids in mitochondria, thereby
promoting lipid metabolism by boosting the uptake of fatty
acids and eventually reducing fat accumulation in hepatocytes.
It is known that NAFLD is associated with an imbalance in
a variety of metabolic networks, among which abnormal lipid
metabolism is the core pathological metabolic process (49). The
immediate cause of NAFLD is high levels of triglycerides (TG)
and serum free fatty acids (FFAs). Excess TG comes from hepatic
fat production and dietary fat supply, while FFAs accumulate due
to lipolysis of visceral adipose tissues (50). The most important
strategy to reduce NAFLD is to decrease dietary fat consumption
and promote the catabolism of FFAs. β-oxidation is the core
process of FFA decomposition, and carnitine acts as an FFA
transporter. Carnitine plays an extremely important role in β-
oxidation through the “carnitine shuttle,” as described above
(51). The carnitine-mediated entry process is a rate-limiting
step for mitochondrial LCFA oxidation and, thus, a major
regulating point. Increased levels of carnitine may improve the
originally inhibited β-oxidation, which is a great way to reduce fat
accumulation in the liver (34). Recent studies have emphasized
the key role of mitochondrial dysfunction in the occurrence
and development of NAFLD (52). The effect of carnitine
on mitochondrial dysfunction has been confirmed by various
experiments (5). Increased FFAs can lead to hepatic lipotoxicity,

generation of reactive oxygen, and damage to the mitochondrial
membrane (52). Carnitine treatment could increase the mRNA
expression of carnitine palmitoyltransferase 1A and peroxisome
proliferator-activated receptor-γ (PPAR-γ), while preventing
lipid membrane peroxidation and ROS. This further leads to
the reversal of mitochondrial dysfunction, thereby increasing
mitochondrial β-oxidation and reducing intracellular oxidative
stress to prevent hepatic lipotoxicity (53, 54).

An important mechanism by which carnitine improves IR
is enhancing the oxidation of mitochondrial long-chain acyl-
CoAs (Figure 2) (55). Accumulation of long-chain acyl-CoAs
and other FA metabolites impairs insulin signaling and leads
to the development of IR, a crucial pathophysiological factor
for carbohydrate metabolism disorders consistent with the
development of NAFLD (49). Since abnormal mitochondrial
function is associated with IR (56), carnitine therapy can also
reduce IR by improving mitochondrial function (56).

Other possible mechanisms to improve insulin sensitivity
in NAFLD reported in the literature include the regulation
of the acetyl-CoA/CoA ratio in mitochondria, modulation of
the pyruvate dehydrogenase complex (PDHC) activity, altering
the expression of glycolytic and gluconeogenic enzymes as
well as the expression of genes associated with the insulin
signaling cascade, and stimulation of the insulin-like growth
factor-1 (IGF-1) axis and IGF-1 signaling cascade (34, 55). As
mentioned above, carnitine improves the glucose metabolism
by reducing acetyl-CoA/CoA and reduces IR. Both insulin and
IGF-1 act through their homologous receptor tyrosine kinases to
coordinate metabolism and cellular responses to nutrient supply
(57). When IGF-1 axis is activated, multiple signaling pathways
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FIGURE 3 | Pictorial representation of the (A) pathophysiological mechanism of NAFLD based on the “multiple hit” hypothesis and (B) inhibitory effects of carnitine on

NAFLD and its progression. As shown in (A), dietary and environmental factors, together with obesity, lead to the proliferation and dysfunction of adipocytes. Insulin

resistance acts on adipose tissue and worsens adipocyte dysfunction, which in turn worsens lipolysis. In the liver, insulin resistance inhibits β-oxidation. Under the dual

attack of increased lipolysis and weakened β-oxidation, the influx FFAs to hepatocytes is increased greatly, leading to the synthesis and accumulation of TG and

enhanced liver lipotoxicity. Excessive TG eventually induces NAFLD. Increased lipotoxicity leads to mitochondrial dysfunction and oxidative stress on endoplasmic

reticulum (ER) by the activation of ROS, which leads to liver inflammation and fibrosis. At the same time, mitochondrial dysfunction promotes insulin resistance,

exacerbating above process in a vicious circle. These pathological processes can cause the liver to persist in the stable stage of disease (NAFLD) or develop in to

NASH. In the late stage of disease progression, NASH can progress to fibrosis or even HCC under the stimulation of certain factors. As shown in (B), carnitine

supplementation reduces insulin resistance, promotes β-oxidation and improves mitochondrial function. Subsequently, the cellular concentration of FFAs and TG in

hepatocytes get reduced and lipotoxicity is alleviated. The level of ROS is restrained to a certain extent, and inflammation and apoptosis were also improved. These

above interlocking effects could alleviate NAFLD and NASH, and they may even have positive therapeutic effects on liver fibrosis and HCC. FFAs, free fatty acids; TG,

triglycerides; ER, endoplasmic reticulum; UPR, unfolded protein response; ROS, reactive oxygen species; NASH, non-alcoholic steatohepatitis; HCC,

hepatocellular carcinoma.

corresponding to its kinase domain are also activated, including

PI3K/Akt pathway and Raf/MEK/ERK level linkage pathway,

which can ultimately reduce IR and prevent cell apoptosis (58,

59), thereby improving NAFLD.

Role of Carnitine in NAFLD Progression
and Development of Associated Diseases
The liver is the main organ responsible for detoxification and
metabolism of various compounds that produce reactive oxygen
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species (ROS). As such, liver disease may lead to increased
ROS production and, subsequently, increased peroxidation of
lipid membranes and inflammatory factors production, leading
to hepatocyte injury and cell death (60–63). Injury or death of
hepatocytes results in increased release of liver enzymes (64).
Patients with chronic liver disease, especially liver cirrhosis,
usually suffer from secondary carnitine deficiency (65, 66).
Because the liver is one of the main sites for carnitine synthesis,
liver disease can impair carnitine synthesis, which further
aggravates the above-mentioned pathological processes and
promotes disease progression. A recent meta-analysis showed
that L-carnitine supplementation improves liver function by
reducing histological steatosis and NAS scores in patients
with NASH (67). In addition, Okabayashi et al. demonstrated
that L-carnitine could improve postoperative liver function in
hepatectomized patients (68). L-carnitine reduces inflammatory
response via the transfer of β-oxidized long-chain fatty acids in
mitochondria and the excretion of toxic substances in fatty acid
metabolism (69). It also plays the role of free radical scavenger
by reducing the production of ROS (70). Hence, L-carnitine may
contribute by reducing oxidative stress, decreasing inflammatory
response, and activating enzymes involved in the defense against
oxidative damage, thereby reducing elevated serum liver enzymes
in patients with liver disease.

Primary carnitine deficiency (PCD) is an autosomal recessive
FA oxidation disease (34). Both serum and intracellular carnitine
levels are very low in PCD patients. Therefore, FAs cannot
be accumulated as an energy source (71), leading to increased
ROS production (72). Different from PCD, secondary carnitine
deficiency (SCD) is mostly caused by drugs (such as valproic acid,
anticancer drugs, omeprazole, amphoteric drugs, etc.) or diseases
(such as fatty acid oxidation disorder, organic acidemia, etc.) (1).
These drugs or diseases increase the excretion of carnitine in the
form of acylcarnitine in urine, reduce renal tubule reabsorption
and endogenous biosynthesis, and inhibit carnitine transporters,
resulting in increased carnitine consumption (73, 74). Carnitine
deficiency impairs the mitochondrial β-oxidation of FAs, leading
to acute metabolic decompensation, elevated aminotransferase,
and hepatic encephalopathy similar to NAFLD (75). It has been
reported that long-term oral carnitine treatment for 6 months
in a patient with carnitine deficiency resulted in increased
muscle strength, significant reduction in heart size, relief from
cardiomyopathy, and partial repletion of carnitine levels in
plasma and muscle with complete repletion of liver functions
(71). L-carnitine has been approved by the US Food and Drug
Administration for the treatment of PCD and SCD (76).

Alcoholic fatty liver disease is another major cause of fatty
liver disease, for which carnitine supplementation may also be
beneficial for improvement (77). The endogenous biosynthesis of
FAs is the main cause of hepatic steatosis in chronic alcoholism
(78). Hepatic steatosis is further aggravated by impaired fatty
acid oxidation in an ethanol-impaired liver (79). Sachan et al.
evaluated the lipid-lowering effects of carnitine and its precursors
(lysine and methionine) in rats with chronic alcoholism and
concluded that carnitine effectively prevented alcohol-induced
hyperlipidemia and liver fat accumulation. Carnitine was also
found to be more effective than its precursors (77).

The efficacy of L-carnitine supplements in the treatment of
chronic hepatitis B (CHB) remains controversial. A Korean
study compared the combination of entecavir and carnitine
with entecavir alone to determine their therapeutic effects in
CHB. Results indicated that the ALT normalization rate in the
combination group was higher than that in the entecavir group,
but theHBV-DNAnormalization rate and change in serumHBV-
DNA levels were similar (80). However, a recent trial showed
that besifovir dipivoxil maleate combined with L-carnitine did
not lead to any improvement in hepatic steatosis in CHB patients
(81). On the other hand, carnitine has a higher recognition for the
therapeutic effect in chronic hepatitis C (CHC). A recent meta-
analysis showed that long-term use of low-dose (≤2,000 mg/day)
L-carnitine could reduce TC and TG in overweight patients
with liver disease, especially those with chronic hepatitis C (82).
Another study also suggested that L-carnitine may be an effective
adjuvant for anti-HCV therapy, because it reduces the oxidative
stress induced by JFH-1 infection, inhibits HCV assembly, and
exhibits anti-HCV activity through its anti-adipogenic activity in
HCV-infected cells (83).

DOWNSTREAM MECHANISM OF
CARNITINE IN NAFLD AND RELATED
DISEASES

The molecular regulation mechanism of the role of carnitine in
fatty acid metabolism has been preliminarily clarified. Typical
genes, such as OCTN2 (encoded by SLC22A5) and /or BBD
(encoded by BBOX1), regulated by PPARα play regulatory roles
in the cellular fatty acid uptake, fatty acid activation, intracellular
fatty acid transport, and β-oxidation of mitochondrial and
peroxisomal fatty acids (84). With the increase of FFA oxidation,
PPARα is activated, and the expression of BBD and OCTN2
in oxidative tissue is simulated to facilitate disposal (85). At
the same time, increased expression of BBD and OCTN2 also
plays a role in regulating carnitine homeostasis by stimulating
the intake and biosynthesis of the carnitine, thus increasing the
concentration of carnitine (86). The transcriptional regulation of
PPARα on carnitine homeostasis related genes is consistent with
their basic role in fatty acid catabolism (85).

Many experimental studies have been conducted to
understand the impact of carnitine supplementation in
NAFLD. For instance, one study employed a mouse model
to demonstrate that L-carnitine supplementation could
oppose the NAFLD progression. Results revealed a reduction
in hepatic lipid accumulation and oxidative stress, hepatic
fibrosis via modulation of α-smooth muscle actin (αSMA),
peroxisome-activated receptor gamma (PPARγ), and nuclear
factor kappa B (Nf-κB) expression (87). Among them, PPARγ

may regulate cell apoptosis through the p21, p53 and p27
pathways, and exert an inhibitory effect on the progression
of HCC (88). Another research using a mouse model showed
that L-carnitine supplementation can inhibit the NAFLD
development by decreasing TNF (receptor superfamily member
9 or CD137), CCL23 (C-C motif chemokine 23), MMP1 (matrix
metalloproteinase 1), and FGF21 (fibroblast growth factor 21)
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TABLE 1 | Studies reporting the outcomes of L-carnitine supplementation on NAFLD.

References Type of study Subject Sample size Duration Intervention group Control group Results*

Somi et al.

(97)

Randomized

control trial

Humans 80 (40 vs. 40) 24 weeks L-Carnitine (250mg bid) Without

treatment

↓: AST, ALT, BMI, weight,

NAFLD sonographic

grade

Lim et al.

(98)

Randomized

control trial

Humans 45 (29 vs. 16) 12 weeks Carnitine (600 mg/d) Without

treatment

↓: AST, ALT, TB

↑: peripheral

mitochondrial DNA

copy number

Mollica et

al. (87)

Randomized

control trial

Mice 30 (10 vs. 10

vs. 10)

6 weeks Group 1:

methionine-choline-deficient

diet (6 weeks) + L-carnitine

(200 mg/kg each day) (last 3

weeks); Group 2:

methionine-choline-deficient

diet (6 weeks)

Regular diet (6

weeks)

LC treatment ameliorated

hepatic fat accumulation,

limited ROS production,

improved the fibrosis

progression of NAFLD,

significantly reduced the

NF-kB protein content

Fujisawa et

al. (99)

Randomized

control trial

Oryzias

latipes

80 (20 vs. 20

vs. 20 vs. 20)

6 weeks Group 1: regular diet (4

weeks) + L-carnitine (1mM)

(2 weeks)

Group 3: high-fat diet (4

weeks) + L-carnitine (1mM)

(2 weeks)

Group 2: regular

diet (4 weeks)

Group 4: high-fat

diet (4 weeks)

↓: lipid accumulation

↑: the expression of

SOD2, acetyl-CoA, ATP

Kathirvel et

al. (100)

Randomized

control trial

Mouse 40 (10 vs. 10

vs. 10 vs. 10)

24 weeks Group 1: high-fat diet

Group 2: high-fat diet +

ALC + LA

Group 3:

standard diet

Group 4:

standard diet +

ALC + LA

↓: size of the mitochondria

in liver; ALT; AST

↑: carbamoyl phosphate

synthase 1

*Only show indicators that have statistically significant changes after L-carnitine intervention.

ALT, alanine aminotransferase; AST, aspartate aminotransferase; TB, total bilirubin; BMI, body mass index; ROS, reactive oxygen species; SOD2, superoxide dismutase 2.

in the plasma (89). Another study on hepatoma HepG2 cells
revealed the distinct benefits of L-carnitine in fructose-mediated
lipid accumulation through adenosine monophosphate-
activated protein kinase (AMPK) activation (90). L-carnitine
was found to increase PGC1α expression and ameliorate
mitochondrial damage (90). Numerous works have revealed that
the combination of L-carnitine and nicotinamide nucleoside can
enhance the transfer of fatty acids across mitochondrial inner
membrane and increase the content of nicotinamide adenine
nucleotide (NAD +), which is necessary for β-oxidation and the
TCA cycle. It can also reverse the harmful effects of a high-fat
diet on liver metabolic pathways and related regulators, such
as ACOX, SCAP, SREBF, PPARGC1B, and INSR (91). These
mechanisms support the administration of L-carnitine as a novel
drug to reduce NAFLD.

TREATMENT OF NAFLD WITH
L-CARNITINE SUPPLEMENTATION

Since the effects of NAFLD are reversible, it is important to
control the disease in its early stages (92). Unfortunately,
there are no drugs specifically approved for the treatment
of NAFLD at present (93). Available treatments for NAFLD
mainly focus on changing lifestyle habits and encouraging
weight loss. In addition, several molecules have been
studied as an adjuvant therapy, including L-carnitine,
CoQ10, vitamin E, vine tea polyphenol, cytoprotective agents

(ursodeoxycholic acid), and insulin sensitizers (pioglitazone and
metformin) (94).

L-carnitine, the only biologically active form of carnitine,
has been one of the most widely studied molecules for the
treatment of NAFLD. Several meta-analyses showed that L-
carnitine supplementation improved steatosis and NASH (67)
and carnitine supplementation in NAFLD patients could reduce
AST, ALT, TG, and HOMA-IR (95). In yet another meta-
analysis, L-carnitine supplementation was found to significantly
improve the circulating levels of ALT, AST, and gamma-glutamyl
transpeptidase (γ-GT), which may have a positive impact on liver
function (96).

The research trials conducted to study the effects of L-
carnitine supplements in NAFLD, its progression, and the
associated diseases are summarized in Tables 1, 2. Most of
these studies reported that L-carnitine supplementation can
normalize or reduce the serum levels of liver enzymes (94,
97, 98, 101–104). Some have confirmed that L-carnitine
supplementation could reduce the incidence and severity of
NAFLD (103) and, thus, improve liver attenuation index on CT
(101), NAFLD sonographic grade (97), and histological scores
(104). Other studies propose that L-carnitine supplementation
could improve blood glucose (including FBG and HbA1c)
and IR (including HOMA-IR) (103), blood lipid profile (104),
and mitochondrial function (98, 102) in NAFLD patients
with diabetes. Two studies demonstrated that L-carnitine can
improve liver function and prognosis in patients with liver
cancer after surgery (68, 106). Several randomized controlled
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TABLE 2 | Studies reporting the effects of L-carnitine supplementation on NAFLD progression and related diseases.

References Type of study Subject Disease Sample size Duration Intervention group Control

group

Results*

Alavinejad et

al. (94)

Randomized

double blind pilot

study

Humans NAFLD +

Diabetes

54 (28 vs. 26) 12 weeks L-Carnitine (750mg

tid)

Placebo

(750mg tid)

↓: AST, ALT

Bae et al.

(101)

Randomized

double blind pilot

study

Humans NAFLD +

Diabetes

78 (39 vs. 39) 12 weeks Carnitine-orotate

complex (824mg tid)

Placebo

(824mg tid)

↓: ALT, liver attenuation

index on CT, HbA1c

Hong et al.

(102)

Randomized

double blind pilot

study

Humans NAFLD +\

Diabetes

52 (26 vs. 26) 12 weeks Metformin (250mg

tid) +

carnitine-orotate

complex (300mg tid)

Metformin

(250mg tid)

↓: ALT, urinary 8-hydroxy-

2’-deoxyguanosine

↑: mtDNA copy number

Hamza et al.

(103)

Prospective

case-control

interventional

study

Humans Obesity

(suspected

NAFLD)

50 24 weeks Comparison before and after

L-Carnitine (50 mg/kg/d) therapy

↓: AST, ALT, Liver span,

WC, HC, waist/hip ratio,

FBG, Chemerin, HOMA

index, incidence and

severity of NAFLD (after LC

therapy)

Malaguarnera

et al. (104)

Randomized

double blind pilot

study

Humans NASH 74 (36 vs. 38) 24 weeks L-carnitine (1 g bid)

+ 1,600-calorie diet

Placebo (1 g

bid) +

1,600-calorie

diet

↓: AST, ALT, γ-GT, TC,

LDL-C, TG, FBG, HOMA-IR,

CRP, TNF-α, histological

scores

↑: HDL-C

Ishikawa et al.

(105)

Randomized

control trial

Mice NASH unclear 4 weeks High-fat diet +

L-carnitine

high-fat diet ↓: TNF-α mRNA, NAFLD

activity score

↑: CPT II

Okabayashi

et al. (68)

Randomized

control trial

Humans liver cancer

(after

hepatectomy)

208 (102 vs.

106)

2 weeks L-carnitine (30

mg/kg) (oral before

liver resection)

Usual intake ↓: hospital stay, ammonia

levels,

neutrophil/lymphocyte ratio,

post-hepatic liver failure

↑: PT

Hassan et al.

(106)

Randomized

control trial

Humans liver cancer

(after TACE)

50 (24 vs. 26) 12 weeks L-Carnitine (300mg

bid)

Usual intake ↓: Child-Pugh score, TB

↑: PT, serum albumin

Malaguarnera

et al. (107)

Randomized

control trial

Humans Cirrhosis +

HE

120 (60 vs. 60) 60 days L-Carnitine (2 g bid) Placebo (2 g

bid)

↓: NH+
4 ; NCT-A

Cecere et al.

(108)

Randomized

control trial

Humans hepatic

cirrhosis

27 (16 vs. 11) 4 weeks L-Carnitine (3 g bid) Placebo (3g

bid)

↓: NH+
4

*Only show indicators that have statistically significant changes after L-carnitine intervention.

ALT, alanine aminotransferase; AST, aspartate aminotransferase; γ-GT, γ-glutamyl transpeptidase; HDL-C, high dense lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol;

FBG, fasting blood glucose; TB, total bilirubin; TG, triglyceride; TC, cholesterol; WC, waistline circumference; HC, hip circumference; CRP, C-reactive protein; TNF-α, tumor necrosis

factor-α; HOMA, homeostatic model assessment; HbA1c, glycosylated hemoglobin; TACE, transarterial chemoembolization; PT, prothrombin time; HE, hepatic encephalopathy; NCT-A,

number connection test-A.

clinical trials conducted by Malaguarnera et al. in patients
with cirrhosis and hepatic encephalopathy (ranging from mild
hepatic encephalopathy to coma) confirmed that L-carnitine
supplementation significantly improved hepatic encephalopathy
parameters (107–111). The results of these trials suggest that
L-carnitine supplementation is advantageous for the treatment
of cirrhosis with hepatic encephalopathy. Experimental trials in
animals further conclude that L-carnitine supplementation can
reduce lipid deposition and increase the metabolites related to
β-oxidation, which confirm the importance of L-carnitine in
controlling oxidative stress, steatosis, and fibrosis in the liver
(87, 99).

At least 11 studies reported no obvious adverse reactions
in humans (112–122) and support the use of L-carnitine

as an ingredient in dietary supplements. As recognized by
several experiments, L-carnitine has also attracted widespread
attention since it can be easily obtained from meat at
a low-cost.

The recommended dose of L-carnitine is 15 g/day for
healthy individuals (123) and 100–400 mg/kg/day for patients
with carnitine deficiency (96). Some side effects have been
observed after high-dose supplementation of L-carnitine, such
as diarrhea, intestinal problems, and trimethylamine production
that causes a fishy odor. However, these can be effectively
addressed by appropriately reducing the supplemental dosage
(124). Hence, it is important to measure the plasma L-
carnitine levels to determine the optimal dose of L-carnitine for
each patient.
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LIMITATIONS AND PROSPECTS OF
CARNITINE FOR THE TREATMENT OF
NAFLD

Despite promising results, the studies on the role of L-carnitine
in NAFLD, listed in Tables 1, 2, face many limitations. First,
most trials used the compound preparation of L-carnitine and
other substances in the intervention group. The presence of
other substances can influence the outcomes of L-carnitine,
making it difficult to assess its role in isolation. Second, the
bioavailability of L-carnitine was not assessed in the reported
studies, so there is no clear reference value for the amount of L-
carnitine present in the blood after ingestion. Third, the sample
sizes of the reported trials were small, which affects the credibility
of the results.

In fact, there are still many unclear aspects of L-carnitine
supplementation. For instance, the suggested improvement of
metabolism by L-carnitine supplements is based primarily on
short-term supplementation (125). A meta-analysis reported
that the body weight of obese patients decreased significantly
after supplementation with L-carnitine (126). However, in the
subgroup analysis, it was found that L-carnitine had no effect
on the body weight of subjects whose BMI was <25 kg/m2 or
when L-carnitine supplementation was administered for more
than 24 weeks (126). Thus, it is not explicit whether the effects
of L-carnitine supplementation on NAFLD will result in similar
time-dependent effects. Although carnitine supplementation
was given orally in most of the studies (Tables 1, 2), some
trials administered carnitine intravenously (127, 128). Therefore,
the optimal route to administer L-carnitine supplements for
NAFLD remains unclear. While many substances can be
used as dietary supplements to improve NAFLD, no studies
have directly compared them to determine which is most
effective. Furthermore, the studies on the effects of L-carnitine
supplements in NAFLD have yielded conflicting results. Bruls
et al. showed that L-carnitine infusion could neither alleviate
lipid-induced insulin resistance and metabolic inflexibility nor
change the availability of skeletal muscle carnitine (129).
Fujiwara et al. found that high-fat diet feeding and L-carnitine
supplementation increased STAT3 phosphorylation in HCC
tissues and could synergistically promote the development of
liver cancer (130).

To improve the accuracy of future studies on the effects
of L-carnitine supplementation in NAFLD treatment, the
following aspects could be considered: use of L-carnitine
in isolation in the intervention group; assessment of the
bioavailability of L-carnitine; multicenter trials with larger
sample size; longer follow-up to evaluate time-dependent
effects; and use of intravenous L-carnitine supplementation. In
addition, experimental studies are recommended to compare
the effects of other substances that have been proven effective
in enhancing NAFLD via L-carnitine and to understand the
downstream mechanism.

CONCLUSION

Carnitine plays an important role in transporting FAs
to the mitochondrial matrix for β-oxidation, regulating
acetyl-CoA/CoA, exporting acetyl- and chain-shortened acyl
products from peroxisomes, and reducing oxidative stress. L-
carnitine supplementation can normalize or reduce serum levels
of liver enzymes, decrease the incidence and severity of NAFLD,
and improve both the lipid profile and mitochondrial function.
L-carnitine may have therapeutic effects on liver diseases,
including NASH, cirrhosis, HCC, alcoholic fatty liver disease,
and viral hepatitis. In addition, L-carnitine supplementation is
safe, low cost, and easy to administer. Due to the limited and
inadequate studies on the effects of L-carnitine supplementation
on NAFLD, future research should aim to determine the exact
role of L-carnitine for the treatment of NAFLD.
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