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The redox reaction and energy metabolism status in mitochondria is involved in the

pathogenesis of metabolic related disorder in kidney including diabetic kidney disease

(DKD). Nicotinamide adenine dinucleotide (NAD+) is a cofactor for redox reactions and

energy metabolism in mitochondria. NAD+ can be synthesized from four precursors

through three pathways. The accumulation of NAD+ may ameliorate oxidative stress,

inflammation and improve mitochondrial biosynthesis via supplementation of precursors

and intermediates of NAD+ and activation of sirtuins activity. Conversely, the depletion

of NAD+ via NAD+ consuming enzymes including Poly (ADP-ribose) polymerases

(PARPs), cADPR synthases may contribute to oxidative stress, inflammation, impaired

mitochondrial biosynthesis, which leads to the pathogenesis of DKD. Therefore,

homeostasis of NAD+ may be a potential target for the prevention and treatment

of kidney diseases including DKD. In this review, we focus on the regulation of the

metabolic balance of NAD+ on the pathogenesis of kidney diseases, especially DKD,

highlight benefits of the potential interventions targeting NAD+-boosting in the treatment

of these diseases.
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INTRODUCTION

The kidney is rich in mitochondria where generates the majority of adenosine triphosphate (ATP)
required for various cellular metabolic activities (1). Nicotinamide adenine dinucleotide (NAD+)
is considered as a critical cofactor and intermediary for turning fuel into energy through redox
reaction (2). During the reduction reactions, which participate in glycolysis, fatty acid oxidation,
and tricarboxylic acid (TCA) cycle, NAD+ serves as a hydrogen ion acceptor to generate its reduced
form, NADH. Correspondingly, NADH participates in mitochondrial ATP generation by removing
hydrogen ions through oxidation reactions (2, 3). NAD+ is also a cosubstrate for enzymes involved
in non-redox reactions such as the sirtuins family, poly (ADP-ribose) polymerases (PARPs),
and the cyclic ADP-ribose (cADPR) synthases, such as CD38 and CD157, to participate in the
regulation of multiple cellular process, especially in energy metabolism (4, 5). Decreased cellular
NAD+ concentrations and NAD+ /NADH ratio are closely related to the pathogenesis of multiple
age-related and metabolic diseases, including diabetic kidney disease (DKD) (6). Thus, boosting
NAD+ levels may be a potential therapeutic strategy for preventing the pathogenesis of DKD. In
this review, we present the biogenesis of NAD+ including its synthesis, degradation, and other
regulatory signaling particularly mitochondrial quality control in the development and progression
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of DKD, highlight the role of NAD+ supplementation and
potential therapy targeting increasing NAD+ on the treatment
of DKD.

BIOLOGY OF NAD+

NAD+ Anabolism
NAD+ can be synthesized from four precursors including
nicotinamide (NAM), tryptophan, nicotinic acid (a form of
niacin, also known as vitamin B3), and nicotinamide riboside
(NR), obtained from daily diet (including milk, meats, nuts,
et al.), through three pathways (2, 5) (Figure 1). In mammals,
the main synthetic pathway for NAD+ is salvage pathway
(7, 8). In salvage pathway, the precursors including NAM,
nicotinic acid and NR are converted into an intermediate
called nicotinamide mononucleotide (NMN) through a rate-
limiting enzyme, nicotinamide phosphoribosyltransferase
(NAMPT). The intermediate NMN can be converted into
NAD+ via nicotinamide mononucleotide adenylyltransferase
(NMNAT). NAD+ generated by this pathway is consumed
by multiple enzymes including sirtuins, PARPs, cADPR
synthases, to generate NAM, which can be reused in salvage
pathway again (2, 5). In Preiss-Handler pathway, nicotinic
acid obtained from the daily diet can be converted into
nicotinate mononucleotide (NAMN) and nicotinic acid adenine
dinucleotide (NAAD) via some key enzymes such as nicotinic
acid phosphoribosyltransferase (NAPRT) and NMN transferase
(NMNAT), respectively, then further generate NAD+ (5). In
kidney, except salvage pathway, de novo pathway is another main
source of NAD+ (9). In de novo pathway, tryptophan can be
converted into NAMNvia quinolinate phosphoribosyltransferase
(QPRT), and then into NAD+ via the Preiss-Handler pathway
(5). The regulation of rate-limiting enzymes in these pathways
and the supplementation of precursors and intermediates may
be potential treatments for metabolic related disorder including
diabetes and obesity (7, 10, 11).

NAD+ Catabolism
The catabolism of NAD+ mainly involves three types of enzymes,
including sirtuins, PARPs, and cADPR synthases (5) (Figure 1).
These NAD+-degrading enzymes are involved in a variety of
metabolic pathways and play key roles in the pathogenesis of
aging-related diseases.

Sirtuins (SIRT1-7), a highly conserved homologous family
from bacteria to mammals, is recognized as antiaging molecules
(12). Among them, SIRT1, 6, 7 are mainly expressed in
the nucleus, SIRT2 is mainly expressed in the cytoplasm,
and SIRT3, 4, 5 are highly expressed in mitochondria (13).
Deacetylation dependent on the consuming of NAD+ is
the most important function of sirtuins, which involved in
multiple metabolic regulation (14). Both calorie restriction (CR)
(15, 16) and AMP-activated kinase (AMPK) (4) can induce
SIRT1 activity by sensing elevated NAD+ concentration. SIRT1
deacetylates histones, including H4, H3, and H1 (17) and
other transcription factors to regulate the posttranslational
modifications of target genes and the expression of downstream
proteins. SIRT1 deacetylates nuclear factor-κB (NF-κB) to

suppress inflammatory signaling pathway (18), deacetylates
signal transducer and activator of transcription 3 (STAT3) to
protect from apoptosis (19), deacetylates microtubule-associated
protein 1A/1B-light chain 3 (LC3) to activate autophagy (20), and
deacetylates peroxisome proliferator-activated receptor gamma
coactivator 1α (PGC-1α) (21, 22), Mfn (mitofusin)1 and 2
(23, 24), further participate in the regulation of mitochondrial
biogenesis, oxidative stress and fusion process, respectively.
SIRT2 deacetylates the forkhead box O (FOXO) 3a to suppress
oxidative stress (25), deacetylates PGC-1α to regulate fatty acid
oxidation (26). In erythrocytes, in response to increased oxidative
stress, SIRT2 deacetylates glucose-6-phosphate dehydrogenase
(G6PD), a key enzyme involved in pentose phosphate pathway,
to increase the production of nicotinamide adenine dinucleotide
phosphate (NADPH) (27). SIRT3 can also be activated by CR
and AMPK through increased NAD+ levels (28, 29). SIRT3
deacetylates superoxide dismutase 2 (SOD2) and isocitrate
dehydrogenase 2 (IDH2) to alleviate oxidative stress (30),
deacetylates optic atrophy 1 (OPA1) to regulate mitochondrial
fusion (31), deacetylates PGC-1α to improve mitochondrial
biogenesis (32). Different from SIRT1-3, which predominately
function as deacetylases, SIRT4 functions as ADP-ribose via
NAD+ utilization and is responsible for cellular insulin secretion
(33). SIRT4 suppresses insulin secretion via inhibiting glutamate
dehydrogenase (GDH) activity through ADP-ribosylation (33)
and SIRT4 knockdown increases fatty acid oxidation in liver and
muscle cells (34). Although SIRT5 is also a NAD+-dependent
deacetylase (35), it predominantly presents desuccinylated effect
on IDH2, which suppresses cellular oxidative stress (36). SIRT6
deacetylates histone H3K9 and H3K56 to restore high glucose-
impaired mitochondrial dysfunction, suppresses apoptosis and
inflammation in potocytes (37). SIRT7 is less studied, previous
study showed it suppresses the nuclear export of NF-κB p65
via deacetylating Ras-related nuclear antigen in the nucleus
(38). These evidences combine sirtuins with mitochondrial
biosynthesis, oxidative stress, apoptosis, and inflammation,
suggesting a crucial role of cellular NAD+ levels regulated by
sirtuins in maintaining cellular homeostasis.

PARP is a family containing at least 17 enzymes. Among
them, PARP-1 is the most the most widely studied enzyme
which can catalyze the synthesis of ADP-ribose on target proteins
in response to DNA damage and genotoxic stress via NAD+

consumption (39, 40). High glucose induced DNA damage may
contribute to excessive activation of PARP (41). Subsequent
studies have also confirmed that PARP-1 is closely related to the
activation of oxidative stress and inflammation (42). Selective
PARP-1 inhibitor suppresses oxidative stress, inflammation via
activating SIRT1/ PGC-1α signaling in diabetic mice (43)
(Figure 3A and Table 1).

The cADPR synthases CD38 and its homolog CD157 can
be induced by inflammatory cytokines, which is associated with
aging-related decrease of NAD+ levels (65). CD38 catalytic
activity via degrading NAD+ mainly generates NAM and cADPR
through salvage pathway. One molecule of cADPR generation
via CD38 for every 100 molecules of NAD+ hydrolyzed (66).
CD38 also degrades NAD+ precursor NR and intermediate
NMN (67). CD38 and CD157 also serve as Ca2+-transporting
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FIGURE 1 | Anabolism and catabolism of NAD+. NAD+ is synthesized from four precursors including nicotinamide (NAM), tryptophan, nicotinic acid, and

nicotinamide riboside (NR) through three pathways (salvage pathway, de novo pathway, and Preiss-Handler pathway). In salvage pathway, the precursors are

converted into an intermediate called nicotinamide mononucleotide (NMN) through nicotinamide phosphoribosyltransferase (NAMPT). Then NMN is converted into

NAD+ via nicotinamide mononucleotide adenylyltransferase (NMNAT). NAD+ generated by this pathway is consumed by multiple enzymes including sirtuins, PARPs,

and cADPR synthases, to generate NAM, and reused in salvage pathway. In Preiss-Handler pathway, nicotinic acid is converted into nicotinate mononucleotide

(NAMN) through nicotinic acid phosphoribosyltransferase (NAPRT), then NAMN is converted into nicotinic acid adenine dinucleotide (NAAD) through NMN transferase

(NMNAT), further generate NAD+. In de novo pathway, tryptophan is converted into NAMN via quinolinate phosphoribosyltransferase (QPRT), and then into NAD+ via

the Preiss-Handler pathway. In redox reactions, NAD+ can be phosphorylated to NADP+ by NAD+ kinase. NADP+ can be dephosphorylated to NAD+ by NADP

phosphatase. Both the oxidized forms (NAD+ and NADP+) serve as hydride acceptors to generate their reduced forms (NADH and NADPH).

second messengers to stimulate Ca2+ release, which participates
in the regulation of cardio muscle, renal vasoconstriction (68,
69), and insulin secretion in pancreatic β cells (70). CD38
inhibition in pancreatic β cells suppresses insulin signaling (71,
72). CD38 knockout mice show decreased cADPR and increased
NAD+ concentrations, which may protect from inflammation,
apoptosis, oxidative stress, and high-fat diet induced obesity
(30, 73, 74) (Figure 3B and Table 1).

NADP+ and NADPH
In redox reactions, NAD+ can also be phosphorylated to NADP+

by NAD+ kinase. In contrast, NADP+ can be dephosphorylated
to NAD+ by NADP phosphatase. Both The oxidized forms
(NAD+ and NADP+) serve as hydride acceptors to generate their
reduced forms (NADH and NADPH) (5, 75). These processes
involve in the synthesis and consumption of NAD+ form a redox
reaction cycle (Figure 1). Mitochondria are the main organelle
that produces ROS in kidney. NADPH has antioxidant effects
in mitochondrial biogenesis, while NADPH oxidases transfer
electrons from NADPH and interact with oxygen to form

superoxide to aggravate the production of ROS in mitochondria,
which is also a main source of ROS in kidney (76) (Figure 2).

REGULATION OF NAD+ LEVELS IN THE
PATHOGENESIS OF DKD

The pathogenesis of DKD involves multiple mechanisms,
including mitochondrial dysfunction, oxidative stress, and
inflammation (77). Imbalance of NAD+ and NADH is a
hallmark of diabetes and its chronic complications (78). Under
diabetic condition, with the activation of glycolytic pathway,
glucose is metabolized into acetylated-CoA, which enters the
TCA cycle. During this procedure, NAD+ obtain hydrogen to
become NADH via the catalysis of glyceraldehyde 3-phosphate
dehydrogenase and pyruvate dehydrogenase, leading to the
overload of NADH and the elevated production of reactive
oxygen species (ROS), which further results in oxidative stress
(79, 80). The decline in NAD+ levels also results in the acetylation
of many proteins involved in oxidative stress and mitochondrial
biogenesis, such as IDH2, SOD2(30), and PGC-1α (44), which
ultimately leads to the progression of DKD (Figure 2). Therefore,
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TABLE 1 | Deacetylated targets of NAD+-consuming enzymes in DKD.

Enzymes Targets Effects Interventions

SIRT1 PGC-1α

p53

NF-κB p65

STAT3

LC3

Smad4

FOXO3a

Mitochondrial

biogenesis↑

Apoptosis↓

Inflammation↓

Inflammation↓

Autophagy↑

fibrosis↓

Oxidative stress↓

Apoptosis↓

Dietary restriction (18)

Resveratrol (44–46)

BF175 (47)

SRT1720 (48)

SRT2379 (49)

Metformin (50, 51)

Canagliflozin (52)

SIRT2 FOX3a Oxidative stress↓ Caloric restriction (25)

SIRT3 SOD2

IDH2

p53

Oxidative stress↓

Oxidative stress↓

Apoptosis↓

Fibrosis↓

Caloric restriction (28, 53)

AICAR (32)

Empagliflozin (54)

SIRT6 H3K9

H3K56

Apoptosis↓

Inflammation↓

Mitochondrial

function↑

-

PARPs PARPs

inhibition

Oxidative stress↓

Apoptosis↓

Inflammation↓

Tempol (55)

INO-1001 (56)

PJ-34 (55–57)

3-aminobenzamide

(58, 59)

CD38 CD38

inhibition

Oxidative stress↓

Inflammation↓

Apigenin (30, 60–62)

78c (63)

Quercetin (64)

as a key organelle for cellular redox reactions, mitochondrial
function is essential for the maintenance of NAD+ levels. In
this part, we mainly focus on the effects of sirtuins (especially
SIRT1-6), PARPs, and cADPR synthases (particularly CD38) in
the pathogenesis of DKD (Table 1).

Nuclear Sirtuins
SIRT1 deacetylates a variety of proteins involved in
mitochondrial biogenesis, oxidative stress, inflammation
apoptosis and autophagy via utilizing cellular NAD+ (81, 82).
CR is a crucial activator of SIRT1 activity via increasing
intracellular NAD+ levels. AMPK also enhances SIRT1
activity by increasing NAD+ to regulate the deacetylation of
SIRT1 targets proteins (4, 83). In turn, SIRT1 can deacetylate
liver kinase B1 (LKB1), a classic AMPK activating kinase to
regulate the activity of AMPK (84). SIRT1 have confirmed
its beneficial effects via NAD+ dependent deacetylation
on amelioration of mitochondrial biogenesis, suppression
of oxidative stress, fibrosis, inflammation, and apoptosis
in kidney (82) (Table 1). Although mainly expressed in
the nucleus, SIRT1 has been implicated in mitochondrial
functions. SIRT1 deacetylates PGC-1α to increase mitochondrial
biogenesis and mitochondrial fatty acid oxidation (21, 22)
and attenuate high glucose-induced mitochondrial oxidative
stress in potocytes (44, 45). Moreover, SIRT1 is related to
autophagy and mitochondrial autophagy (mitophagy). Previous
studies demonstrated that SIRT1 knockout mouse embryonic
fibroblasts could not activate autophagy under starvation (85)

FIGURE 2 | Decreased NAD+ and increased Reactive oxygen species (ROS)

in diabetic kidney disease (DKD). Under diabetic condition, glucose is

metabolized to acetylated-CoA, which enters the tricarboxylic acid cycle (TCA)

cycle via consuming NAD+. On one hand, NAD+ receives hydrogen to be

reduced into NADH, leading to the overload of NADH and the elevated levels

of ROS. On the other hand, NADPH oxidases transfer electrons from NADPH

and interact with oxygen to form superoxide to aggravate the production of

ROS. Overloaded ROS in mitochondria results in the acetylation of peroxisome

proliferator-activated receptor gamma coactivator 1α (PGC-1α) to impair

mitochondrial biogenesis, and acetylation of isocitrate dehydrogenase 2 (IDH2)

and superoxide dismutase 2 (SOD2) to aggravate oxidative stress, ultimately

leading to the progression of DKD.

and SIRT1 deacetylates nuclear LC3 to initiate autophagy (20).
Increasing SIRT1 activity induced by elevated NAD+/NADH
ratio results in increased mitochondrial membrane potential,
LC3-II and proteins that regulate mitochondrial fusion and
fission (86). SIRT1 reduced FOXO3a acetylation, preventing
podocytes from oxidative stress and apoptosis (87). With
the depletion of cellular NAD+ level in diabetic kidney, the
activity of SIRT1 was suppressed, leading to acetylation of
p53 and consequently cell death via apoptosis (82, 88). Our
previous study and other research also demonstrated diabetic
animal models showed decreased SIRT1 levels and increased
acetylation of NF-κB p65 and STAT3, accompanying with
elevated inflammation-related genes, leading to the injury
and apoptosis of potocytes and proximal tubule (18, 19).
SIRT1 also suppresses advanced glycation end-product (AGE)-
induced diabetic renal fibrosis through antioxidative effects
(89) and reduces epithelial-to-mesenchymal transition (EMT)
to ameliorate injury-induced kidney fibrosis via deacetylating
mothers against decapentaplegic homolog 4 (Smad4) in tubular
epithelial cells (90). Besides, SIRT1 alleviates kidney fibrosis
via suppresses transforming growth factor β (TGF-β) pathway
in mesangial cells, proximal tubular cells and endothelial
cells (89, 91–93).

The NAD+-dependent deacetylated effects of SIRT6 exert
renoprotective effects in diabetic rodent models and high-
glucose treated cells (Table 1). Previous studies reported that
the expression of SIRT6 is decreased under diabetic condition
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(94, 95). SIRT6 inhibits high glucose-induced mitochondrial
dysfunction and apoptosis in potocytes via deacetylating histone
H3K9 andH3K56 (95). Proximal tubule-specific SIRT6 knockout
mice exhibit enhanced fibrogenic extracellularmatrix remodeling
in kidney under high glucose condition (96). Podocyte-specific
knockout SIRT6 mice showed renal injury and proteinuria
under diabetic condition. SIRT6 inhibits Notch 1 and 4
via deacetylating histone H3K9, to suppress inflammation,
apoptosis in potocytes (37) and overexpression of SIRT6 in
macrophages protected podocytes from high glucose-induced
renal injury (97).

Cytoplasmic and Mitochondrial Sirtuins
Studies between SIRT2 and DKD are limited. One research
showed that SIRT2 is highly expressed in kidney and can
deacetylate FOXO3a to decrease cellular ROS in the kidney of
caloric-restricted mice (25) (Table 1).

Mitochondrial SIRT3 is a NAD+-dependent deacetylase,
which predominantly exerts antioxidant activities on preventing
aging-related diseases (98, 99). SIRT3 activity is decreased
in diabetic patients and rodent animal models (30, 100,
101). SIRT3 deficiency presents impaired insulin secretion,
renal fibrosis, elevated acetylation of mitochondrial proteins
and increased mitochondrial oxidative stress (30, 102). Rat
glomerular mesangial cells exposed to high glucose showed
decreased NAD+/NADH ratio and SIRT3 activity, leading to
oxidative stress and mesangial hypertrophy (101). Our previous
studies observed decreased intracellular NAD+/NADH ratio and
SIRT3 activity in diabetic rats, resulting in the activation of
acetylated-SOD2 and acetylated-IDH2 in kidney mitochondria
and tubular cells, then ultimately increasing ROS levels to
aggravate oxidative stress (30, 103). Another study indicated
overexpression of SIRT3 can ameliorated high glucose induced
oxidative stress and apoptosis via Protein kinase B (Akt)/FOXO
signaling in human renal tubular epithelial cells (104). In
addition, SIRT3 deficiency also has a pathogenic effect on acute
kidney injury (AKI). On one hand, SIRT3 deficiency increased
dynamin related protein 1 (Drp1) and decreased OPA1 and PGC-
1α, leading to a shift of mitochondria from fusion to fission,
which exacerbates cisplatin-AKI and stress (31, 32). On the other
hand, SIRT3 inhibition acetylated SOD2 and p53, leading to
oxidative stress and apoptosis in ischemia/reperfusion -induced
AKI (105) (Table 1).

SIRT4 functions as NAD+-dependent ADP ribosyltransferase
to participate in the regulation of insulin secretion in β cells (106).
SIRT4 ADP-ribosylates and suppresses GDH, a key enzyme in
glutamine metabolism and ATP production, while suppression
of SIRT4 activates glucose-induced insulin secretion (33, 106).
SIRT4 knockout mice exert elevated basal and stimulated insulin
secretion via GDH activation, resulting in glucose intolerance
and insulin resistance (107). The effects of SIRT4 in renal
function are limited. SIRT4 overexpression suppresses high
glucose- induced overproduction of ROS and inflammatory
cytokine including TNFα, IL-6, IL-1β, which protects podocytes
from oxidative stress and inflammation (108).

SIRT5 is another mitochondrial NAD+-dependent
deacetylase, involved in the regulation of mitochondrial quality

control. Other post-translational modifications of SIRT5 include
demalonylation and desuccinylation to participate in glycolysis,
oxidative stress, and fatty acid oxidation (36, 109–112). In mouse
liver, SIRT5 expression is suppressed by AMPK and activated
by PGC-1α. SIRT5 overexpression in HepG2 cells increased
ATP synthesis and oxygen consumption (113). SIRT5 knockout
mice showed activated malonylation (114) and glutarylation
(115) in multiple organs including kidney. SIRT5 induced the
acetylation of NF-κB p65 and its downstream inflammatory
cytokines, such as IL-6, TNFα, and monocyte chemoattractant
protein 1 (MCP-1) (116). The role of SIRT5 in DKD is limited.
However, some studies indicated that SIRT5 protects from AKI
via increasing Nrf2 to suppress apoptosis (117) and regulating
fatty acid oxidation to improve mitochondrial function in
proximal tubule (118).

PARPs
Diabetic rodent models present hyper-activation of PARP and
increased consumption of NAD+ in renal cortex. The activation
of PARP is closely related to elevated levels of endothelin-1
(ET-1), a potent vasoconstrictor, and ET receptors in kidney (58,
59, 119, 120). PRAP activation is also responsible for apoptosis
(55, 121, 122), inflammation and fibrosis (123), which leads to
the progression of DKD (Figure 3A and Table 1). Moreover,
PARP activation exacerbates oxidative stress via consuming
NAD+ (55, 59). PARP-1 deficiency in diabetic mice ameliorates
high glucose-induced kidney hypertrophy, mesangial expansion,
collagen deposition, and urinary albumin (120).

CD38
CD38 contributes to cellular NAD+ degradation and is involved
in the regulation of cellular glucose metabolism and insulin
secretion (124). Compared to the wild type mice, CD38
knockout mice present higher NAD+ levels in kidney (73).
The functions of CD38 in kidney partially link to nuclear
and mitochondrial sirtuins, especially SIRT1 and SIRT3. CD38
inhibition protects from high-fat diet-induced obesity via
NAD+-dependent SIRT1/PGC-1α signaling (74) and attenuates
renal vasoconstriction caused by angiotensin II, ET-1, and
norepinephrine (69). Our previous studies demonstrated that
high glucose induced-CD38 is responsible for the decreased
NAD+/NADH ratio and SIRT3 activity inhibition, further
results in oxidative stress characterized as elevated acetylated-
SOD2 and acetylated-IDH2 in renal tubular cells (30, 103)
(Figure 3B and Table 1).

POTENTIAL INTERVENTIONS TARGETING
ON NAD+ IN THE TREATMENT OF DKD

Based on the effect of maintaining intracellular NAD+ stability,
interventions targeting the activation of the NAD+ synthesis
pathway and the inhibition of the metabolic pathway have
become potential therapeutic directions.

Supplementation of NAD+ Synthesis
NAD+ supplementary therapy can be derived from
supplementation of NAD or precursors and intermediates
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FIGURE 3 | Effects of poly (ADP-ribose) polymerases (PARPs), and the cyclic ADP-ribose (cADPR) synthases CD38 in diabetic kidney disease (DKD). (A) High

glucose activates NAD+ consuming enzyme PARPs. The activated PARPs can induce oxidative stress and apoptosis by inhibiting the sirtuins 1(SIRT1)/peroxisome

proliferator-activated receptor gamma coactivator 1α (PGC-1α) signaling, accelerate renal fibrosis, and enhance inflammation by activating nuclear factor-κB (NF-κB).

PARP inhibitors such as tempol, INO-1001, PJ-34, 3-aminobenzamide, can ameliorate these alterations induced by high glucose. (B) High glucose activates NAD+

consuming enzyme CD38. On one hand, CD38 induces the acetylation of isocitrate dehydrogenase 2 (IDH2) and superoxide dismutase 2 (SOD2) to aggravate

oxidative stress via suppression of SIRT3 activity and is closely related to inflammation. On the other hand, CD38 is responsible for insulin secretion and renal

vasoconstriction via regulating Ca2+ release. CD38 inhibitors including apigenin, 78c, and quercetin can suppress these alterations induced by high glucose.

of NAD+. Rat glomerular mesangial cells incubated with NAD
suppresses high glucose induced mesangial hypertrophy via
SIRT1 and SIRT3 mediated-AMPK/mTOR pathway (101). NR
supplementation increases NAD+ and induces the activity of
SIRT1 and SIRT3, which protects from oxidative stress, improves
insulin sensitivity (11) and ameliorates hepatic inflammation
via suppressing NLRP3 inflammasome in T2DM mice (125).
Administration of exogenous NMN, a key intermediate of
NAD+ synthesis, significantly induces NAD+ levels, resulting in
the improvement of impaired glucose tolerance, enhancement of
insulin sensitivity and suppression of inflammation characterized
as decreased acetylated NF-κB p65 in liver of high fat diet- and
age-induced diabetic mice (10). NMN treatment also suppresses
inflammatory cytokines including TNFα, IL-1β, restores
impaired β cell function in islet of fructose-induced diabetic
mice. In kidney, NMN treatment alleviates inflammatory and
fibrosis in glomerular mesangial cells (126) and STZ-induced
diabetic rats via inhibiting endogenous NAMPT (127). A recent
study also demonstrated that short-term NMN administration
(for 2 weeks) increases NAD+ levels, SIRT1 expression and
NAD+ salvage pathway in kidney, ameliorating urinary albumin
excretion, mesangium expansion, and foot process effacement in
db/db mice (128). Besides, supplementation of NMN increased

NAD+ level and protected mice from cisplatin-induced AKI via
activating SIRT1 and suppressing the c-Jun N-terminal kinase
(JNK) signaling (129).

However, since NAD+ synthesis is a complex process
involving multiple enzymes, signaling, and metabolites, benefits
of supplementation of exogenous NAD+ intermediates are still
controversial. Previous study showed that NAMPT, a limiting
enzyme of NAD+ synthesis, is increased in streptozotocin
(STZ)-induced diabetic rats, which may be an adaptive,
protective response to high glucose-induced inflammation,
while exogenous NAMPT may induce inflammation in tubular
cells (127, 130). Endogenous NAMPT induces inflammatory
and fibrosis in glomerular mesangial cells and STZ-induced
diabetic rats through activating NF-κB p65 and suppressing
SIRT1 (127). Besides, some studies also showed that exogenous
NR administration had no benefits in young healthy animals
or humans (131, 132). The results of clinical trials of NAD+

supplementation may not reverse AKI. Supplementation of
NAM could not relieve inflammation, renal dysfunction and
kidney injury in animals and patients of AKI (133). Another
randomized, double-blind, placebo-control study demonstrated
that although combination of NR supplementation and
pterostillbene, a sirtuins activator, can increase NAD+ levels
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after 48 h treatment, there was no benefit on renal function
including creatinine and estimated glomerular filtration rate
in patients with AKI (134). More researches are needed to
identify whether supplementation of certain intermediates in
NAD+ synthesis can benefit by increasing the intracellular
NAD+ concentration.

Activation of Sirtuins
Caloric/dietary restriction is an effective way to activate sirtuins
and protects the progression of DKD. Dietary restriction
ameliorated kidney inflammation in diabetic mice via activating
SIRT1 to inhibit acetylated-NF-κB (18). Calorie restriction
reduces renal oxidative stress and inflammation by SIRT2
(25) and attenuates palmitate-induced ROS production and
inflammation in proximal tubular cells via SIRT3-mediated
deacetylation (28, 53).

Multiple sirtuin activating compounds have been identified
to protect from the progression of DKD via suppression
mitochondrial oxidative stress, apoptosis, and inflammation (12).
SIRT1 agonists, resveratrol (44–46), BF175 (47), ameliorated
mitochondrial oxidative stress and apoptosis in podocytes of
diabetic mice via regulating SIRT1/PGC-1α and SIRT1/p53
signaling. Resveratrol also ameliorated high glucose-induced
mitochondrial dysfunction via activating SIRT1/Nrf-antioxidant
response element (ARE) pathway (135). SRT1720 attenuated
renal fibrosis and oxidative stress (48). SRT2379 inhibited LPS-
stimulated JNK and IκB kinase (IKK) inflammatory pathways
in macrophages (49). AMPK agonist, AICAR reduced cisplatin-
induced AKI and improved renal function via the activating
SIRT3 deacetylation effect and further activating mitochondrial

fusion process and mitopahgy (32). In addition to these
compounds under development, some anti-diabetic drugs which
have been widely used clinically can also activate sirtuins.
Metformin, the first-line medication for T2DM treatment,
is an AMPK and sirtuin agonist. Previous studies have
confirmed that metformin reduced oxidative stress, enhanced
autophagy, and ameliorated insulin resistance by activating
AMPK/ SIRT1 /FOXO1 signaling in rat mesangial cells and
potocytes, further protected against the pathogenesis of DKD
(50, 51). SGLT2 inhibitors are effective anti-diabetic drugs which
present renoprotective effects. Previous studies showed SGLT2
inhibitors canagliflozin reversed high glucose-induced SIRT1
suppression (52, 136) in human renal tubular cells and db/db
mice to protect against DKD. Our research indicated that SGLT2
inhibitor empagliflozin restored high glucose-suppressed SIRT3,
which in part suppressed EMT and kidney fibrosis (54) (Figure 4
and Table 1).

Inhibition of PARPs
Given the role of PARPs in high glucose-induced oxidative stress,
apoptosis and inflammation, inhibitors targeting PARP may be
a potential targets for the treatment of DKD. Tempol reduces
podocytes apoptosis via suppressing PARP signaling in STZ-
induced diabetic rats (55). PARP inhibitors, INO-1001 and PJ-
34, suppressed high glucose induced ROS levels and nuclear
NF-κB in potocytes and db/db mice and potocytes apoptosis in
STZ-induced diabetic rats (55, 56). Another PARP inhibitor, 3-
aminobenzamide, inhibited high glucose induced oxidative stress
and ET-1 expression in diabetic rodent models (58, 59). The
effect of PARP inhibitor is also related to SIRT1 activation. One

FIGURE 4 | Drug interventions on sirtuins activation in the treatment of kidney diseases. (A) SIRT1 activation can ameliorate oxidative stress, apoptosis, fibrosis,

inflammation, restore autophagy, and mitochondrial function. SIRT1 agonists, resveratrol, BF175, SRT1720, SRT2379, and some anti-diabetic drugs including

metformin and canagliflozin can activate SIRT1 to protect against DKD. (B) AICAR can increase mitochondrial fusion and mitophagy via activating SIRT3 to protect

against DKD. SGLT2 inhibitor empagliflozin can ameliorate kidney fibrosis via restoring high glucose-suppressed SIRT3 to protect against DKD.
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study demonstrated that PARP inhibitor PJ-34 interacted with
SIRT1 to suppress the accumulation of renal extracellular matrix
via activating AMPK/ PGC-1α signaling in db/db mice (57)
(Figure 3A and Table 1).

Inhibition of CD38
Suppression NAD+-degrading enzyme such as CD38 is an
effective way to increasing endogenous NAD+ level and restores
impaired mitochondrial functions (63, 67). CD38 inhibitor,
apigenin, increasedNAD+ to decrease acetylation of p53 andNF-
κB p65 (60). Based on these studies, our research demonstrated
that apigenin suppressed high glucose-induced acetylation of
SOD2 and IDH2 to ameliorate mitochondrial oxidative stress,
via increasing NAD+/NADH ratio and SIRT3 activity in renal
tubular cells of diabetic rats (30). Apigenin also ameliorated
renal inflammation via inhibiting mitogen-activated protein
kinase (MAPK) pathway in STZ-induced diabetic rats (61)
and increased expression of NF-E2-related factor 2 (Nrf2) to
protective from high glucose-induced oxidative stress, injury
and inflammation in human renal tubular epithelial cells (62).
For other CD38 inhibitors, 78c increased NAD+ to activate
sirtuins, and AMPK, further improved glucose tolerance, muscle
function, exercise capacity, and cardiac function in aged mouse
model (63). Quercetin inhibited LPS-induced inflammation
in macrophages via suppressing NF-κB signaling activation
to relieve kidney inflammation and protect from AKI (64)
(Figure 3B and Table 1).

CONCLUSIONS

The regulation of intracellular NAD+ levels has become a
crucial direction for exploring the potential mechanisms of
multiple age-related metabolic diseases, including DKD. The
regulation of NAD+ levels mainly involves two aspects, synthesis
and catabolism. Many studies have shown that increasing the

precursors and intermediates of NAD+ can benefit via increasing
intracellular NAD+ levels, but some studies also have shown that
exogenous supplementation or activation of some certain NAD+

synthesis key enzymes (such as NAMPT) may play a negative
role in metabolic pathways. Further studies are still needed
to confirm the therapeutic effects of supplementing precursors
and intermediates on DKD. The results of studies on NAD+

catabolism are relatively certain. On the one hand, activation of
the sirtuins family (especially SIRT1, 2, 3, 6) of NAD+-dependent
deacetylases can inhibit mitochondrial oxidative stress, improve
mitochondrial biogenesis, alleviate inflammation and reduce
apoptosis, thereby preventing the progression of DKD. On the
other hand, by inhibiting NAD+-consuming enzymes such as
PARPs and cADPR synthetase (especially CD38), also ameliorate
mitochondrial oxidative stress, inflammation and apoptosis in
DKD. There have been a variety of drugs targeting the NAD+-
consuming enzymes, such as activators of the sirtuins family
and inhibitors of PARPs and cADPR, which is benefit for the
treatment of DKD in cell and animal models. The regulation of
NAD+ catabolism may be a potential target for the treatment
of DKD.
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