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Objective: To create a prediction model of the risk of severe/critical disease in patients

with Coronavirus disease (COVID-19).

Methods: Clinical, laboratory, and lung computed tomography (CT) severity score

were collected from patients admitted for COVID-19 pneumonia and considered as

independent variables for the risk of severe/critical disease in a logistic regression

analysis. The discriminative properties of the variables were analyzed through the

area under the receiver operating characteristic curve analysis and included in a

prediction model based on Fagan’s nomogram to calculate the post-test probability

of severe/critical disease. All analyses were conducted using Medcalc (version 19.0,

MedCalc Software, Ostend, Belgium).

Results: One hundred seventy-one patients with COVID-19 pneumonia, including 37

severe/critical cases (21.6%) and 134 mild/moderate cases were evaluated. Among

all the analyzed variables, Charlson Comorbidity Index (CCI) was that with the highest

relative importance (p = 0.0001), followed by CT severity score (p = 0.0002), and age

(p = 0.0009). The optimal cut-off points for the predictive variables resulted: 3 for CCI

[sensitivity 83.8%, specificity 69.6%, positive likelihood ratio (+LR) 2.76], 69.9 for age

(sensitivity 94.6%, specificity 68.1, +LR 2.97), and 53 for CT severity score (sensitivity

64.9%, specificity 84.4%, +LR 4.17).

Conclusion: The nomogram including CCI, age, and CT severity score, may be used

to stratify patients with COVID-19 pneumonia.
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INTRODUCTION

Coronavirus disease (COVID-19) is a highly life-threatening
infectious disease. The pandemic of the novel severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic,
which is still ongoing, has resulted in huge costs in terms of
human lives, economic and social damage (1, 2). COVID-19
pneumonia can result in acute respiratory distress syndrome
(ARDS) and multiple organ failure (3, 4). The severe/critical
patients have a poor prognosis and a high mortality rate as
compared to the mild/typical patients (5, 6). In patients admitted
to hospitals have been identified certain factors related to
increased severity (7, 8).

The use of imaging in the diagnosis and identification of
risk factors for the development of COVID-19 pneumonia
is important. Lung CT is the first-line imaging modality in
cases where there is a deep suspicion (9). CT can accurately
evaluate the type and extent of lung lesions (10). Recent studies
showed that lung CT may enable the detection of the disease
with higher sensitivity in comparison to reverse-transcription
polymerase chain reaction (RT-PCR). A recent meta-analysis
performed to determine the diagnostic accuracy of the initial
lung CT scan compared to RT-PCR in COVID-19 patients,
demonstrated that the sensitivity of CT, compared to RT-PCR,
was 87% and that the specificity was 46%, with a positive
predictive value of 69% and a negative predictive value of 89%
(11). Although lung CT findings such as consolidation, linear
opacities, crazy-paving pattern, bronchial wall thickening, and
extrapulmonary lesions are features of severe/critical COVID-
19 pneumonia (10), there is still limited information about the
prognostic implication of CT findings in patients with COVID-
19. Identifying admission CT predictors of adverse outcome in
patients without underlying medical issues would help to identify
the most vulnerable patients in this age range and, as a result,
change their therapy. Several recent studies reported imaging CT
findings of patients with adverse outcomes (12–15). However,
data on the outcomes of consecutive patients, factors influencing
hospital admission vs. outpatient management, and risk factors
for COVID-19 adverse effects is still lacking in Italy. The
significance of recognizing patients that are at risk of developing
severe COVID-19 is mandatory for optimizing intra-hospital
resources. Patients with serious illnesses often need a wide range
of medical services. As a result, through patient prioritization,
early identification of patients at high risk of developing severe
COVID-19 will encourage appropriate supportive treatment and
reduce mortality rates, as well as unnecessary or insufficient
healthcare usage (16, 17).

As a method for rapid clinical management of hospitalized
patients, the aim of this study is to build an individualized
research model to identify the risk of severe/critical disease in
patients with COVID-19 pneumonia.

METHODS

Study Design and Participants
The present study is an extension of the data collected in a
previous study aimed at realizing a prognostic lung CT score

for worse outcomes in COVID-19 pneumonia (18). In that
study, between February 20th, 2020 and April 15th, 2020, data
concerning a cohort of patients diagnosed as having COVID-19
pneumonia were retrospectively collected from four hospitals in
the Italian regions of Marche, Lombardy and Emilia-Romagna.
The inclusion criteria were: an epidemiological history plausible
of SARS-CoV2 infection, the identification of SARS-CoV-2
nucleic acid in throat swabs or the lower respiratory tract by
real-time reverse transcription polymerase chain reaction, and
at least one thin-section lung CT. One the basis of the clinical
stages of COVID-19 proposed by WHO (19), patients were
assigned to 1 of 2 categories: those with mild/moderate disease
and those with severe/critical disease. Mild symptomatic patients
meeting the case definition for COVID-19 without evidence
of viral pneumonia or hypoxia. Moderate patients meeting
clinical signs of pneumonia (fever, cough, dyspnea, and fast
breathing) but no signs of severe pneumonia, including pulse
oximeter oxygen saturation ≥90% on room air. Severe disease
was defined a respiratory rate of ≥30 beats per minute, or ≤93%
resting oxygen saturation, or arterial oxygen partial pressure
(PaO2)/fraction of inspired oxygen (FiO2) ≤300 mmHg (1mm
Hg = 0.133 kPa), or a ≥50% progression of lung CT findings
of pneumonia (fever, cough, dyspnea, fast breathing) within 24–
48 h (20). Critical disease was defined as admission to an ICU
for mechanical ventilation or oxygenation impairment (mild
ARDS: 200 mmHg <PaO2/FiO2 ≤300 mmHg [with positive
end-respiratory pressure (PEEP) or continuous positive airway
pressure≥5 cmH2O]; moderate ARDS: 100 mmHg <PaO2/FiO2

≤200 mmHg (with PEEP ≥5 cmH2O); severe ARDS: PaO2/FiO2

≤100 mmHg (with PEEP ≥5cmH2O) (21). The patients’
recorded demographic and clinical characteristics included age
and sex, the time since symptom onset to hospital admission,
co-morbidities (systemic hypertension, diabetes mellitus, heart
disease, and chronic obstructive pulmonary disease), symptoms,
and clinical and laboratory signs.

Predictors
Several variables were collected from the electronic health record:
age at time of testing, sex, height, weight, dyspnea, days from
illness onset, smoking history, and comorbidity burden.

Laboratory values were analyzed for the “worst” value
occurring during the day of admission for inpatients. For
the purposes of this study only C-reactive protein (CRP) was
collected as laboratory variable.

All patients had lung CT scans, which were examined by
two radiologists who had no access to the clinical or laboratory
results. We selected these predictors based on previous published
literature and our clinical experience of patients with COVID-19
(18, 22).

Dyspnea was assessed with the Borg Dyspnea Index (Borg
score) (23). The Borg score evaluates the perceived dyspnea
(breathing discomfort) with a numerical rating scale from 0
to 10 [0 = no breathlessness at all, 0.5 = very very slight
(just noticeable), 1 = very slight, 2 = slight breathlessness, 3
= moderate, 4 = somewhat severe, 5 = severe breathlessness,
7 = very severe breathlessness, 9 = very, very severe (almost
maximum) and 10=maximum].

Frontiers in Medicine | www.frontiersin.org 2 September 2021 | Volume 8 | Article 695195

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Salaffi et al. prediCtion seveRe/crItical ouTcome in COVID-19

The Charlson Comorbidity Index (CCI) estimated the
comorbidity burden (24). The CCI includes the following
comorbid conditions: acute myocardial infarction, congestive
heart failure, peripheral vascular disease, cerebrovascular disease,
dementia, chronic obstructive pulmonary disease, rheumatoid
arthritis, peptic ulcer disease, mild and moderate/severe liver
disease, diabetes mellitus with and without complications,
hemiplegia/paraplegia, renal disease, cancer (any malignancy)
and metastatic solid tumor, AIDS/HIV. When computing the
weighted CCI, each condition from the CCI is given a ranking,
regardless of the coding system used. In particular, diabetes
with complications, hemiplegia/paraplegia, renal disease, and
malignancies are assigned a score of 2; moderate/severe liver
disease is assigned a score of 3; metastatic solid tumor and
AIDS/HIV are assigned a score of 6; the remaining comorbidities
are assigned a score of 1. The total score in the CCI is
derived by summing the assigned weights of all comorbid
conditions. Higher scores indicate a more severe condition and
consequently, a worse prognosis. While it was initially designed
to predict mortality risk after hospitalization, it has been shown
to predict adverse outcomes independently over a wide range of
conditions (25).

Lung Computed Tomography Analysis
Two CT scanners with helical acquisitions in end-inspiration
were used for the lung CT examinations. The detailed protocol
of CT image acquisition is described elsewhere (18).

Lung CT examinations were independently examined by
two radiologists with 3 (LC) and 20 (MC) years of lung CT
interpretation experience, respectively. The images were viewed
on both lung (width, 1,500 HU; level,−700 HU) and mediastinal
(width, 350 HU; level, 40 HU) settings. The two readers analyzed
the axial CT images but were free to evaluate the multiplanar
reformats. The CT scans were assessed for the presence of
ground-glass opacities, consolidation, cavitation, centrilobular
nodules, tree-in-bud pattern, septal thickening, perilobular
opacities, reticulation, architectural distortion, subpleural bands,
traction bronchiectasis, bronchial wall thickening, intrathoracic
lymph node enlargement, and pleural effusions. Ground-glass
opacity (GGO) was defined as increased lung density with
no obscuration of the underlying lung markings. Increased
lung density with obscuration of the underlying lung markings
was known as consolidation. Polygonal or curvilinear bands
bordering the secondary pulmonary lobule were known as
perilobular opacities. Interlobular or intralobular irregular septal
thickening was known as reticulation. Thin linear opacities
peripheral and parallel to the pleura were known as subpleural
bands. Traction bronchiectasis was defined as irregular or
distorted dilated airways seen in areas of fibrosis.

The degree and type of abnormalities were measured to
determine the severity of pulmonary parenchymal involvement
using a semi-quantitative scoring (19). In this scoring system,
each lung was evaluated on three levels: upper (above the carina),
middle (below the carina up to the upper limit of the inferior
pulmonary vein), and lower (below the inferior pulmonary vein).
Each level’s final score was determined by combining the results
of the right and left lungs. The percentage of lung involvement

in each level was evaluated independently and categorized as
follows: 0 as normal, 1 as <25% abnormality, 2 as 25–49%
abnormality, 3 as 50–74% abnormality, and 4 as ≥75% of the
pulmonary cross-section CT scan. Further, the scoring system
included the nature of abnormalities on a 4-point scale for
defining the pattern of CT lung abnormalities. The two scores
(abnormality degree and nature) were then multiplied by each
other. After adding the scores from all six levels (3 levels on
each side), a final radiologic severity score for parenchymal
involvement was measured for each patient, with values ranging
from 0 to 96. The previous work recorded the inter-observer
agreements between the two readers for the measurement of lung
CT-severity scores were excellent, with an intraclass correlation
coefficient (ICC) of 0.987 (95% CI. 0.982–0.991; p < 0.001). The
detailed description of the CT scoring system is provided in the
first study in which the method is proposed (18).

Statistical Analysis
All analyses were conducted using Medcalc (version 19.0,
MedCalc Software, Ostend, Belgium). Kolmogorov-Smirnov test
was used to evaluate the normality of quantitative data. Mean
and standard deviation (SD) were used to describe normally
distributed data, while median and interquartile range (IQR)
was used to describe non-normally distributed data. Categorical
variables were presented as numbers and percentages. Student’s
t-test, Mann-Whitney U-test, Pearson χ

2-test, and Fisher’s exact
test were used to compare variables between mild/moderate
disease vs. severe/critical disease.

Logistic regression analysis was used to assess the factors
linked to the risk of severe/critical disease. Covariates considered
in the model included: age, gender, BMI, days from illness onset,
CRP, smoking history, Borg score, CCI, and lung CT severity
score. The results were expressed as multivariate coefficients with
standard errors and Wald statistic for the number of variables
entered in the analysis. Significance was set at p < 0.05.

Then a predictive model was realized based on Bayes’ theorem
for determining severe/critical disease (post-test probability)
using the pre-test probability of disease and the product of the
positive likelihood ratio (+LR) from the predictive variables.
The Fagan nomogram was used to graphically represent the
model. The predictor variables included in the predictive model
were those that demonstrated significance at logistic regression
analysis. The predictive performance of each variable was
estimated by the area under the receiver operating characteristic
curve (AUC-ROC). Youden’s index on the ROC curve analysis
was used to determine the optimal cut-off point for the single
predictive variables (26).

RESULTS

Patient Characteristics
The study involved 171 COVID-19 patients [136 men (79.5%)
and 35 women (20.5%), mean age (SD) 61.9 (11.8) years, range
33–86 years]. Thirty-seven (21.6%) had severe/critical disease
and 134 (78.4%) mild/typical disease. The mean time (SD)
interval between the days from illness onset was 6.3 (4.9).
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One hundred and fifty-one (88.3%) patients complained of
fever, in themajority of the patients (120/171, 70.2%)>38◦C. Dry
cough was also a common symptom at onset (108/171, 63.15%),
followed by fatigue (102/171, 59.64%), myalgia (86/171, 50.29%),
anosmia (67/171, 39.18%), and dyspnea (70/171, 40.9%). The
mean (SD) Borg score was 2.61 (1.57).

Comorbidities were detected in 89 (52%) patients, of whom
49.4% (44/89) had only one comorbidity. The mean (SD)
CCI was 3.37 (2.21). Of note, severe/critical group had a
higher frequency of comorbidities, especially more than one
comorbidity (all p < 0.001), compared with mild/typical group).
Compared with mild/typical group, patients in severe/critical
group were older (p < 0.001) and more frequently males (p <

0.05). Ninety-four of these 171 (54.9%) patients were admitted
to hospital of whom 57 (60.6%) were discharged alive without
hospital care. Among the 37 patients admitted to hospital, with
critical illness, 25 (67.6%) required mechanical ventilation, nine
(24.3%) required intensive care without mechanical ventilation,
and three patients (8.1%) died.

The most common pattern seen on lung CT was multiple
lobe involvement (90.9%) with more extensive GGO (81.9%)
than consolidation (71.3%). The patients with severe/critical
disease had a higher prevalence of consolidation (p = 0.031),
interlobular septal thickening (p= 0.005), a crazy-paving pattern
(p= 0.023), reticular opacities (p= 0.009), and air bronchogram
(p = 0.001). The mean (SD) lung CT-severity score was 76.65
(6.93) in the group with severe/critical disease and 61.69 (13.21)
in the group with mild/typical disease (p = 0.001). Table 1
summarizes the differences between mild/moderate group and
severe/critical group.

Variables Predicting a Severe/Critical
Disease
In logistic regression model, only the variables found to
be significant in the univariate analysis were considered in
predicting a severe/critical disease. Among all the analyzed
variables, CCI was found to have the highest relative importance
with a Wald value of 15.99 (p < 0.0001), followed by CT severity
score (Wald 13.41; p= 0.0002) and age (Wald 10.94; p= 0.0009)
(Table 2).

The predictive performance of a single variable was estimated
by the area under the AUC-ROC curve analysis. Age showed
an AUC of 0.838 (p = 0.0001) (Figure 1A) and an optimal
cut-off point of 69.9 (sensitivity 94.6%, specificity 68.1%, +LR
2.97) (Supplementary Table 1). The CCI demonstrated excellent
discriminative ability, with an AUC of 0.854 (p = 0.0001)
(Figure 1B) and an optimal cut-off point of 3 (sensitivity 83.8%,
specificity 69.6%, +LR 2.76) (Supplementary Table 2). The CT
severity score revealed an AUC of 0.824 (p= 0.0001) (Figure 1C)
and an optimal cut-off point of 53 (sensitivity 64.9%, specificity
84.4%,+LR 4.17) (Supplementary Table 3).

The three predictive variables (age, CCI, CT severity score)
can be applied to the Fagan nomogram to calculate the post-test
probability of severe/critical disease risk (Figure 2). Calculation
of the post-test probability is based on the pre-test probability
(21.6% in the case series studied) and the product of the
+LRs of the three predictor variables in the individual patient.
This type of calculation is suitable to be performed through

smartphone apps. With the results of this study, a quick and user-
friendly smartphone app based on these findings was created
to calculate the post-test probability of severe/critical disease in

COVID-19 pneumonia patients (CRITIC-App©, Fausto Salaffi,
2021, all rights reserved; the app is accessible for iOS/Android
mobile platforms to interested researchers at website http://www.
faustosalaffi.it/app/covid/).

DISCUSSION

In this study it has been proposed a prediction model, calculated
at hospital admission, to establish the subsequent presence of
disease deterioration and the occurrence of severe/critical disease
(serious clinical outcomes, such as ICU admission or death) in
patients with COVID-19 pneumonia.

Consistent with previous studies, our study found that
age, comorbidities and CT severity score are important and
independent predictors of severe/critical or fatality risk of
COVID-19 patients.

Age is a pivotal variable in predicting unfavorable outcomes
in COVID-19 patients (27, 28). A study of 191 COVID-19
patients showed that older age was associated with a higher risk
of in-hospital death, with an odds ratio (OR) of 1.10 for every
year added (7). Similarly, Wu and coworkers discovered that
older age was related to a higher risk of developing ARDS and
dying as a result of it, which is possibly due to elderly patients’
lower immune function (27). Older people were considered to
be physically frail and more likely to have comorbidities, which
placed them at a higher risk of negative consequences, including
death (29). Data from the present study support that older age
is a predictor for adverse outcomes. In particular, the cut-off
point of ∼70 years seems to correlate with an augmented risk.
Among the possible causes of an increased risk in the elderly
population is also considered the treatment with angiotensin-
converting enzyme (ACE) inhibitors or angiotensin II type-I
receptor blockers (ARBs), drugs that would seem to increase the
expression of the ACE-2 receptor, the gateway for the entry of the
virus into the cells (30).

Coexisting comorbidities are similarly associated with an
increased risk of COVID-19 severity. Huang and colleagues
found that a known history of type 2 diabetes increased the
likelihood of developing severe illness in COVID-19 patients by
six times (31, 32). Another study found that 64.3% of patients
had at least one comorbidity, with hypertension (30%) and
diabetes (12.1%) being the most common, and that older men
with comorbidities were more likely to be affected by COVID-
19 (33). Several reports of COVID-19 related comorbidities, on
the other hand, proposed that comorbidity should be considered
further (32, 34, 35). A more comprehensive evaluation of the
impact of various comorbidities on COVID-19 patients is needed
and valuable in guiding proper inter-disciplinary management,
especially for elderly patients. Patients with severe cardiovascular
injury and underlying cardiac insufficiency, for example, are
more likely to experience adverse events, according to recent
reports (16, 36). For clinical prognosis, summary comorbidity
scales such as the CCI are widely used (37, 38). The CCI
was created to predict the probability of death within 1 year
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TABLE 1 | Demographic, clinical, laboratory findings of patients on admission.

All Mild/moderate disease Severe/critical disease p

Total sample, N◦ (%) 171 (100%) 134 (78.47%) 37 (21.63%) —

Age years, mean (SD) 64.91 (13.59) 61.69 (13.21) 76.65 (6.93) 0.001

Male patients, N◦ (%) 136 (79.53%) 102 (76.11%) 34 (91.89%) 0.021

Smoking history, N◦ (%) 39 (22.83%) 28 (20.89%) 11 (29.72%) 0.039

Body Mass Index, kg/m2, mean (SD) 25.58 (3.85) 24.31 (3.97) 27.55 (3.21) 0.041

Charlson Comorbidity Index, mean (SD) 3.37 (2.21) 2.72 (1.69) 5.72 (2.28) 0.001

Signs and symptoms on admission

Days from first symptoms, mean (SD) 6.3 (4.92) 5.1 (3.92) 7.4 (3.22) 0.034

Fever ≥ 38.8◦C, N◦ (%) 120 (70.21%) 93 (69.4%) 27 (74.41%) 0.176

Dry cough, N◦ (%) 108 (63.15%) 85 (63.4%) 23 (62.21%) 0.784

Fatigue, N◦ (%) 102 (59.64%) 79 (58.95%) 23 (62.16%) 0.482

Myalgia, N◦ (%) 86 (50.29%) 66 (49.25%) 20 (54.05%) 0.091

Anosmia, N◦ (%) 67 (39.18%) 51 (38.305%) 15 (40.54%) 0.599

Dyspnea, N◦ (%) 63 (36.84%) 47 (35.07%) 16 (43.24%) 0.058

Borg dyspnea index, mean (SD) 2.61 (1.57) 2.07 (1.61) 3.25 (1.44) 0.025

Laboratory findings

C-Reactive protein, mg/L, mean (SD) 11.28 (13.75) 9.40 (13.65) 11.87 (14.26) 0.046

Computed tomography findings

Ground-glass opacity, N◦ (%) 140 (81.87%) 110 (82.15%) 30 (81.11%) 0.768

Consolidation, N◦ (%) 122 (71.34%) 93 (69.41%) 29 (78.42%) 0.031

Interlobular septal thickening, N◦ (%) 78 (45.61%) 49 (36.56%) 29 (78.37%) 0.005

Reticular opacity, N◦ (%) 76 (44.44%) 50 (37.31%) 26 (70.27%) 0.009

Air bronchogram, N◦ (%) 69 (40.35%) 46 (34.32%) 23 (62.16%) 0.021

Crazy-paving pattern, N◦ (%) 35 (20.54%) 24 (17.91%) 11 (29.72%) 0.023

Lymph node enlargement, N◦ (%) 25 (14.61%) 20 (14.92%) 5 (13.51%) 0.679

Pericardial effusion, N◦ (%) 16 (9.35%) 11 (8.21%) 5 (13.51%) 0.066

Pleural effusion, N◦ (%) 14 (8.18%) 10 (7.46%) 4 (10.81%) 0.054

Lung computed tomography severity score, mean (SD) 64.91 (13.59) 61.69 (13.21) 76.65 (6.93) 0.001

SD, standard deviation.

of being admitted to the hospital. The scores are based on a
variety of comorbidities, each of which is assigned a weighted
integer from one to six dependent on the severity of the
condition (39). CCI is a well-validated and easy-to-use indicator
for assessing patient’s prognosis and survival. Age, gender, and
the existence of comorbidities such as diabetes, cardiovascular,
cerebrovascular, and respiratory disorders are frequently used
to predict the severity and mortality of COVID-19 during the
present pandemic (40–43). In a nationwide study of Danish
COVID-19 patients it has been investigated if CCI score was
associated with the risk of severe outcome and death (44). It has
been found that the odds of severe COVID-19 were significantly
increased in CCI score 1–2 (OR 1.7), CCI score 3–4 (OR 2.36),
and CCI score >4 (OR 2.67) compared to CCI score 0. In the
present study it has been revealed that the CCI score of ≥3 was
associated with an ∼4-fold time increase in the risk of adverse
outcomes. A systematic review and meta-analysis of CCI score
and a composite of poor outcomes demonstrated that, compared
to a CCI score of 0, a CCI score of 1–2 and CCI score of
≥3 was prognostically associated with mortality and associated

with a composite of poor outcomes. Per point increase of CCI
score also increased mortality risk by 16%. Moreover, a higher
mean CCI score is also significantly associated with mortality and
disease severity. The CCI score, which adds together ages and
summarizes comorbidity measures, predicts death in COVID-19
patients by an exponential increase in the odds ratio at each point
in the score (45).

Lung CT scanning has a higher sensitivity than chest
radiography, allowing abnormalities in the lungs to be identified
sooner. CT identifies the processes underlying severe/critical
conditions and improve clinical diagnosis and treatment by
studying their clinical and imaging features. Consistently
with several recent reports (46–48), it has been showed that
predominant pattern observed was bilateral and peripheral GGO
and consolidation (49–51). Despite the fact that pleural and/or
pericardial effusionweremore frequent in critically ill COVID-19
patients, a multivariable study found no connection between
them and death or negative outcomes (10). Qualitative indicators
by themselves could differentiate extreme/serious cases from
mild/typical cases, but they were unsuccessful in separating

Frontiers in Medicine | www.frontiersin.org 5 September 2021 | Volume 8 | Article 695195

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Salaffi et al. prediCtion seveRe/crItical ouTcome in COVID-19

TABLE 2 | Logistic regression analysis of the dependent variables predicting the development of a severe/critical disease.

Variable Coefficient Standard error Wald p

Constant −19.76394 4.59177 18.5262 <0.0001

Age (years) 0.14981 0.045292 10.9411 0.0009

Gender −0.50030 0.94867 0.2781 0.5979

Smoking history 1.46950 0.85989 2.9205 0.0875

Body Mass Index 0.017179 0.10363 0.02748 0.8683

Days from illness onset −0.082411 0.045339 3.3039 0.0691

C-reactive protein (mg/L) −0.013485 0.030438 0.1963 0.6577

Borg score 0.16300 0.21696 0.5645 0.4525

Charlson Comorbidity Index 1.07359 0.26844 15.9954 0.0001

Lung computed tomography severity score 0.086068 0.023500 13.4143 0.0002

FIGURE 1 | Receiver operating characteristic curve analysis showing the prognostic value of age (A), Charlson Comorbidity Index (B), and chest computed

tomography severity score (C) in the discriminative performance for severe/critical disease. (A) The cut-off value of 68.9 years predicts a severe/critical disease with

94.6% sensitivity and 68.1% specificity. The AUC-ROC is 0.836 (95% CI 0.785–0.896), the Youden index 0.627; (B) the cut-off value of 3 at Charlson Comorbidity

Index predicts a severe/critical outcome with 83.8% sensitivity and 69.6% specificity. The AUC-ROC curve is 0.854 (95% CI 0.792–0.903), the Youden index 0.534;

(C) the cut-off value of 53 at computed tomography severity score predicts a severe/critical outcome with 64.9% sensitivity and 84.4% specificity. The AUC-ROC

curve is 0.824 (95% CI 0.759–0.878), the Youden index 0.625. ROC, receiver operating characteristic; AUC, area under the curve; CI, confidence interval.

severe cases from critical cases. The use of a combination of
qualitative and quantitative metrics to identify cases at various
clinical stages (52) could assist in the rapid detection and
management of critical cases, potentially lowering mortality
(19). Previous studies used a semi-quantitative lung CT severity
score to measure COVID-19 lung involvement, with the score
being assigned based on the severity of all abnormal lung areas
involved, similar to the CT severity score system applied to the
present study (6, 10, 49, 53, 54). The ideal cut-off point for the
CT score employed for study in the prediction of severe/critical
disease is 53 (range of the score 0–96).

Conversely, some variables potentially expected to be
suggestive of worse outcomes did not prove to be so. For
example, cigarette smoking or CRP levels have not been
shown to be associated with worse prognosis. High levels
of CRP and erythrocyte sedimentation rate (ESR) have been
previously reported in COVID-19 patients. Previous works have
documented that CRP might play a role in predicting a higher
severity of COVID-19 in the early stages, before the development
of CT findings (55). A recent systematic review andmeta-analysis
confirmed that elevated CRP levels are predictors of a worse

prognosis in COVID-19 patients (56). Interestingly, a role on
CRP values would also be determined by oral cavity health, these
two variables being inversely correlated (57).

The main novelty of the present study consists in having
applied a comprehensive model of the main variables
conditioning outcomes in patients with COVID-19 pneumonia.
The integration between the variables was possible through
the Fagan nomogram that, calculated on the app, allows a
rather rapid estimation of unfavorable prognosis at the patient’s
bedside. Some works has already proposed the application of
algorithms in COVID-19. A retrospective study that assessed the
risk of hospitalization in 4,536 COVID-19 patients documented
how the variables influencing this risk are multiple, both clinical
and demographic (29).

This study has several limitations. First, due to the
retrospective nature of the study, there is a chance of knowledge
bias. As a result, some information was lacking, and some
information, such as the timing of symptom initiation and
exposure history, was focused on patients’ memories, which may
be skewed by recall bias. At the same time, the presence of
heterogeneity in some clinical data, such as ICU admission, was
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FIGURE 2 | Example of application of the nomogram in the calculation of the CRITIC post-test probability. In the nomogram left axis represents the pre-test probability

(21.6% in this case study), middle axis represents positive likelihood ratio, and the right axis shows post-test probability. To calculate the actual risk (post-test

probability, %) of severe/critical disease in a given patient with COVID-19 pneumonia, the positive likelihood ratio of each item in that patient have to be multiplied. The

resulting positive likelihood ratio product represents the point intercepted on the middle axis.

unavoidable. Second, there were variations in care, and it was not
taken into consideration how treatment influenced prognosis.
Third, the data from the two groups were not matched, and
the severe/critical group’s sample size was limited. Fourth, our
patients came from a single geographic area and were treated in a
single health system; although our patient population is diverse,
factors correlated with poor outcomes may vary elsewhere. Fifth,
in this study, well-experienced thoracic radiologists scored the
CT images in agreement, and CT scoring is time consuming and
can be difficult to apply routinely.

In conclusion, the findings of the present study suggested
that the main risk factors predicting a severe/critical outcome in
COVID-19 pneumonia patients are older age, comorbidities, and
lung CT severity. The prediction model proposed could be used
as a quantitative risk predictor method at the time of admission,
however it needs further validation in larger cohort studies due
to small sample size.
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