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Individuals with diabetesmellitus (DM) disclose a higher incidence and a poorer prognosis

of heart failure (HF) than non-diabetic people, even in the absence of other HF risk

factors. The adverse impact of diabetes on HF likely reflects an underlying “diabetic

cardiomyopathy” (DM–CMP), which may by exacerbated by left ventricular hypertrophy

and coronary artery disease (CAD). The pathogenesis of DM-CMP has been a hot

topic of research since its first description and is still under active investigation, as a

complex interplay among multiple mechanisms may play a role at systemic, myocardial,

and cellular/molecular levels. Among these, metabolic abnormalities such as lipotoxicity

and glucotoxicity, mitochondrial damage and dysfunction, oxidative stress, abnormal

calcium signaling, inflammation, epigenetic factors, and others. These disturbances

predispose the diabetic heart to extracellular remodeling and hypertrophy, thus leading

to left ventricular diastolic and systolic dysfunction. This Review aims to outline the

major pathophysiological changes and the underlying mechanisms leading to myocardial

remodeling and cardiac functional derangement in DM-CMP.
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INTRODUCTION

Diabetic Cardiomyopathy (DM-CMP) is a form of heart disease associated with diabetes mellitus
(DM), which causes significant structural and functional changes in the myocardium. The
pathogenesis has been a hot topic of research since its first description (1), and it is still under active
investigation, as a complex interaction among multiple factors play a role at systemic, myocardial,
and cellular/molecular levels. The current pathogenic hypotheses mostly derive from translational
models, with human evidence far less developed due to limited access to human tissue samples.

This review aims to outline the state of the art about the major pathophysiological changes and
underlying mechanisms leading to myocardial remodeling and cardiac functional derangement
in DM-CPM.

DIABETES MELLITUS AND HEART FAILURE: A BIDIRECTIONAL
EPIDEMIOLOGIC ASSOCIATION

The risk for heart failure (HF), as well as that for all components of cardiovascular disease (CVD),
is higher in individuals with diabetes as compared to non-diabetic people.
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The Framingham Heart Study, published in 1974, is among
the first studies to demonstrate this association, reporting an
incidence 2.4- and 5-fold higher, respectively, in men and
women, after adjustment for common CVD risk factors (2).

A robust epidemiological evidence has confirmed that HF is
among the most common complications of DM. A prevalence
of ∼20% (4–28%) has been found in clinical trials of glucose-
lowering drugs in DM, consistent with a recent position paper
of the Heart Failure Association of the European Society of
Cardiology (ESC) (3).

DM patients without HF at baseline are more likely to develop
this complication over time as compared to non-diabetic people
(4), whereas subjects without diabetes at 45 years are more than
60% less likely to manifest HF (5). In the Kaiser Permanente
system, out of more than 8,000 patients followed for up to 6 years,
the risk of new-onset HF resulted 2.5-fold higher in patients with
type 2 DM (T2DM) rather than their non-diabetic counterparts
(6). In a large population-based study of 34,198 T2DM patients
initially free from overt CVD, HF was even more common than
myocardial infarction (MI) as first presentation of CVD (7). In
T2DM subjects with newly-recognized HF, the incidence was
almost 5-fold higher for HF with preserved ejection fraction
(HFpEF) (about 23%) vs. HF with reduced EF (HFrEF) (about
5%) (8).

A low annual incidence of HF (0.2%) and myocardial
dysfunction (−0.1%) is reported in type 1 DM (T1DM), likely
dependent on the younger age of the studied population (9).
Nevertheless, there is a well-documented prevalence of early
subclinical cardiomyopathy in children and adolescents with
T1DM (10). A meta-analysis of subjects included in clinical
trials demonstrated that the presence vs. absence of DM in
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hypertensive individuals increased the risk of HF by more than
4-folds (11).

Subjects with impaired glucose tolerance (IGT) or insulin
resistance (IR) have a 1.7-fold increased risk of HF (12). A
community-based cohort study that followed patients for almost
30 years revealed that several biomarkers reflecting IR and
dyslipidemia, predicted HF independently of ischemic CVD and
other established CV risk factors (13).

HF is a frequent as serious complication of diabetes. Its
prognosis is worse than in non-diabetic subjects, with a 75%
higher risk of CV death or HF hospitalization (14), and a
frequent progression to end-stage HF, which may require heart
transplantation despite optimal medical therapy (15). In a
prospective study from the mid-1990s, HF 1-year mortality
was 30% in people with DM, about 1.5-fold higher than in
those without (16). The HF mortality risk was 10-fold higher
in a diabetic population older than 65 years (17). Currently,
the clinical impact of DM–CMP and other chronic diseases
in hospitalized elderly subjects is affected by both gender, and
frailty (18–20).

In the CHARM (Candesartan in Heart Failure Assessment
of MoRtality and Morbidity) study, DM was associated with a
higher relative risk of HF hospitalizations or CV death in patients
with HFpEF than HFrEF (21).

On the other hand, as HF is common in DM, so DM is highly
prevalent in people with HF, hence one condition increases the
incidence and worsens the prognosis of the respective other.
Patients with HF have a 4-fold higher prevalence of T2DM (20%)
than patients without (4–6%) (22). In a CHARM study group
analysis, more than 25% of patients with HF has diabetes (23).
When admitted with HF, one-third of patients without a previous
diagnosis of diabetes results affected by DM or impaired glucose
tolerance (IGT) (24). This prevalence rises to 40% in a large
multicenter European study (25), as confirmed in the EVEREST
analysis (26).

The mechanism responsible of the increased risk of T2DM in
HF is the impaired insulin signaling induced by loss of skeletal
muscle mass, sedentary lifestyle, and increased circulating
cytokines, which trigger a vicious cycle in which IR and HF
deteriorate each other (27). In patients with advanced HF,
hemodynamic recovery after ventricular assist device placement
is associated with improvements in both systemic and cardiac
insulin sensitivity, glucose homeostasis, and toxic lipid products
(28). Likewise, IR significantly affects HF prognosis (29).

THE DIABETIC CARDIOMYOPATHY

Based on the observation that two-thirds of elderly patients with
diabetes presented with a myocardial dysfunction, Lundbæk has
firstly suggested in 1954 the concept of a specific DM-related
cardiomyopathy (30). This term refers to the current definition
proposed by the European Society of Cardiology (ESC), that is
a “cardiomyopathy is defined as a heart muscle disease in which
the myocardium is structurally and functionally abnormal in the
absence of coronary artery disease (CAD) as well as hypertensive,
valvular, or congenital heart disorders” (31). Almost 20 years
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later, Rubler et al. reported the post-mortem findings of
four diabetic patients with glomerulosclerosis and advanced
symptoms of HF unrelated to valvular, congenital or hypertensive
heart disease, alcoholism or significant epicardial coronary
artery atherosclerosis. These data thus provided evidence
that a cardiomyopathy could directly result from DM, likely
in dependence of myocardial microangiopathy or metabolic
derangements (1).

Currently, DM-CMP is widely recognized as a specific
form of cardiomyopathy which occurs independently of other
cardiac risk factors and is promoted by the long-standing
metabolic perturbations of diabetes, thus exerting a direct toxic
effect on the myocardium (30). Although Rubler originally
reported a dilated cardiomyopathy manifesting with the
characteristic symptoms of HF, the restrictive LV remodeling
with diastolic LV dysfunction is the more frequent picture in
DM (32).

In the current clinical practice, DM-CMP diagnosis is still
challenging, as it requires the identification of distinct functional
and structural changes in the LV and the concomitant exclusion
of other cardiac diseases and risk factors for CVD. Due
to the very frequent confounding of other HF risk factors
such as hypertension, CAD, and renal disease, the burden
of a “pure” diabetic cardiomyopathy is conceivable not as
high as the cardiomyopathy of heterogeneous etiology, with a
calculated prevalence of 16.9% of diabetic patients in a small
study (33).

PATHOPHYSIOLOGY OF DIABETIC
CARDIOMYOPATHY

Several mechanisms determining molecular, cellular and
interstitial changes, as well as activation of renin-angiotensin
aldosterone axis and adrenergic systems, are involved in
the development of DM-CPM. These include imbalance of
myocardial energy substrates, gluco- and lipotoxicity, altered
insulin signaling, mitochondrial defects, endoplasmic reticulum
(ER) stress, deranged intracellular calcium handling, oxidative
stress, endothelial dysfunction, deposition of advanced glycation
end products (AGEs), maladaptive immune responses, and
so on. Each of them contributes to the structural remodeling
and functional defects in diabetic myocardium, including
impairments in cardiac relaxation, compliance, and contractility
(Figure 1).

Metabolic Abnormalities in the Diabetic
Heart
Changes to the metabolic milieu associated with DM, such
as lipotoxicity, glucotoxicity and impaired insulin signaling,
emerge as crucial pathogenic factors for DM-CMP. Together,
they exert, both directly and indirectly, a detrimental increase in
oxidative stress, endothelial dysfunction and inflammation, thus
making a strong contribution to the myocardium structural and
functional derangement.

Myocardial Energy Substrate Changes and
Lipotoxicity
Energy Substrates in Healthy Myocardium
Due to the constant cardiac activity, the myocardium is
the higher energy-demanding tissue in the body. To absolve
this function, it is equipped with an efficient metabolic
machinery, mainly represented by the mitochondrial oxidative
phosphorylation (34). Under normal conditions, most of energy
for myocardium (∼60–90%) is supplied by fatty acid (FA)
oxidation, whereas the remaining ∼10–40% of ATP derives
from the oxidation of pyruvate produced in equal amounts by
glycolysis and lactate oxidation. Of note, the heart is a net
consumer of lactate, both at baseline and upon increase in
workload. Ketone bodies are not immediately available from food
but produced in the liver by incomplete oxidation of FAs released
from the adipose tissue in response either to fasting or energy
depletion. They provide, mainly the D-beta-hydroxybutyrate,
an alternative substrate for oxidative phosphorylation. Under
physiological conditions, aminoacids represent a minor source of
energy (21, 35).

The healthy heart is commonly defined a “metabolic
omnivore,” due to its crucial capacity to shift between different
substrates, according to their availability, in order to ensure
a continuous energy supply (36). This metabolic flexibility
is mainly determined by the “Randle cycle,” by which high
circulating levels of glucose decrease the FA oxidation rates and
vice-versa (37). Another metabolic regulator is 5

′

-AMP-activated
protein kinase (AMPK), which acts as a cellular “fuel gauge” (38).
In the long term, the nuclear peroxisome proliferator-activated
receptor (PPAR)-α, abundantly expressed in the myocardium,
play a pivotal role upregulating the transcription of genes related
to FA uptake and oxidation (39). Overall, the relative substrate
contribution to ATP production can vary mostly depending on
energy demand, substrate availability and hormonal milieu. For
instance, exercise induces a switch from FAs to glucose oxidation,
whereas during prolonged fasting or poorly controlled diabetes,
ketone bodies can represent the main energy supplier (34).

Changes of Energy Substrates in Failing Heart
In HF the mitochondrial oxidation of FAs is decreased, more
likely due to the PPARα signaling suppression and the activation
of hypoxia-inducible factor 1α (HIF1α)–PPARγ signaling axis,
which impair FA transport into mitochondria and downregulate
FA oxidative enzymes (34). Due to the stimulation of lipolysis
by sympathetic activation in HF, an increased FA delivery to
cardiac myocytes is responsible of this shift away from FA
oxidation (40). This imbalance between FA uptake and oxidation
leads to cytosolic overload of triglycerides and accumulation of
metabolic intermediates generated by non-oxidative pathways
such as ceramide and diacylglycerol (DAG), exerting toxic effects
and maladaptive signaling, including IR (34, 41). These deposits
promote inflammation, cell damage and, eventually, cell death,
hence a condition of “lipotoxicity” which contributes to the HF
progression (42, 43).

The glucose metabolism of the failing heart is characterized by
an enhanced glucose uptake, not accompanied by a concomitant
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FIGURE 1 | Pathophysiology of diabetic cardiomyopathy.

increase in glucose oxidation. Therefore, despite an increase in
the relative contribution of glucose oxidation to ATP production,
the absolute substrate flux through glucose oxidative pathways
actually reduces (34). During the late stages of HF, the glucose
availability for ATP production is further impaired by the
association of a marked IR (44), even though some authors
suggest that the cardiac IR may represent a beneficial mechanism
protecting the heart from fuel overload (45).

Ketone bodies may represent a relevant energy source in the
HF setting when metabolism of other energy substrates falls (46).
Indeed, an upregulation of the enzymes involved in ketone body
metabolism is reported in both murine models (47) and patients
with advanced HF (48). Since the ATP production/oxygen
consumption ratio of the β-hydroxybutyrate is higher (2.50) than
that of FA palmitate (2.33), this ketone body has been proposed
as a “super fuel” enhancing cardiac metabolic efficiency (34).

Metabolic Disturbances in Diabetic Heart
Exposure to hyperglycemia by itself decreases insulin signaling
and glucose uptake in cardiomyocytes (49). Essentially, due
to the impaired capacity to transport and metabolize glucose
determined by insulin deficiency in T1DM and IR in T2DM, the
diabetic heart shifts away from glucose as an energy source and
gets in a “metabolically inflexible” and less efficient FA-dependent
state. This is a crucial pathophysiological condition if considering
that glucose is the unique cardiac substrate able to provide ATP
during hypoxia or ischemia (50).

Consistent with a prevalent FA utilization, the diabetic heart
shows an increased expression of the FA transporter CD36
on both sarcolemmal and endosomal membranes, with an
enhanced subcellular vesicular recycling from endosomes to
plasma membrane (51). Excess FAs activate PPAR-α, which
increases expressions of genes involved in FA oxidation, but also
suppresses glucose utilization (52). These typical derangements
in the myocardial energy metabolism of diabetic heart are
mimicked in mice with cardiac-restricted overexpression of
PPAR-α (39). However, studies in diabetic patients either with
or without HF argue against an activation of the PPAR-
α signaling axis which drives the increase in FA uptake
and oxidation (53, 54). Another proposed mechanism for
enhanced FA oxidation may be the increased acetylation of
mitochondrial β-oxidation enzymes observed in an obese animal
model (55).

Excessive FA oxidation increases ATP expenditure for futile
cycling of metabolic intermediates, inhibits ATP shuttling from
mitochondria to the cytosol, and increases the expression of
mitochondrial uncoupling protein (UCP) 3 through PPAR-
α, thereby dissipating the mitochondrial proton gradient and
deteriorating the ATP production efficiency (56, 57). Finally,
these changes produce oxidative stress and mitochondrial
dysfunction (58). Moreover, the dissipation of the mitochondrial
membrane potential might interfere with excitation–contraction
coupling and mitochondrial Ca2+ uptake, thus potentially
underlying arrhythmias (59).

Frontiers in Medicine | www.frontiersin.org 4 June 2021 | Volume 8 | Article 695792

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Salvatore et al. Diabetic Cardiomyopathy Pathophysiology

A deposition of lipids and their metabolites in the cytosol
of cardiomyocytes has been documented in DM animal models
(60). Human studies using Oil Red-O staining of explanted
hearts at the time of heart transplantation have demonstrated
cardiac steatosis (28, 41). This excess accumulation of lipids
leads to myocardial IR and reduced bioavailability of nitric
oxide (NO) (61). Increased levels of DAG in cardiomyocytes
activates protein kinase C (PKC) isoforms, thus reducing insulin
metabolic signaling and NO production. Similarly, ceramide
directly activates atypical PKCs to phosphorylate and inhibit
the insulin metabolic Akt signaling and disrupts endothelial
NO synthase (NOS) signaling impairing NO bioavailability (62,
63). As well, ceramide may activate caspase 3 and stimulate
cytochrome C release, thus inducing cellular apoptosis, and
inhibit key pathways involved in defense against DNA damage,
such as Poly ADP ribose polymerase (PARP) (64).

A relevant question is whether the altered substrate
metabolism is cause or consequence of the failing heart in
diabetes. A ventricular biopsy study has showed that even in
the absence of contractile failure the diabetic heart exhibits a
decreased mitochondrial capacity for β-oxidation, increased
accumulation of intracellular lipids, ER stress, and a higher
degree of apoptosis (65). Another very recent human bioptic
study suggests the crucial role of the toxicmetabolicmilieu of DM
in the early progression of DM-CMP (66). A lipid accumulation
in cardiomyocyte was found after only 3 months in non-DM
hearts transplanted to diabetic patients. Moreover, triacylglycerol
and ceramide contents were both related with early dysfunctions
in DM recipients after 12 months. Levels of myocardial insulin
receptor were lower in healthy hearts transplanted in DM than
non-DM recipients, and SREBP1c (sterol regulatory-element-
binding protein-1c) and PPAR systems were highly expressed in
cardiomyocytes of DM recipients.

Hyperglycemia and Glucotoxicity
Sustained exposure to high glucose levels is a major driver of
cardiac pathology in DM (67–69). In an observational study
on individuals with T1DM, the incidence of HF increased
monotonically with the HbA1c, with a range of 1.42–5.20 per
1,000 patient-years between patients in the lowest (<6.5%) and
highest (>10.5%) HbA1c categories (70). In a similar study on
T2DM patients, each 1% increase in the HbA1c corresponded to
an 8% increase in the HF risk (71). Conversely, in T2DM patients
of UK Prospective Diabetes Study, each 1% reduction in HbA1c
level corresponded to a 16% reduction in the risk of HF (72).

The detrimental effect of chronic hyperglycemia, referred
to as “glucotoxicity,” is mainly mediated by oxidative stress,
increased formation of AGEs and enhanced substrate flux
through alternative metabolic pathways (50).

Oxidative Stress
Hyperglycemia contributes to oxidative stress in diabetic heart
by excessive oxygen radical formation from the auto-oxidation of
glucose, formation of glycated proteins, and impaired buffering
capacity due to glycation of metfodant enzymes (73, 74).

The mitochondrial electron transport chain is among the
first targets of high glucose levels, with a direct increase in

superoxide anion formation. Moreover, high glucose activates
protein kinase C (PKC), thus leading to up-regulation of
NADPH oxidases (NOX), xanthine oxidase, uncoupling of NO
synthase (NOS), microsomal P-450 enzymes, and arachidonic
acid metabolism pathways (75). The consequent increased
reactive oxygen species (ROS) impair cardiac structure and
function by directly damage DNA, proteins and phospholipids,
and promote myocytes apoptosis. Kuster et al. found that a short-
period of exposure to H2O2 of in vitro rat ventricular myocytes
determined a progressive decrease in cell shortening, followed
by diastolic arrest. The possible mechanisms were the direct
oxidative modification of sarcoplasmic/endoplasmic reticulum
calcium-ATPase (SERCA) and Na+/Ca2+ exchanger (NCX) (76).
One harm of the superoxide generation stands in its interaction
with NO to form peroxynitrite, a potent oxidant involved in
enhanced apoptosis of both animal and human cardiomyocytes
(77, 78).

Antioxidant responsemay be a determinant of the heart health
in diabetes. Other findings reveal that the mitochondrial isoform
of aldehyde dehydrogenase (ALDH2) may play a role in the
development of DM-CMP, possibly through protection against
oxidative stress and preservation of mitochondrial integrity (79).
Evidence from literature indicates that diabetes upregulates the
Ras-related small G protein RhoA, a factor that may impair
cardiac function determining uncoupled eNOS, reduced NO
bioavailability, and enhanced O−

2 . IGF-I is a crucial cardiac
survival factor that downregulating RhoA produces beneficial
effects also mimicked by the Rho kinase inhibitor Y27632 and
BH4, a finding indicating that the selective IGF-I overexpression
may represent a therapeutic potential for DM-CMP (80).

Enhancing cardiac endogenous antioxidant capacity is an
attractive way to prevent DM-CMP. A pivotal target may
be represented by Nrf2, an important regulator of cellular
detoxification responses and redox status that can lead to
antioxidant response elements (ARE)-mediated basal and
inducible expression of more than 200 genes (81). Sulforaphane,
a molecule within the isothiocyanate group of organosulfur
compounds from cruciferous vegetables, such as broccoli,
Brussel sprouts or cabbage, is a potent Nrf2 activator (82).
A study on db/db mice fed with broccoli sprout extract or
sulforaphane for 3 months showed significant prevention of
diabetes-induced cardiac oxidative damage and inflammation
by up-regulating Nrf2 transcriptional activity (83). A recent
study on mice provided the direct evidence that the preventive
effect of sulforaphane against DM-CMP depends on AMPK
resulting from both improvement of AMPK-mediated lipid
metabolism and potentiation of antioxidative pathway mediated
by AMPK/AKT/GSK3β signaling (84).

Accumulation of Advanced Glycation End Products
Persistent hyperglycemia causes the non-enzymatic glycosylation
of proteins and enzymes with production of toxic AGE adducts,
irreversibly altering their structure and functions (85). As an
example, AGEs formed on SERCA2a in diabetes impair the
sarcoplasmic reticulum (SR) Ca2+ reuptake in cardiomyocytes
and slow cardiac relaxation (86), whereas long-term treatment
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with an AGE crosslink breaker partially normalized SR Ca2+

signaling (87).
A significant increase in AGE compounds and their binding

to cell surface specific receptors (RAGEs) trigger a cascade
of pathophysiological responses responsible of severe cardiac
damage. Among these, the activation of PKC and NOX lead
to the fabrication of peroxide and, ultimately, of ROS, and
to the maladaptive activation of mitogen-activated protein
kinase (MAPK) and nuclear factor kappa B (NFκB) signaling,
followed by the production of several inflammatory and/or
profibrotic factors, as well as upregulation of apoptosis (via
p53 and calcineurin signaling) and autophagy (88–92). All
these mechanisms may cause functional and structural damage,
till cardiomyocyte death and eccentric LV remodeling with
systolic dysfunction.

Interestingly, metformin induces activation and
phosphorylation of MAPK, which could mediate its several
extraglicemic effects (93, 94).

As shown by light microscopic immune-histochemical
visualization, AGEs also accumulate in the myocardial
interstitium between cardiomyocytes (95). The non-structural
compartment of extracellular matrix (ECM) is represented
by a variety of proteins (including collagen IV, laminin,
fibronectin, myelin, tubulin, plasminogen activator 1, and
fibrinogen), vital for ECM plasticity and with glycosylation as
a common denominator (96). Besides ECM disturbation by
oxidative stress and inflammation, accumulation of AGEs in
the interstitium stimulates the differentiation of fibroblasts into
myofibroblasts (via Janus kinase-signal transducer and activator
of transcription, JAK-STAT signaling), which produce excess
matrix proteins, and the crosslink matrix metalloproteinases
(MMPs), which indeed impair ECM degeneration. The increased
resistance of connective tissue to enzymatic proteolysis and the
enhanced collagen cross-linking lead to myocardial fibrosis and
stiffness, thus resulting in impaired compliance and diastolic
LV relaxation (97–99). This process is potentially mediated by
the up-regulation of pro-fibrotic cytokines such as transforming
growth factor-β (TGF-β) and connective tissue growth factor
(CTGF) (100).

In DM-CMP, an abundant AGEs deposition even involves
both endothelial and smooth muscle cells of myocardial
microvasculature by triggering vascular inflammation and
dampening endothelial NO production (101, 102).

As evidence for the role of AGEs in DM-CMP pathogenesis,
the cleavage of preformed AGE crosslinks with ALT-711
attenuates the diabetes-associated cardiac abnormalities in rats
(103), and the administration of a RAGE antagonist in a
rat model of T1DM prevents AGEs/RAGE signaling-mediated
increases in myocardial collagen, fibrosis, stiffness and diastolic
dysfunction (104).

The soluble RAGE (sRAGE) is the circulant isoform of
RAGE which, by competing with cellular RAGE, may inhibit
the pro-inflammatory and pro-fibrotic activity of AGE (105).
Unsurprisingly, lower levels of circulating soluble receptors for
AGEs predict incident HF in patients with DM (106).

A recent study on experimental diabetes has demonstrated
that the inhibition of AGE formation by aminoguanidine exerts

a beneficial effect against cardiac remodeling and contractile
dysfunction, likely through the regulation of autophagy and ER
stress (107).

Activation of Polyol Pathway
In In a high-glucose state as diabetes, aldose reductase converts
a part of glucose overload to sorbitol, which is oxidized to
fructose by sorbitol dehydrogenase. The first reaction produces
a depletion of NADPH, a molecule essential for the functioning
of various endothelial enzymes, including cytochrome P450 and
NO synthase, and a cofactor in the generation of the reduced
glutathione. The second reaction increases the cytosolic NADH:
NAD+ ratio, which can inhibit the glyceraldehyde-3-phosphate
dehydrogenase (GAPDH), and increase the concentrations of
triose phosphate, with consequent formation of AGE and
DAG (108).

The chronic elevation of DAG in diabetes (and in part the
increased circulating levels of FAs) activates PKC, a central
player in signal transduction and intracellular crosstalk, by
phosphorylating a huge array of substrates on serine/threonine
residues. PKCβ2 isoform is over-expressed in the myocardium
of diabetic animal models and patients with HF (109, 110), and
the activation of the PKC/DAG signaling pathway is associated
with biochemical and structural changes typical of DM-CMP
(e.g., reduced blood flow, increased vascular permeability,
basal membrane thickening, ECM deposition, and cardiac
hypertrophy) (111–113). On the contrary, PKC inhibition may
reverse structural and functional derangements in the diabetic
heart (114).

Maladaptive Hexosamine Biosynthesis
During chronic hyperglycemia, a small percentage of glucose
is shuttled through the hexosamine biosynthesis pathway, thus
generating the O-linked β-N-acetylglucosamine (O-GlcNAc).
This metabolite may rapidly bind to a multitude of proteins
altering their function via the O-GlcNAc transferase (115).
The ones specifically involved in the progression of DM-
CMP include Ca2+/calmodulin-dependent protein kinase II
(CaMKII), phospholamban and myofilaments, with a negative
impact on cardiac contractility and relaxation (116).

Several studies have suggested that O-Glc-N-Acylation
of cardiomyocyte proteins might be associated with the
development of cardiac hypertrophy (117, 118). This pathogenic
mechanism of myocardial hypertrophy has been recently
confirmed both in cultured cells and in vivo, as triggered by high
carbohydrate diets (119). The reduction of the excess cellular
O-Glc-N-Acylation, indeed, obtains beneficial effects on calcium
handling and diabetic cardiac function (120).

Many mitochondrial proteins are highly susceptible to O-
Glc-N-Acylation, which suggests another way for hexosamine
pathway to induce cardiac dysfunction in diabetes (121).

Insulin Resistance
Increasing evidence points to IR as a primary etiologic factor in
DM-CMP development.

IR impairs the myocardial glucose utilization and increases
the expression of myocardial UCPs. The resulting decline in

Frontiers in Medicine | www.frontiersin.org 6 June 2021 | Volume 8 | Article 695792

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Salvatore et al. Diabetic Cardiomyopathy Pathophysiology

the efficiency of high-energy phosphate production prevents the
myocardial adaptive response to injury, as observed in patients
with HFpEF (122, 123).

IR impairs the phosphatidylinositol 3-kinase/protein kinase
B (PI3K/Akt) signal transduction pathway to elicit normal
metabolic responses. The resultant reduction of glucose
oxidation decreases the Ca2+ ATPase activity and moves Ca2+

back into the SR, thus increasing the intracellular content of
ion (30, 124). Since PI3K/AKT can also activate endothelial
NOS (125), the reduced NO production in IR states further
increases the intracellular Ca2+ levels and Ca2+ sensitization
in cardiomyocytes via the cGMP/PKG signaling pathway
(30, 51, 126). On the other hand, through the PI3K/Akt pathway,
the higher insulin levels associated to IR may induce the
titin switching toward the stiff N2B isoform, thus impairing
cardiomyocyte distensibility (127).

All these abnormalities may promote cardiac stiffness and
diastolic dysfunction, being mainly relevant to restrictive/HFpEF
phenotype of DM-CMP, especially in obese T2DM patients.
Other contributing mechanisms of IR to myocardial injury are
lipotoxicity, sympathetic up-regulation, inflammation, oxidative
stress, and fibrosis (128).

The impact of IR on cardiac morphology and function
has been extensively documented in clinical studies. In the
Framingham Heart Study, LV mass and wall thickness increased
with worsening glucose intolerance, and the relation between IR
and LV mass observed only in women, was largely dependent on
obesity (129). A recent longitudinal study with a 25-yrs follow-
up period revealed that cumulative exposure to DM or higher
IR adversely affects LV remodeling and function (130). A link
between IR and concentric LV remodeling and hypertrophy is
confirmed in studies using cardiac magnetic resonance imaging
(131, 132).

Intriguingly, opioid system, which seems related to IR (133),
play a role in HF (134).

PATHOPHYSIOLOGICAL MECHANISMS
PROMOTING DM-CMP

A plethora of mechanisms mostly connected to the above-
described metabolic alterations, act in unison to promote
cardiomyocyte injury and cardiac dysfunction in DM.

Altered Calcium Homeostasis and
Calcium/Calmodulin Dependent Protein
Kinase II
Perturbations in the cytosolic calcium trafficking and ventricular
excitation-contraction coupling at cardiomyocyte level are
the mechanistic hallmark of cardiac dysfunction in diabetes
(124). Physiologically, the excitation of the cardiomyocyte
determines the actin-myosin interaction and contractile activity
by inducing Ca2+ influx via L-type Ca2+ channels in the
plasma lemma and subsequent Ca2+ transient, i.e., Ca2+

release from sarcoplasmic reticulum (SR) through ryanodine
receptors. During cardiomyocyte relaxation, Ca2+ actively moves

from cytoplasm into SR by SERCA, with the contribution of
sarcolemma Ca2+ extrusion by NCX and Ca2+ATPase (135).

In diabetic cardiomyocytes, the activity of SERCA and NCX
is impaired, likely by either reduction in protein levels or
its post-translational modification because of non-enzymatic
glycosylation (136). The slower Ca2+ transients and leaky
Ca2+ release channel, result in an impaired calcium load of
SR, which is the primary organelle for handling intracellular
calcium. To support the correlation between Ca2+ handling
and cardiac dysfunction, cardiac overexpression of SERCA2a
significantly improves myocardial contractility in streptozotocin-
induced diabetic rats (137). Being the calcium efflux from cytosol
depressed, the cardiomyocyte relaxation impairs, and the action
potential duration prolongs (138). These changes are likely
associated with the clinical finding of diastolic dysfunction.

CaMKII is a multifunctional serine/threonine kinase
physiologically activated in response to β-adrenergic receptor
signaling, which targets a number of Ca2+ homeostatic proteins
in the heart (139). During acute cardiomyocytes activation,
CaMKII stimulates glucose uptake, energy production,
sarcolemmal ion fluxes, SR Ca2+ release/reuptake and myocyte
contraction/relaxation coupling, all mechanisms empowering
the physiological cardiac adaptation. In diabetic myocardium,
as a result of impaired Ca2+ handling and oxidative, nitrosative
and hyperglycemic stresses, CaMKII is in a state of chronic
maladaptive upregulation leading to inefficient substrate
utilization, mitochondrial dysfunction, inflammation, fibrosis,
ion channel remodeling, impaired intracellular Ca2+ handling,
contractile dysfunction, and increased risk of arrhythmias
(140, 141). In a recent study, the cardiac tissue from both T2DM
patients and rats presents an elevated CaMKII activation as
compared to non-diabetic controls. Moreover, the trabeculae
from diabetic rats have reduced contraction and relaxation
performance, which may be restored by the inhibition of this
kinase (142).

Mitochondrial Dysfunction, ER Stress, and
Altered Mitophagy
The increased β-oxidation exceeding the respiratory capacity
of mitochondria in diabetic hearts induces accumulation of
toxic lipid metabolites and generation of oxidative stress and
inflammation, which further deteriorate mitochondrial function,
possibly culminating in cardiomyocyte death (143). In addition,
the signaling pathways by which AMPK activates the PPAR-
γ coactivator-1α (PGC-1α), the master metabolic regulator of
mitochondrial biogenesis and respiratory function, is impaired
in advanced DM-CMP (51).

The hyperglycemia-stimulated ER stress may be the initiator,
concomitantly with the FA overload of cardiomyocytes, of
an adverse mitochondrial remodeling in human diabetic
myocardium (144). ER stress is a condition of over-accumulation
of misfolded proteins triggered by intracellular buildup of
saturated FA and oxidative stress (145). If the activation of the
“unfolded protein response” aiming to restore a normal ER
function fails, the cardiomyocyte may go toward a profound
mitochondrial dysfunction, including decreased ability to process
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FA up to self-destruction by apoptosis (146). Upregulation of
GRP78 and induction of CHOP, two markers of ER stress
response, has been recently described in LV myocardium from
diabetic patients (65), consistent with previous findings in animal
models of T2DM (147).

Mitophagy, a type of selective autophagy where the
damaged or unnecessary mitochondria are sequestered by
auto-phagosomes and degraded by lysosomes, is an essential
step in maintaining mitochondrial homeostasis in the heart,
together with mitochondrial fission, fusion, and biogenesis
(148). Increasing lines of evidence suggest that mitophagy is
significantly changed in diabetic cardiomyocytes, and some vital
proteins involved in this process have been found altered inmany
diabetic tissues, including heart (149, 150). Even in the context
of metabolic syndrome, cardiac mitophagy is altered (151).

Autophagy, Apoptosis, and Senescence of
Myocytes
Adult cardiomyocytes rarely proliferate, thus their death may
represent the primummovens for the cascade of hypertrophic and
fibrotic LV remodeling leading to progressive heart dysfunction,
till congestive HF. Higher rates of myocyte death, as determined
by autophagy, apoptosis, and senescence, characterize DM-
CMP (152).

Constitutive autophagy, a highly conserved process for
bulk degradation and recycling of cytoplasmic components
in lysosomes, is a homeostatic mechanism crucial to
counter oxidative stress and AGE formation and to protect
cardiomyocytes from aging-related and ischemia-induced
cardiac hypertrophy (153, 154). Bellot et al. reported that ROS
and autophagy mutually regulate and that elimination of ROS-
damaged cells via autophagy is a protective mechanism (155).
Indeed, if autophagy is suppressed and excessive ROS persists,
the cardiomyocytes would eventually go toward apoptotic death
(156). On the other hand, excessive induction of autophagy may
indiscriminately destroy cytosol and organelles and determine
hypertrophy and fibrosis, with an accelerated progression to
ventricular dilatation and decline in systolic performance (157).

The concomitant release of autophagy-related factors,
as observed under high-glucose conditions, may contribute
to cell death and cardiac dysfunction (158).The activation
of PI3K/Akt/mTOR signaling pathway, instead, an
essential regulator of cardiac autophagy (159), ameliorates
hyperglycemia–induced cardiac hypertrophy (160). A study
convincingly supports insulin signaling as a significant regulator
of myocardial autophagy, mediating in early life its physiological
postnatal suppression, thereby linking nutrient sensing to
postnatal cardiac development (161).

Whether the autophagic responses are adaptive or
maladaptive remains controversial. Likewise, the role of
autophagy in diabetic heart has been not fully understood
yet. Several reports show an increased/decreased/unchanged
autophagy in the hearts of either humans or animals with T2DM
(162). In a study on animal models, autophagic adaptations
in DM-CMP seem remarkably different between T1DM and
T2DM, being overactivated in the first, but suppressed in the

second (163), but even on this topic data are controversial
(164). Likely, autophagy regulates both cell survival and cell
death in diabetic heart through a strict cross-talk with apoptotic
pathways (152), and apoptosis is involved in DM-CMP mainly
as a consequence of autophagy dysregulation (165, 166).

A significant increase of apoptosis and cell necrosis
characterizes both animal models and patients with DM.
Endomyocardial biopsies in diabetic patients with dilated
cardiomyopathy show a 4-fold increase of necrosis in
cardiomyocytes, 9-fold in endothelial cells, and 6-fold in
fibroblasts as compared to their non-diabetic counterparts (167).
Hyperglycemia-induced ROS production speeds up apoptosis,
some of which is elicited by angiotensin II and glycosylation
(168). Many other factors (e.g., mitochondrion damage, oxidative
stress, ER stress, inflammation, and even fibrotic signaling) can
activate either pro-apoptotic or necrosis signaling pathways in
the diabetic heart (169).

The phenomenon of senescence is typically attributed to
telomere shortening after repeated cell division. Currently, we
know that senescence is also inducible by a series of pathogenic
stimuli involved in apoptosis, such genotoxic, mitochondrial
and oxidative stresses, as well as inflammation. Moreover,
the accumulation of senescent cells can itself cause persistent
inflammation and oxidative stress via a so called “senescence-
associated secretory phenotype” leading to organic dysfunction
(169). It is also well-known that senescent cells contribute to
the outcome of a variety of cardiac diseases, including age-
related and -unrelated cardiac diseases like DM-CMP (170).
In this context, DM may impair the in vitro proliferation
and differentiation potential of adult cardiac stem/progenitor
cells, further worsening their senescence phenotype, even when
compared to non-diabetic ischemic patients (171).

Inflammation
Likewise to the known contribution of inflammation to other
HF etiologies, both systemic and local maladaptive inflammation
responses are strongly concerned with the progression of DM-
CMP (172, 173).

Exposure of heart to glucose or FA excess activates NFκB, a
protein complex which controls DNA transcription and induces
the expression of proinflammatory cytokines (IL6, pro-IL18,
pro-IL1β, and TNF-α) and the assembly of NLR family pyrin
domain-containing 3 (NLRP3) inflammasome (30, 51). Similarly,
AGE/RAGE signaling promotes NF-κB activation and mediates
an inflammatory reaction by heterodimerizing with toll-like
receptor-4, thus leading to the production of NLRP3, pro-IL1β,
and pro-IL18 (104). Activated NLRP3 inflammasome plays a
crucial role in the pathogenesis of HF in diabetes, resulting in
amplification and infiltration of inflammatory cell, whereas a
decrease in NLRP3 attenuates cardiomyopathy in a T2DM rat
model (174–176).

Monocytes/macrophages are leading players in DM-CMP
pathogenesis. Particularly, macrophage proinflammatory M1
polarization is increased and macrophage M2 anti-inflammatory
response inhibited in diabetic heart (177). The recruitment of
these cells to sites of inflammation is induced by the C-C
chemokine receptor type 2 (CCR2) (178), and macrophages
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derived from CCR2+ monocytes are required for adverse left
ventricle remodeling (179). A recent study onmice demonstrated
that the heart expression of CCR2 associated to persistent
hyperglycemia leads to DM-CMP development, whereas the
inhibition of this chemokine could inhibit oxidative stress and
M1 macrophage infiltration in diabetic hearts (180).

Apart from macrophages, an involvement of neutrophil
and lymphocyte regulation in DM-CMP has emerged. Chronic
systemic inflammation in diabetes leads to leukocyte activation
and recruitment to various organs with further inflammatory
tissue remodeling over time ultimately evolving in fibrosis. At
heart level, this may result in reduced cardiac output that
ultimately stimulates further cardiac inflammation and fibrosis
leading to dilation and established heart failure (181). These
pathways may be critical to the discovery of new targeted
therapies for controlling DM-CMP progression. As an example,
the T cell-specific deletion of sphingosine 1-phosphate receptor
1 (S1PR1), as well as the administration of the S1PR1 antagonist
FTY720, are able to exert protection against cardiac fibrosis in a
streptozotocin-induced diabetic model (182, 183).

Recently, the role of adipokines (e.g., adiponectin) on
the cardiovascular outcome has been well-described (184).
Moreover, several less investigated mechanisms might be
involved in cardiovascular inflammation (185–187).

Endothelial Dysfunction
Regardless of the relevance for both accelerated atherogenesis
and microvascular diabetic complications, the impaired
endothelial function of coronary microvessels is a key feature of
DM-CMP (188), especially contributing to diastolic dysfunction
and HFpEF (189).

The hallmark of ED is the impaired endothelium-mediated
arterial vasodilation as a consequence of depressed bioavailability
of nitric oxide (NO), a short-living mediator generated from
L-arginine by endothelial NOS (eNOS) (190). During the
early stages of IR and DM-CPM, the impaired NO-induced
vasodilatation may be balanced by the either preserved or even
enhanced endothelium-derived hyperpolarizing factor (EDHF)-
mediated vasodilatation. Later, even this mechanism degenerates,
thereby promoting microvascular dysfunction (30, 191).

Exposure of endothelial cells to excessive and/or fluctuating
blood glucose levels can stimulate the generation of ROS
and AGEs, with the consequent downregulation of eNOS and
production of NO and cGMP (192, 193). In addition, superoxide
anion inactivates NO by forming the more powerful oxidant
peroxynitrite, thus triggering nitrosative stress and premature
endothelial senescence (188).

The low NO bioavailability to adjacent cardiomyocytes
decreases cGMP production and protein kinase G (PKG) activity,
with consequent increased ratio of titin isoform N2B:N2BA
expression and of intracellular Ca2+ content and sensitization.
These changes result in a slow relaxation, high diastolic
stiffness, and impaired cardiomyocyte elastance (194). As support
to the relevance of this mechanism, PKG administration to
cardiomyocytes isolated from DM-CMP patients with this
phenotype corrects their high resting tension (99). Similar
alterations have been observed in cardiomyocytes isolated from

patients suffering from both aortic stenosis and DM (195). In
addition, ED is associated with microvascular inflammation due
to an increased expression of adhesion molecules and local
infiltration and accumulation of macrophages expressing TGF-
β. As a consequence, myocardial fibroblasts transform into
myofibroblasts responsible of interstitial fibrosis (188). The role
of TNF-alpha on ED has also been observed (196).

Notably, an increased albuminuria, marker of renal ED,
is strictly related to a poor CV outcome in diabetic patients
(197–200).

Microvascular Rarefaction
Similar defects in endothelium-dependent/independent
vasodilation involve coronary microcirculation in both T1DM
and T2DM patients (201). In addition, structural microvascular
alterations impairing the capacity of coronary vascular bed
independently of coronary atherosclerosis, may also contribute
to DM-CMP (202).

In the myocardium of a well-recognized murine model
of diabetes, a significant decline in microvessel density,
reduced expression of selected VEGF isoforms, and increase in
oxidative stress have been described, all significantly associated
with measures of LV performance (203). In a study on
patients with end-stage HF, capillary rarefaction and pericyte
loss, accompanied by decreased contractility and increased
stiffness, characterize diabetic human myocardial explants
as compared to non-diabetic samples (204). In the same
study, in vitro experiments on murine endothelial cells have
shown that hyperglycemia attenuates tube formation, migration,
and pericyte attraction upon proangiogenic stimulation (204).
Moreover, the relative microvascular rarefaction resulting from
cardiomyocyte hypertrophy is itself sufficient to induce cardiac
fibrosis and diastolic dysfunction (205).

Autoimmunity
Immune inflammation is involved in the pathogenesis
of myocarditis and cardiomyopathy (206). An immune
biopathology has also been suggested in the pathogenesis of
DM-CMP, especially in autoimmune-prone T1DM patients.

MI has been reported to induce sustained proinflammatory
CD4+ T-cell and auto-antibody responses against α-cardiac
myosin heavy chain, a major autoantigen in myocarditis,
both in mice models and in patients with T1DM, but not
in control mice and T2DM subjects. Shared cardiac myosin
autoantibody signatures between post-MI in T1DM patients
and non-diabetic patients with myocarditis also suggests a post-
infarction autoimmune syndrome in T1DM patients (207).

Some authors suggested that the cardiac insults of
severe diabetic ketoacidosis might initiate the synthesis of
antibodies directed to cardiac self-antigens involved in the early
immunopathogenesis of cardiomyopathy in young patients with
T1DM (208). By measuring prevalence and profiles of cardiac
autoantibodies in longitudinal samples of T1DM patients from
the Diabetes Control and Complications Trial, poor glycemic
control has been demonstrated as associated with cardiac
autoimmunity, as shown by the presence of multiple cardiac
autoantibody types (209).
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Epigenetics
Epigenetics, the inheritable changes in gene expression without
change of DNA sequences, represents a significant link between
environmental exposure, as hyperglycemia, inflammation, and
oxidative stress, and alterations in gene activity (210).

MicroRNAs (miRNAs) are a group of small, single-strand
RNA molecules belonging to the non-coding RNA family,
which affect their target genes at a post-transcriptional level
by either inhibiting mRNA or degrading protein production
(211), whose dysregulated expression is highly implicated in the
pathophysiology of DM-CMP.

Some miRNAs abundantly expressed in cardiomyocytes, such
as miR-1 and miR-133a, are reduced in T2DM patients (212). In
streptozotocin-induced diabetic rats, miR-133a overexpression
is able to improve myocardial contractility through the
upregulation of tyrosine aminotransferase, a known regulator
of norepinephrine production and β-adrenergic receptors
(213). Jeyabal et al. found a considerably decreased miR-
9 expression in high glucose-cultivated cardiomyocytes and
human DM myocardium (214). Downregulation of miR-30c
mediates the pro-hypertrophic effects of hyperglycemia in
diabetic cardiomyopathy by upregulating Cdc42 and Pak1
genes (215). Li et al. established that miR-30d leads to
cardiomyocyte pyroptosis in DM-CMP by direct repression of
Foxo3a expression (216). Cardiac-enriched miR-1 and miR-206
are responsive to hyperglycemia and favor the apoptosis of
cardiomyocytes through the negative regulation of the heath
shock protein 60 (217). Recent evidence demonstrates that miR-
208 and miR-499, together with miR-1 and miR-133, might play
a role in the differentiation of stem cells into cardiomyocytes
(218). A proposed role for miR-208 in diabetic heart disease is
the regulation of myosin heavy chain gene expression (219).

Some literature suggests an involvement of exosomes in
DM-CMP, the extracellular vesicles containing a variety of
biological components, including miRNAs, proteins and lipids,
which mediate the intercellular communication (220). The stress
induced by hypoxia, inflammation, and hyperglycemia has been
reported to increase protein and mRNA content in endothelial
cell-derived exosomes, and the exosomes released from diabetic
cardiomyocytes could deliver detrimental components able to
initiate endothelial cell dysfunction and impair angiogenesis
(30). Of note, heat shock protein 20-engineered exosomes exert
beneficial effects via the modulation of cardiomyocyte exosome
secretion with restoration of normal cardiac function under
hyperglycemic conditions (221).

Long non-coding RNAs (lncRNAs) are non-protein coding
transcripts longer than 200 nucleotides with both nuclear and
cytoplasmic location which regulate gene expression through
a variety of molecular mechanisms, including the interaction
or competition with other RNAs, DNA binding proteins, and
specific regulatory DNA sequences (222). Recently, the lncRNA
H19 has been found remarkably reduced in a murine model of
DM-CMP as a consequence of hyperglycemia, and to regulate
cardiomyocyte apoptosis by targeting VDAC1, a mitochondrial
porin involved in ATP transport (223).

Histone acetylation is a rapid and dynamic process mainly
regulated by histone acetyltransferases (promoting gene

transcription) and histone deacetylases (preventing gene
transcription), which represent a major epigenetic mechanism
whose deregulation may induce the development of several
diabetic complications (224). BRD4, a histone acetylated reader
protein which regulates either the activation or repression of
gene transcription, has been recently identified as a critical
mediator of hyperglycemia-induced cardiomyocyte hypertrophy
and cardiac fibrosis through the AKT pathway (225).

A study in streptozotocin-induced diabetic rats has recently
found that DNA methyltransferase-1 enhances cardiac fibroblast
autophagy in diabetic cardiac fibrosis through inhibiting
androgen receptor axis (226).

Activation of the
Renin-Angiotensin-Aldosterone System
In a context of IR and hyperglycemia, the inappropriate
activation of RAAS despite a state of salt and volume excess, plays
an important role in the development of DM-CMP (30), whereas
the RAAS block protects against cardiac damage (227).

Beyond receptors AT1 and AT2, Ang-II interacts with NOX,
resulting in an overload of oxidants and free radicals in the
body, with the subsequent exacerbation of oxidative stress
and inflammation (169). This effect is supported by studies
showing the effectiveness of ramipril in preventing upregulation
of p47phox, p22phox, and reducing NADPH driven oxide
production (228). Blocking of Ang-II also reduces the expression
of p22phox, NOX and hyperglycemia-induced p47phox (229).

Activation of RAAS may induce systemic and cardiac
IR through the mTOR–S6K1 signal transduction pathway
(230). Meanwhile, enhanced angiotensin II type 1 receptor
and mineralocorticoid receptor signaling in the myocardium
enhance the adaptive proinflammatory immune response
and inflammation, including increases in leukocyte adhesion,
cytokine expression and macrophage infiltration (231).

Cardiovascular Autonomic Neuropathy
Diabetes is often associated to both neurosensorial damage and
neuropathy (232). In particular, diabetic Cardiac Autonomic
Neuropathy (CAN), in the absence of cardiac disease, seems
associated with LV systolic andmainly diastolic dysfunction, even
though it is difficult to assess its independent role among the
multitude of factors involved in DM-CMP (233).

Due to an initial predominant parasympathetic denervation,
excessive sympathetic activation in the early stages of diabetic
CAN may promote LV hypertrophy, thus affecting both
sympathovagal balance and baroreflexes (234). Moreover, an
abnormal norepinephrine signaling may induce myocardial
injury and LV remodeling via the cytotoxic effects of the
increased catecholamine heart content observed in diabetic
rat ventricles (235), eventually mediated by oxidative stress,
inflammation, and apoptosis (236–238).

On the other hand, the sympathetic denervation associated to
long-lasting diabetic CANmay impair β-adrenergic signaling and
reduce myocardial contractile strength, relaxation kinetics, and
diastolic distensibility (63, 239).

By changes in myocardial neurotransmitters, CAN may
also alter myocardial blood flow and directly deteriorate LV
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function. A diastolic dysfunction associated to abnormal cardiac
sympathetic function appears early in the course of T1DM, as
assessed by cardiac sympathetic imaging (240). Among subjects
with T2DM or IGT referred for elective coronary angiography,
those suffering from CAN have a higher prevalence and a more
severe form of LV diastolic dysfunction (241). In a study based on
cardiac magnetic resonance imaging in a large cohort of patients
with T1DM, the presence of CAN is associated with an increased
LV mass and concentric remodeling (242).

STRUCTURAL CHANGES IN DIABETIC
CARDIOMYOPATHY

The above-described detrimental pathways elicited by diabetes
at a systemic level and in the myocardium itself collectively
promote myocardial hypertrophy and interstitial fibrosis, the two
structural hallmarks identified in animal models and patients
with both T1DM and T2DM (32, 243). Depending on the
combination patterns of these two structural changes, the clinical
phenotype of DM-CMP varies from a subclinical diastolic
dysfunction to diastolic HFpEF and, eventually, to systolic
dysfunction and HFrEF (30, 244). In the HFpEF phenotype, the
LV is usually hypertrophied and stiff with normal LV volume.
At the cellular level, cardiomyocytes appear hypertrophied with
a normal structure of the sarcomere accompanied by increased
collagen deposition in the interstitial space. HFrEF phenotype is
usually associated with increased LV volume due to dilation, and
cardiomyocytes appear damaged, with loss of sarcomeres, and at
times replaced by fibrosis (63).

Cardiac Hypertrophy
Epidemiological data report diabetes and high-sugar diets as
risk factors for cardiac hypertrophy and other complications
(63, 243–245), a condition highly prevalent (up to 56%) in
asymptomatic T2DM patients (246–248). Cardiac hypertrophy
is strongly associated with the progression to HF, particularly if
hypertension coexists (249), and with a higher incidence of other
clinical events, including stroke and sudden death (250).

Cardiac myocytes are differentiated cells which have lost the
propensity of proliferation after birth. When exposed to high
glucose stress, they increase in size by enhanced protein synthesis
and addition of sarcomeres, but not in number, with a resulting
greater length (eccentric hypertrophy) or width (concentric
hypertrophy) (251). A re-expression of fetal genes has been
observed, such as myosin heavy chain (β-MHC) and GATA-1,
and activation of early response genes (252).

The microvascular endothelial dysfunction may contribute
to the cardiomyocyte enlargement through the parallel addition
of sarcomeres due to the removal of a NO-dependent brake
on pro-hypertrophic stimuli (188). The increased thickness
of ventricular walls in hypertrophied diabetic hearts may
partly depend on ECM enlargement. Accordingly, abnormally
increased myocardial echodensity, more likely related to collagen
deposition, has been detected in asymptomatic diabetic patients
with normal ventricular mass (253).

Hypertrophy and fibrosis are two coexisting structural aspects
of DM-CMP, likely generated by common pathophysiological
mechanisms. As an example, the loss of cardiomyocytes typical
of the diabetic heart stimulates the resident cardiomyocytes
to compensatively work and become hypertrophic, but
at the same time it evocates inflammation pathways
generating fibrosis.

Extracellular Remodeling and Interstitial
Fibrosis
Myocardial fibrosis is a main pathological feature of the diabetic
heart which involves both left and right ventricular walls, and can
lead to cardiac remodeling, dilation and dysfunction, as well as to
arrhythmias and, eventually, congestive HF (101) (Figure 2).

Cardiac fibroblasts, the primary matrix-producing cells in
the myocardium, help maintaining ECM homeostasis in healthy
hearts (254). The majority of resident cardiac fibroblasts
responsible for fibrotic response arise from the embryonic
epicardium. During development, these cells undergo epithelial-
mesenchymal transition under the influence of several growth
factors; subsequently, a portion of these mesenchymal cells
invade the myocardium to become the resident cardiac
fibroblasts. Studies have also revealed that cells of the
endocardium, a specialized cardiac endothelial lining, and
endothelial cells of the coronary vessel may migrate into
the interstitium where they undergo endothelial-mesenchymal
transition and respond to pro-fibrotic stimuli in a manner similar
to resident fibroblasts. Other cells such as pericytes of cardiac
vessels can differentiate into collagen-producing cells and may
contribute to the fibroblast population following cardiac injury.
Finally, the circulating fibrocytes are bone marrow-derived cells
considered a potential source of fibroblasts in the fibrotic heart.
They represent a unique fibroblast progenitor population that
co-express fibroblast markers, along with typical hematopoietic
markers (181).

Mechanical or bioactive pathological insults may induce
the phenotypic transition of fibroblasts from a resting to an
active state characterized by heightened proliferation, migration,
contractility, and ECM production (255). A high activation of
fibroblasts has been observed in hearts of db/db mice and atrial
tissue derived from T2DM patients, resulting in a dynamic
balance disorder of cardiac ECM synthesis and accumulation,
along with an excessive collagen deposition (256–258).

A dysregulation of specific collagen degrading
metalloproteinases (MMPs) and their tissue inhibitors (TIMPs),
two crucial determinants of interstitial accumulation of secreted
matrix proteins, also contributes to increased extracellular
collagen content in the diabetic heart (259, 260). Recently,
the enhanced expression of two isoforms of MMP-2 has been
induced by high glucose in vitro and in a T1DM murine heart
model (261).

The pathological processes referring to
diabetes which mainly remodel ECM include
hyperglycemia, AGE accumulation, inflammation,
oxidative stress, and increased levels of neuro-
hormones (258).
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FIGURE 2 | Pathogenic scheme of hypertrophy and fibrosis in the diabetic cardiomyopathy.

Excessive collagen deposition may derive from either
hyper-expression of TGF-β or CTGF, two key modulators
of collagen production. The former is either mediated by
angiotensin II activation or induced by high glucose and
leptin via increasing transcription, secretion, and activation
(169, 262, 263). On the other hand, in a study on a murine
model of obesity and IR given a diabetogenic diet for 11 weeks,
cardiac fibroblasts acquired enhanced myofibroblastic/fibrotic
gene expression but reduced responsiveness to TGF-β1
(264). Similarly, cardiac fibroblasts isolated from db/db mice
exhibited elevated collagen synthesis but weakened TGF-β1
response (256).

Myocardium tissues of diabetic rats and cardiac
fibroblasts treated with high glucose show a significant
increased expression of the calcium sensing receptor
(CaSR), a member of the C family of the G protein
coupling receptor superfamily widely expressed in both
prokaryotic and eukaryotic cells (265). A CaSR inhibitor
may alleviate the myocardial fibrosis induced by high
glucose (266).

The integrins, a family of transmembrane proteins able
to integrate and transduce mechanical and biochemical
signals, may have a key role in myocardial fibrosis by
inducing myofibroblast differentiation (267). Collagen treated
with methylglyoxal, a major cell-permeant precursor of
AGEs, appears to initiate a forward-feedback loop where
glycated ECM increases the expression of integrins. The
stiffed myocardial matrix further activates integrins and
up-regulates TGF-β, with worsened cardiac fibrosis. Indeed,

the deletion of the α11 integrin in streptozotocin-treated
diabetic animal models attenuates the cardiac fibrosis
(64, 268).

In addition to fibroblasts, even fibrogenic actions by
monocytes and macrophages, lymphocytes, endothelial cells and
pericytes, mast cells, and cardiomyocytes may contribute to the
diabetes-associated heart fibrosis (169).

DIABETES-INDUCED LEFT VENTRICULAR
DYSFUNCTION

Even though some authors have postulated that HFpEF
and HFrEF represent distinct phenotypes of DM-CMP (63),
these clinical patterns are traditionally described as two
stages occurring during diabetes progression. An early stage
characterized by increased myocardial stiffness, enhanced atrial
filling pressure and impaired diastolic function, may be followed,
even though not so commonly, by a late stage of further
impairment in diastolic function and appearance of a systolic
dysfunction (269).

LV diastolic and systolic dysfunctions can be efficiently
detected by echocardiography thanks to its large availability and
low cost (243). Unfortunately, screening approaches including B-
type natriuretic peptide, exercise stress testing, andmore sensitive
echocardiographic measurements, have not been fully validated
yet to identify subclinical dysfunction in diabetic patients (270).
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Diastolic Dysfunction
LV diastolic dysfunction displays from heart stiffening due to
both myocardial fibrosis and hypertrophy (100) and represents
the initial and most common functional deficit of diabetic
heart, generally previous the appearance of systolic dysfunction
(271, 272).

An impaired diastolic functioning of LV is detected
in 40–75% of asymptomatic T1DM/T2DM patients by
conventional echocardiography and tissue Doppler imaging,
being characterized by a delayed and extended diastolic
phase, with impaired early diastolic filling, prolongation of
isovolumetric relaxation, increased atrial filling and increased
myocardial stiffness, predominantly in late diastole (249).

Changes in diastolic function have also been widely reported
in diabetic animals without evidence of heart disease by other
factors (273). In a study of the 90s, diastolic dysfunction has
been associated with aging, long duration of diabetes, increased
blood pressure, interventricular septal thickness, dyslipidemia,
and high HbA1c (274).

Systolic Dysfunction
As DM-CMP insidiously proceeds and eccentric cardiac
remodeling develops, systolic dysfunction may appear, a
condition associated with a poor prognosis with an annual
mortality of 15–20% and a higher incidence of congestive HF and
sudden death (249).

Defects in excitation-contraction coupling at the
cardiomyocyte level, including impairment in cardiomyocyte
contraction, relaxation, and cytosolic calcium trafficking, as well
as epigenetic mechanisms and enhanced mitochondrial ROS
generation, may all contribute to this progressive worsening
(32, 124).

Even though systolic dysfunction usually follows diastolic
dysfunction at a later stage of the DM-CMP course, some studies
have detected systolic dysfunction in diabetic patients with
normal diastolic function, suggesting that diastolic dysfunction
may not necessarily be the first functional alteration (275).
In a T2DM population with no documented cardiovascular
disease and no signs of ischemia at stress test, asymptomatic
LV dysfunction was detected in 262 patients. Among these,
27% had isolated systolic dysfunction and 16% isolated diastolic
dysfunction (276).

EFFECTS OF ANTI-HYPERGLYCEMIC
DRUG THERAPY ON HEART FAILURE IN
DIABETES

Along with the classic outcome of major adverse CV events,
recently published CV outcomes trials of anti-hyperglycemic
drugs include analysis of HF data, especially the rate of
hospitalization for this event.

The ancient drug metformin was absolutely contra-indicated
in patients with HF until 2007 when FDA removed this
limitation. The controversy regarding its safety and effectiveness
in the setting of HF was resolved by the results of a later
systematic review of observational studies including 34,000

patients favoring the metformin as the treatment of choice in
patients with diabetes and HF (277).

In addition to raised concerns about increased MI, the use
of the thiazolidinediones (TZDs) rosiglitazone and pioglitazone,
was associated with fluid retention and increased risk of HF,
as indicated by three randomized controlled trials, DREAM,
ProACTIVE, and GSK211, reporting a respective relative risk of
HF of 2.17 (95% CI 0.96–0.91), 1.49 (1.23–0.80), and 7.09 (1.60–
0.96) (278). The main mechanisms accounting for TZD-related
fluid retention is the PPAR-γ stimulation of EnaC-mediated renal
salt absorption in the collecting duct, with the likely contribution
of stimulation of sodium transporters in the proximal tubule.
Concurrently, the reduction of systemic vascular resistance by
TZD might expose the capillary networks to higher perfusion
pressures thereby precipitating fluid extravasation. Additionally,
TZDs increase the plasma concentration of the VEGF, a potent
inducer of vascular permeability, further predisposing patients to
oedema (279).

Three new classes of anti-hyperglycemic agents have been
introduced in recent years.

The dipeptidyl peptidase-4 (DPP-4) inhibitors exhibited
increased HF hospitalization in the SAVOR-TIMI 53 trial
evaluating saxagliptin and in the secondary analysis of the
EXAMINE trial for alogliptin. A recent pooled analysis illustrates
that DPP-4 inhibitors do not increase the HF risk among T2DM
patients with a previous history of HF, but they increased this
risk among patients without history of HF (HR 1.21, 95% CI
1.04–1.41, p = 0.01), possibly because nearly all studied subjects
had established CVD (280). Basic research suggests that the
inhibition of DPP-4 may exert beneficial actions on heart, mainly
by inhibiting the degradation of stromal cell-derive factor-1,
a chemokine produced by stromal and endothelial cells that
promotes regeneration and repair during organ damage, and
that of GLP-1, thus restoring cardiac remodeling and apoptosis
caused by the pathological decline in circulating GLP-1 in
response to pressure overload (281, 282). On the other hand,
since DPP-4 involves in the degradation of vasodilator factors
and the NO-dependent mechanism, its inhibition can exert
important systemic vasodilator effects that reduce heart load
(283). Unfortunately, these beneficial results on animal studies
were not replicated in humans.

The antagonists of the GLP-1 receptors (GLP-1RAs) represent
the other incretin-based therapy potentiating endogenous GLP-1.
Based on the evidence from RCTs, none of the six available GLP-
1RAs has displayed benefits against HF, despite demonstration
in animal models and humans of ameliorated endothelial
dysfunction, improved myocardial function, and cardiomyocyte
protection against glucolipotoxicity and ROS (280). A novel GLP-
1RA, the oral hypoglycemic peptide 2 (OHP2), has demonstrated
to protect against DM-CMP in high-fat diets and continuous
streptozocin injection induced rat models. Both hyperlipidemia
and myocardium lipid accumulation were decreased by OHP2
treatment. In addition, OHP2 reversed oxidative stress and
mitochondrial dysfunction in diabetic hearts (284).

The inhibitors of the sodium glucose co-transporter 2
(SGLT2) are the first class of glucose-lowering agents that have
demonstrated in large-scale studies an impressive reduction in
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the risk of serious new-onset HF events by ≈30% in T2DM
patients with or without established CVD (285). Of note, in none
of the trials this benefit is explained by the glycemic control.
Several mechanisms have been postulated for such a striking
cardioprotective effect. The primary action of SGLT2 inhibitors
reducing sodium and glucose uptake in the nephron, leads to
a decrease in preload and afterload through osmotic diuresis.
Additional beneficial effects are improvement of the composition
of proinflammatory and anti-inflammatory cytokines in the
body, as well as reduction in cardiac fibrosis (286). Other
potential cardioprotective mechanism includes the increase in
hematocrit, determined by erythropoietin hyperproduction by
renal fibroblasts when the stimuli of hyperglycemia and excess
glucose reabsorption are removed, the increase in fasting levels of
ketone bodies with enhanced utilization of this efficientmetabolic
fuel in the failing heart, and the inhibition of the sodium
hydrogen exchanger-1 in the myocardium, whose overactivity
may lead to increase in intracellular sodium and calcium (287).

DIFFERENT ASPECTS OF
CARDIOMYOPATHY IN T1DM AND T2DM

Various small and large animal models of T1DM and T2DM have
been generated to investigate the impact of diabetes on the heart
and a lot of clinical studies have been published in the last decades
on DM-CMP. Nonetheless, the complex pathophysiology of this
condition remains still less than fully clear. The topic is further
complicated by the different etiology of T1DM and T2DM that
make partially distinct the mechanisms involved in their cardiac
dysfunction (288).

Although etiologically different, the two types of diabetes
share commonmetabolic disturbances, including hyperglycemia,
dyslipidemia and associated glucotoxicity, lipotoxicity,
and oxidative stress that are the predominant pathological
mechanisms driving the development of DM-CMP as
determined by insulin deficiency in T1DM and insulin resistance
in T2DM.

On the other side, the development of HF in T1DM
appears more closely related to glycemic control than in
T2DM as indicated by the reported different increase in HF
risk, 30% in T1DM and 8% in T2DM patients, for each
additional percentage point of HbA1c (270). Likely, a good
metabolic control obtained by insulin therapy in patients with
T1DM may normalizes the metabolic derangements induced
by insulin deficiency and attenuate the detrimental effects of
diabetes on the heart (288). Instead, the insulin resistance
typical of T2DM leads to increase in circulating triacylglycerol
levels and FA delivery to cardiomyocytes that result in
impaired mitochondrial β-oxidation, with greater mitochondrial
dysfunction and accumulation of toxic lipid metabolites in
the heart of patients with T2DM than in patients with
T1DM (30).

Differences in pathophysiology of heart damage between the
two types of diabetes also result in different clinical pictures. In
T2DM-associated DM-CMP, there is a prevalence of mechanisms
mediating concentric LV remodeling and hypertrophy with
increase in ventricular stiffness leading to diastolic dysfunction.

The corresponding clinical features include reduced ventricular
compliance with increased systemic and pulmonary venous
pressures and congestion despite preserved systolic function.
By contrast, T1DM-associated diabetic cardiomyopathy is
characterized by cardiomyocyte loss, LV remodeling and
increased myocardial collagen deposition, which increase LV
end-diastolic volume and impair systolic function. As a
consequence, symptoms of systolic dysfunction are more typical
in patients with T1DM with earlier clinical manifestations of
HFrEF (289).

A similar progression of DM-CMP has also emerged
in preclinical studies in diabetic animal models. A study
comparing cardiac performance in rat models of T1DM
(streptozotocin induced) and T2DM (Zucker diabetic fatty rats)
by a pressure-volume conductance catheter system, suggested
that a decreased systolic performance and a delayed relaxation
mainly characterize T1DM, whereas an increase in diastolic
stiffness of the heart is more remarkably in T2DM (290).
A recent study using speckle-tracking echocardiography with
invasive hemodynamics for the detection of cardiac dysfunction
in rat models of T1DM and T2DM confirmed these results
(291). It was found that contractility and active relaxation
were deteriorated to a greater extent in T1DM compared to
T2DM. In contrast, diastolic stiffness was more pronounced in
T2DM. Correspondingly, systolic function was markedly altered
in T1DM but preserved in T2DM, a disease profile resembling
that observed in T2DM patients with HFpEF.

CONCLUSION

Diabetic cardiomyopathy is a common complication of diabetes
which deserves a special clinical attention due to its insidious
subclinical progression that, in some cases, may culminate
in a manifest and rapidly evolving HF burdened by a very
poor outcome.

The main driving force of the pathological processes specific
of DM-CMP is hyperglycemia, a factor centrally placed among
multiple interwoven pathways involving complex cellular and
molecular perturbations which affect both myocardial structure
and function.

Despite the current large knowledge, the pathophysiology of
DM-CMP development and progression is still far from being
fully elucidated. Consequently, effective therapies targeting this
diabetic complication are lacking.

In-depth knowledge of etiologic and pathogenic mechanisms
is crucial for the development of target-specific treatments to
reduce the risk of HF in diabetic patients. Since subclinical
cardiac abnormalities could be reversible when early detected,
prevention-oriented therapies can even hopefully be identified.
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