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RNA sequencing (RNAseq) is a recent technology that profiles gene expression by

measuring the relative frequency of the RNAseq reads. RNAseq read counts data is

increasingly used in oncologic care and while radiology features (radiomics) have also

been gaining utility in radiology practice such as disease diagnosis, monitoring, and

treatment planning. However, contemporary literature lacks appropriate RNA-radiomics

(henceforth, radiogenomics) joint modeling where RNAseq distribution is adaptive

and also preserves the nature of RNAseq read counts data for glioma grading

and prediction. The Negative Binomial (NB) distribution may be useful to model

RNAseq read counts data that addresses potential shortcomings. In this study, we

propose a novel radiogenomics-NB model for glioma grading and prediction. Our

radiogenomics-NB model is developed based on differentially expressed RNAseq

and selected radiomics/volumetric features which characterize tumor volume and

sub-regions. The NB distribution is fitted to RNAseq counts data, and a log-linear

regression model is assumed to link between the estimated NB mean and radiomics.

Three radiogenomics-NB molecular mutation models (e.g., IDH mutation, 1p/19q

codeletion, and ATRX mutation) are investigated. Additionally, we explore gender-specific

effects on the radiogenomics-NB models. Finally, we compare the performance

of the proposed three mutation prediction radiogenomics-NB models with different

well-known methods in the literature: Negative Binomial Linear Discriminant Analysis

(NBLDA), differentially expressed RNAseq with Random Forest (RF-genomics), radiomics

and differentially expressed RNAseq with Random Forest (RF-radiogenomics), and

Voom-based count transformation combined with the nearest shrinkage classifier

(VoomNSC). Our analysis shows that the proposed radiogenomics-NB model

significantly outperforms (ANOVA test, p < 0.05) for prediction of IDH and ATRX

mutations and offers similar performance for prediction of 1p/19q codeletion, when

compared to the competing models in the literature, respectively.
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INTRODUCTION

Radiomics is increasingly being applied to radiology practice in
disease diagnosis, grading, monitoring, and treatment planning
(1, 2). Radiomics is extracted from various radiological images

of a targeted area of the disease. Fusing the important radiomics
and genomics information in the proper computational machine
learning (ML) model may helpto achieve a more comprehensive
disease diagnosis, prognosis, and treatment planning scheme
(3–5). Different studies have evaluated the association between

glioma molecular subtypes and radiomics (e.g., tumor shape and
size) (6–8), or between different form of genomics (e.g., RNA

sequencing (RNAseq) gene expression, protein expression, copy
number, molecular mutations, or DNA methylation) and glioma
subtypes (9–11).

Conventional ML models do not adequately model the
count-based nature of the RNA-sequence data as these models
are usually designed to work with data that has a normal
distribution. In order to alleviate the lack of appropriate
ML models, researchers propose to transform the RNAseq
read-count data to approximate a normal distribution. The
transformation to normal distribution allows the use of existing
methods such as the nearest shrinkage method (12, 13) or
Random Forest for classification. However, such transformation
removes the count-based nature of the RNAseq read counts
data, and hence, lacks the ability to fully preserve the strong
mean-variance relationship that is otherwise useful for glioma
classification and prediction (14, 15). In order to appropriately
model RNAseq read-count data, Negative Binomial (NB) and
Poisson distributions are commonly used (16). The Poisson
distribution is a single parameter distribution with its mean
equals to its variance, which makes it rather restrictive. On
the other hand, NB is similar to a Poisson distribution
with an additional parameter called “dispersion” that allows
the NB distribution to modify its variance without affecting
the mean.

RNAseq uses high-throughput or next-generation sequencing
technology (NGS) and has emerged as a novel alternative to
microarray-based techniques for quantifying gene expression.
The microarray technique is known to suffer from background
noise. Gene expression level is measured as the relative frequency
of the RNAseq reads that are mapped to one gene (17). RNAseq
is a very sensitive technique that provides high resolution and a
thorough understanding of the transcriptome and has revealed
many novel gene structures.

RNAseq distribution requires an appropriate model that
adapts and preserves the nature of RNAseq read counts data, and
such classification models that preserve the nature of RNAseq
are lacking in the traditional ML literature. The NB distribution
is an appropriate choice to model such discrete reads counts
data (16). Even though traditional ML tools that are developed
based on NB are lacking, the choice of using NB distribution
in differential gene expression and RNAseq analysis has been
adapted by different studies in the literature such as in EdgeR
(18–20), DESeq (21), and NBPSeq (22).

An example of a count-based classifier that fits a NB
distribution is the Negative Binomial Linear Discriminant

Analysis (NBLDA). NBLDA is a well-known classifier that is
developed by fitting NB to RNAseq and the mean and dispersion
parameter are estimated from the RNAseq data (23). A different
type of classifier, known as VoomNSC, is developed based on the
transformed count data. VoomNSC is a combination of Voom
(an acronym for mean-variance modeling at the observational
level) transformation (12) and the nearest shrunken centroids
classifier (NSC) (24).

Consequently, the aim of this work is to implement a
joint radiogenomics-NB model that predicts and classifies
glioma molecular mutations following the 2016 World Health
Organization’s (WHO) updated guidelines for classification of
tumors of the Central Nervous System (CNS) (including high
grade and diffuse low-grade gliomas) (25). This work is critical
especially when the RNAseq of some cases are unknown and
a careful assessment is needed to avoid mischaracterization of
lower grade gliomas. In this work, we utilize both volumetric
features (radiomics) and RNAseq to implement and learn a
radiogenomics-NB model. Then, the trained radiogenomics
model is used to predict and classify the unknown RNAseq data.
In the proposed model, a log-linear regression modeling is fitted
to the estimated mean of the NB distribution and is linked
with radiomics. We introduce this step to fuse the continuous
radiomics data with the RNAseq count-based data without the
need to transform RNAseq data into a normal distribution.
Finally, we compare our radiogenomics-NB model performance
with that of different genomics and radiogenomics state-of-the-
art methods in the literature.

The rest of the paper is organized as follows. A complete
step-by-step mathematical derivation of the radiogenomics-NB
model and parameters’ estimations are presented in section
Methodology. Section Experimental Results addresses the dataset
used in this study, the data preparation, and the effect of
using different numbers of differentially expressed genes in the
radiogenomics-NBmodel. Furthermore, in section Experimental
Results, a comparative analysis is discussed in which we compare
the proposed radiogenomics-NB model’s performance with
different well-known methods in the literature. Moreover, in
section Experimental Results, we investigate the effect of gender
by developing a gender-specific radiogenomics-NB model for
glioma molecular grading. Finally, the study’s discussion is
addressed in section Discussion.

METHODOLOGY

In this study, we propose a radiogenomics-NBmethod for glioma
molecular grading and prediction. Figure 1 illustrates an overall
flow diagram of the proposed radiogenomics-NB model. In
Figure 1A, we fit the NB distribution to RNAseq read counts of
the training dataset and estimate the model mean and dispersion
parameter. Then, we use the estimated mean along with the
predictor radiomics vector in a log-linear regression model
to estimate the model regression coefficients. The dispersion
parameter is estimated using the weighted likelihood empirical
Bayes method (19). In Figure 1B, the estimated parameters of
regression coefficients and the dispersion parameters along with
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FIGURE 1 | Overall Flow diagram of the proposed radiogenomics-NB prediction model. (A) radiogenomics-NB model utilizing the training data. (B) class prediction of

a test sample using the developed radiogenomics-NB model.

the sample radiomics and its RNAseq read counts are utilized
to predict the class label of a future test sample. A complete
mathematical derivation of the radiogenomics-NB model is
presented in the following subsection.

Prediction Using Negative Binomial
Regression Model
To fuse radiomics with RNAseq read counts data in anNBmodel,
the following parametrization is defined:

Let C be the total number of classes, and Ic ∈ (1, . . . , nc) be
the indices of samples in class c for c = 1, . . . , C. The examples
of different classes include:

IDH mutated vs. wildtype IDH (C = 2),
1p/19q codeletion: codeletion vs. non-codeletion (C = 2),
Mutated ATRX vs. wildtype (C = 2).

Let Yi =
(

yi1, yi2, . . . , yiG
)

be the RNAseq read counts training
sample in the class label c and G is the total number of RNAseq.
The purpose of this study is to predict the class label c of a future
observation Yt using training samples associated with known
class labels: p ( c|Yt) ∝ p (Yt|c) pc, where pc is the probability of
class c.

Using Bayes’ rule, we have,

p (c|Yi) ∝ p (Yi|c) pc; (1)

where, p(Yi| c) is the pdf of the sample Yi in class c, and pc is
the prior probability that one sample comes from class c. The
pdf of class-specific c of RNAseq read counts of sample Yi and
of RNAseq g is,

P
(

Yig = yig
∣

∣c
)

=
Ŵ

(

φ−1
g + yig

)

Ŵ
(

φ−1
g

)

yig !

(

φgµigc

1+ φgµigc

)yig

(

1

1+ φgµigc

)φ−1
g

. (2)

In this parameterization, Yig represents a count response of
RNAseq, where µigc represents the mean, φg represents the
dispersion parameter, E

(

Yig

)

= µigc, and Var
(

Yig

)

= µigc +

µigcφ
2
g . Note we assume that all RNAseq are independent of each

other, so we have,

p (Yi|c) =

G
∏

g=1

P
(

Yig = yig
)

. (3)

Frontiers in Medicine | www.frontiersin.org 3 August 2021 | Volume 8 | Article 705071

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Shboul et al. Modeling of Radiogenomics Glioma Prediction

Evaluating Equation (1) requires an estimation of p (Yi|c) and pc.
The model in Equation (2) states that Yig ∼ NB

(

µigc,φg

)

. We
first estimate φ1, φ2, . . . ,φG, and µi1c, µi2c, . . . , µiGc of all the
training samples nc, and all RNAseq G. The mean is estimated as
µigc = sicλgc, where sic is the size factor (26, 27) which is used to
scale RNAseq counts for the ith sample (in class c), λgc is the total
number of reads of RNAseq g across all samples in class c. For
prior pc, we assume all classes are equally likely, pc = 1/C. Note
that µigc, sic, and λgc are estimated for each class c.

Next, plugging these estimates into Equation (2) and using the
assumption of independent RNAseq, Equation (1) yields,

log(p(c|Yi)) = log(p(Yi|c) + log(pc). (4)

The log-likelihood log
(

p (Yi|c)
)

is written as,

log
(

p (Yi|c)
)

= log
(

∏

G
g=1P

(

Yig = yig
∣

∣c
)

)

= log





∏

G
g=1

Ŵ

(

φ−1
g + yig

)

Ŵ
(

φ−1
g

)

yig !
×

(

φgµigc

1+ φgµigc

)yig

×

(

1

1+ φgµigc

)φ−1
g



 .

(5)

Equation (5) can be written as,

log
(

p (Yi|c)
)

=
∑

G
g=1log

(

φgµigc

1+ φgµigc

)yig

+
∑

G
g=1log

(

1

1+ φgµigc

)φ−1
g

+
∑

G
g=1log





Ŵ

(

φ−1
g + yig

)

Ŵ
(

φ−1
g

)

yig !



. (6)

Rewriting Equation (6) yields,

log
(

p (Yi|c)
)

=

G
∑

g=1

yig log
(

φgµigc

)

−

G
∑

g=1

yig log
(

1+ φgµigc

)

−

G
∑

g=1

1

φg
log

(

1+ φgµigc

)

+

G
∑

g=1

log





Ŵ

(

φ−1
g + yig

)

Ŵ
(

φ−1
g

)

yig !



. (7)

The proposed NB model of genomics relates to the radiomics
(imaging features) X through the mean parameters µigc

(estimated mean of an ith sample and RNAseq g in class c).
We assume a log-linear regression model for estimating the
mean µigc in terms of the radiomics (imaging features) is given
as follows:

log
(

µigc

)

= Xiβgc; (8.a)

log
(

sicλgc
)

= Xiβgc; (8.b)

where Xi is a p-dimensional of radiomics, βgc is a p-
dimensional vector of unknown regression coefficients (translate

the relationship between X and Y through µigc). The estimation
of βgc depends on class c and gene g of the ith sample. Hence, if
there are two classes, we will need to estimate βg1and βg2 (one
from each class).

Plugging Equations (8.a) into Equation (7), yields,

log
(

p (Yi|c)
)

=
∑

G
g=1yig log

(

φg exp
(

Xiβgc

))

−
∑

G
g=1yig log

(

1+ φg exp
(

Xiβgc

))

−
∑

G
g=1

1

φg
log

(

1+ φg exp
(

Xiβgc

))

+
∑

G
g=1log





Γ

(

φ−1
g + yig

)

Γ
(

φ−1
g

)

yig !



 . (9)

Using the estimated β̂gc, and φ̂g from the training data, we classify
a test observation Yt as follows,

log(p(c|Yt)) = log(p (Yt|c) + log
(

pc
)

; (10)

and,

log
(

p (c|Yt)
)

=
∑

G
g=1ytg log

(

φ̂g exp
(

Xtβ̂gc

))

−
∑

G
g=1ytg log

(

1+ φ̂g exp
(

Xtβ̂gc

))

−
∑

G
g=1

1

φg
log
(

1+ φ̂g exp
(

Xtβ̂gc

))

+
∑

G
g=1log





Γ

(

φ̂−1
g + ytg

)

Γ

(

φ̂−1
g

)

ytg !



+ log
(

pc
)

.

(11)

Radiogenomics-NB Model Parameter
Estimation
Estimating Dispersion φg Using Weighted Likelihood

Empirical Bayes
Various methods for estimating the dispersion parameter are
proposed in the literature. The EdgeR method applies a weighted
conditional log-likelihood method to estimate the dispersion
parameter (19). The weighted conditional log-likelihood (WL)
for φg is defined as a weighted combination of the individual
(per-gene) likelihood lg

(

φg

)

and common lC
(

φg

)

likelihood:

WL
(

φ̂g

)

= lg
(

φg

)

+ αlC
(

φg

)

; (12)

where α is the weight of lC
(

φg

)

.

In EdgeR, φ̂g is assumed to be normally distributed with
means φg and known variance τ 2, and has the following
hierarchical model:

φ̂g |φg ∼ N(φg , τ
2), and φg ∼ N(φ0, τ

2
0 ). (13)

Under this hierarchical normal model, the maximum weighted
conditional log-likelihood estimator is given as:

φ̂WL
g =

φ̂g/τ
2 + α

∑

G
i=1φ̂i/τ

2
i

1/τ 2 + α
∑

G
i=11/τ

2
i

; (14)
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FIGURE 2 | Algorithm of prediction using radiogenomics Negative Binomial classification model.

where,

1/α =

G
∑

i=1

τ 20 /τ 2i (15)

and,

φ0 = φ̂0 =

∑G
i=1 φ̂i/τ

2
i

∑G
i=1 1/τ

2
i

. (16)

Computation of the Mean of RNAseq µigc

The size factor sic of sample i and class c is the total number of
RNAseq read counts of that sample divided by the total number
of all RNAseq read counts across all training samples (in class
c). The size factor estimation is vital to account for the different
sequencing depth (library size) that may be used to sequence
different samples and is computed as follows:

sic =

∑G
g=1 yigc

∑nc
i=1

∑G
g=1 yigc

; (17)

where, yigc is the RNAseq read count of sample i and RNAseq g in
class c, and nc is the total number of samples in class c.

The mean µigc of sample i and RNAseq g in class c is then
estimated as µigc = sicλgc, where λgc is the total number of reads
per RNAseq in class c, and is computed as follows:

λgc =

Nc
∑

i=1

yigc. (18)

Using the estimated value of µigc, the values of βgc are computed
using equation 8.a as follows:

βgc = Xi log

(
∑G

g=1 yigc
∑nc

i=1

∑G
g=1 yigc

∑

Nc
i=1yigc

)

. (19)

The algorithm in Figure 2 illustrates the steps of estimating
the different parameters in the radiogenomics-NB
classification model.

EXPERIMENTAL RESULTS

Dataset
The dataset in this study consists of 108 pre-operative lower grade
glioma (LGG) patients that are described in Menze et al. (28),
Bakas et al. (29), and Bakas et al. (30). Four sequences of the MRI
are provided with the dataset: pre-contrast T1-weighted (T1),
post-contrast T1-weighted (T1Gd), T2-weighted (T2), and T2
Fluid Attenuated Inversion Recovery (FLAIR). These scans are
skull-stripped, re-sampled to 1mm3 resolution, and co-registered
to the T1 template. The dataset provides the segmented sub-
regions of the LGG: Gadolinium enhancing tumor (ET), the
peritumoral edema (ED), and necrosis along with non-enhancing
tumor (NCR/NET).

RNAseq read counts data (with a total number of 56830
RNAseq), molecular alterations (IDH mutation, 1p/19q
codeletion, and ATRX), grade (II and III), and the clinical dataset
can be found and downloaded from The Cancer Genome Atlas
(TCGA) dataset in the Genomic Data Commons (GDC) Data
Portal (https://portal.gdc.cancer.gov/). RNAseq are primarily
obtained from solid portions of tumor. The clinical dataset is de-
identified in compliance with the Health Insurance Portability
and Accountability Act of 1996 (HIPAA). The distribution of the
data is as follows: (i) IDH mutation: 85 Mutant and 23 wildtype
(WT), (ii) 1p/19q codeletion: 27 codeletion and 81 non-codeletion,
and (iii) ATRX status: 43 Mutant and 65 WT. The range of the
patients’ age at diagnosis is 20–75 years, and the median age is
46.5 years.

Data Preparation
In this study we first filter RNAseq read counts to remove RNAseq
with very low value of read counts before performing any
statistical analysis. RNAseq with very low read counts hold very
little information because an RNAseq of biological importance
needs to be expressed at someminimal level. We utilize a quantile
filter (31) with a quantile threshold of 0.25. This step returns
each RNAseq that has a mean across all samples higher than the
defined quantile threshold of 0.25. Then, we reduce the number
of RNAseq that are used in the radiogenomics-NB models, by
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TABLE 1 | Radiomics features description and their ANOVA p-value association with IDH mutations, 1p/19q codeletion, and ATRX mutations.

Feature number Feature description p-value of

IDH mutation

p-value of

1p/19q codeletion

p-value of

ATRX mutation

1 the size of the enhancing tumor to the necrosis size <0.005 0. 393 0.178

2 the size of the enhancing tumor to the size of enhancing tumor and necrosis 0.8630 0.070 0.239

3 the size of the enhancing tumor to the edema size <0.005 0.600 <0.005

4 the size of the enhancing tumor to the whole tumor size <0.005 0.707 0.027

5 the size of the edema to the necrosis size 0.188 0.996 0.114

6 the size of the edema to the size of enhancing tumor and necrosis 0.138 0.789 0.0237

7 the size of the edema to the whole tumor size <0.005 0.131 <0.005

8 and the size of the necrosis to the whole tumor size <0.005 0.221 <0.005

utilizing EdgeR (18–20) to extract the differentially expressed
RNAseq (DERs). DERs reflect the significance of a gene in a
certain biological condition. In this study, we select the top 10,
20, 30, 50, 100, and 150 DERs (see Supplementary Table 1).

Furthermore, we use eight volumetric radiomics features as
illustrated in Table 1. ANOVA analysis for radiomics in Table 1

shows that feature numbers 1, 3, 4, 7, and 8 are significantly
associated (ANOVA test, p < 0.05) with IDH mutations as
illustrated in Figure 3A. Our analysis also indicates that feature
number 2 is marginally associated (ANOVA test, p = 0.07)
with 1p/19q codeletion. Furthermore, our analysis indicates that
feature numbers 3, 4, 6, 7, and 8 are significantly associated
(ANOVA test, p < 0.05) with ATRX mutations as illustrated in
Figure 3B. Additionally, our analysis reveals that thresholding
feature number 6 around the mean creates an ordinal feature
that is significantly associated (ANOVA test, p < 0.05) with IDH
mutations, 1p/19q codeletion, and ATRX mutations. Likewise,
thresholding feature numbers 1, 3, 5, 7, and 8 around their
means converts these features into ordinal features that are
significantly associated (ANOVA test, p < 0.05) with IDH and
ATRX mutations. Moreover, thresholding feature numbers 5, 6,
7, and 8 around their median converts these features into ordinal
features that are significantly associated (ANOVA test, p < 0.05)
with IDH and ATRX mutations.

Few other studies suggest that these volumetric imaging
features and their ratios are associated with and predictive of
several mutations in gliomas (32–35).

The 108 LGG cases are randomly split into 80% training
and 20% testing sets, and a balanced distribution of the target
molecular alteration is ensured in the training and testing sets
in each molecular classifier. The trained model classifier is
developed using the training set. Model performance prediction
is estimated and reported using the testing sets in terms of
accuracy, balanced accuracy, F1 score, sensitivity, specificity,
negative predictive value, and positive predictive value. The
training set is utilized to build our radiogenomics-NB classifier as
shown in steps 1-4 in Figure 2. The testing set is used to estimate
the performance of the classifier as shown in steps a and b in
Figure 2. Authors In Dong et al. (23), Maufroy et al. (36), Pan
et al. (37), and Vabalas et al. (38) repeat training and testing
analysis for a specific number of times to ensure the robustness
of the model performance. Consequently, in this work, we repeat
the whole procedure 100 times independently for the 3 molecular

alterations and then report the mean and standard deviation of
the classifiers’ performance using the testing sets.

Model performance parameters are computed based on the
confusion matrix in Figure 4 as follows:

Accuracy = TP +
TN

TP
+ TN + FP + TN;

(20)

Sensitivity =
TP

TP
+ FN; (21)

Specificity =
TN

FP
+ TN; (22)

Positive predictive value =
TP

TP
+ FP; (23)

Negative predictive value =
TN

FN
+ TN; (24)

Balanced Accuracy =
Sensitivity + Specificity

2
, and (25)

F1 score = TP

(

TP +
FP + FN

2

)

; (26)

where TP is the true positive, TN is the true negative, FP is the
false positive, and TN is the true negative.

Radiogenomics-NB Models Using Different
Number of Differentially Expressed RNAs
In this section, we investigate the importance of using
different numbers of DERs on the performance of the
radiogenomics-NB model. LGG radiogenomics-NB mutation
prediction models are developed based on the top 10,
20, 30, 50, 100, and 150 DERs. The performance of the
radiogenomics-NB IDH model using the top 10 DERs achieves
slightly higher performance. However, such improvement is
not statistically significant (ANOVA test, p > 0.05) when
compared to the performance of the IDH models with
the other number of DERs (Figure 5A) except for negative
predictive value (NPV) performance when using the top
20 DERs. Using the top 20 DERs in the IDH model
achieves significantly worse NPV when compared to the NPV
achieved using the top 10 DERs (ANOVA test, p < 0.05).
Radiogenomics-NB IDH model with the top 10 DERs (red
line in Figure 5A) achieves an overall accuracy (Acc) of 0.92
± 0.06, sensitivity (Sens) of 0.94 ± 0.07, specificity (Spec)
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FIGURE 3 | Feature distribution plot of the significant volumetric radiomic associated with (A) IDH mutations, and (B) ATRX mutations.

of 0.83 ± 0.18, positive predictive value (PPV) of 0.96 ±

0.04, negative predictive value (NPV) of 0.82 ± 0.17, F1
score of 0.95 ± 0.04, and balanced accuracy (B. Acc) of
0.88± 0.09, respectively.

Radiogenomics-NB codeletion models achieve similar
performance (ANOVA test, p > 0.05) using the top 10, 20, 30,
and 50 DERs as shown in Figure 5B. Furthermore, using the top
100 and 150 DERs in the codeletion model achieves significantly
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FIGURE 4 | Confusion matrix of binary classification.

worse performance when compared to the performance of using
the top 10 DERs (ANOVA test, p < 0.05). Using the top 10 DERs,
the radiogenomics-NB codeletion model achieves an accuracy of
0.93 ± 0.06, a balanced accuracy of 0.90 ± 0.10, F1 score of 0.86
± 0.14, a sensitivity of 0.84± 0.19, a specificity of 0.96± 0.04, an
NPV of 0.95± 0.06, and a PPV of 0.90± 0.12, respectively.

Radiogenomics-NB ATRX model also achieves similar
performance (ANOVA test, p > 0.05) using the top 10, 20, and
30 DERs, even though the performance when using the top 10
DERs is slightly better as illustrated in Figure 5C. Using the top
10 DERs, the ATRX model achieves an accuracy of 0.85 ± 0.07,
a balanced accuracy of 0.85 ± 0.07, an F1 score of 0.82 ± 0.08, a
sensitivity of 0.86 ± 0.13, a specificity of 0.85 ± 0.09, an NPV of
0.91± 0.08, and a PPV of 0.80± 0.10, respectively.

Comparative Analysis
Figure 6 illustrates a graphical performance comparison between
our radiogenomics-NB model with that of four different
classifiers in the literature: NBLDA (23), VoomNSC (12, 13),
RF-genomics where we first log-transformed (20) the RNAseq
into a normal distribution, and RF-radiogenomics. Note that the
number of DERs that we apply to develop these classifiers is
10 DERs. Moreover, when developing these classifiers, the 108
LGG cases are randomly split into 80% training and 20% testing
sets, and balanced distribution is ensured when developing the
different classifiers. The trained model classifier is developed
using the training set, and 10-fold cross-validation is performed
to identify the tuning parameters in the different classifiers.
Model performance prediction is estimated and reported using
the testing sets. Additionally, to ensure the robustness of
the different classifiers’ performance, we repeat the whole
procedure 100 times independently and every training/testing
set is utilized to develop and estimate the performance of
each classifier.

TheNBLDA (23) classifier is developed by fittingNB to the top
10 DERs; then the mean and dispersion parameter are estimated
from these DERs. In RF-genomics, the top 10 DERs of the
training sets are first log-transformed into normal distribution
and then fed into RF to build the RF-genomics classifier. In RF-
radiogenomics, radiomics (eight volumetric features described
previously in section Data Preparation) are utilized with the

FIGURE 5 | Performance of the proposed radiogenomics-NB model using a

different number of DERs. (A) Radiogenomics-NB IDH, (B)

Radiogenomics-NB Codeletion, and (C) Radiogenomics-NB ATRX models.

The average performance (of the Acc, B. Acc, F1, NPV, PPV, Sens, and Spec)

is computed across 100 testing sets/splits. Y-axis represents the average

performance of the different statistics on the X-axis. Different colors represent

the radiogenomics-NB model with different numbers of DERs. The error bar

represents one standard deviation. Asterisk “*” represents a statically

significant difference between the performance achieved when using the top

10 DERs (in red) and using the number of DER where the star is located.

log-transformed DERs and then fed into RF to build the RF-
radiogenomics classifier. VoomNSC (12, 24) is developed by first
applying the Voom-based transformation on the 10 DERs and
then applying the NSC classifier as illustrated in Zararsiz et al.
(12) and Tibshirani et al. (24).

Comparing the performance of our radiogenomics-NB IDH
model with that of NBLDA, RF-genomics, and VoomNSC, the
radiogenomics-NB IDH significantly outperforms (ANOVA test,
p < 0.05) these methods as shown in Figure 6A and Table 2.
Additionally, our radiogenomics-NB IDH model significantly
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FIGURE 6 | Comparison of performance between our radiogenomics-NB

model and different classifiers. The comparison is performed using the (A) IDH

mutations, (B) 1p/19q codeletion, and (C) ATRX mutations dataset. The

average performance (of the Acc, B. Acc, F1, NPV, PPV, Sens, and Spec) is

computed across 100 test sets. The error bar represents one standard

deviation. RNAseq that are used in developing all classifiers represent the top

10 DERs in the training sets between mutated and WT IDH group, codeleted

and non-codeleted groups, and mutated and WT ATRX mutation, respectively.

Y-axis represents the average performance of the different statistics on the

X-axis. Different colors represent different classifiers.

outperforms (ANOVA test, p < 0.05) the F1 score, balanced
accuracy, and PPV performance of the RF-radiogenomics
method whereas it achieves a similar (ANOVA test, p > 0.05)
accuracy, sensitivity, and specificity. Our radiogenomics-NB IDH
model archives an accuracy of 0.92 ± 0.06, a sensitivity of 0.94
± 0.07, a specificity of 0.93 ± 0.18, an F1 score of 0.95 ±

0.04, and a balanced accuracy of 0.88 ± 0.09, respectively. The
RF-radiogenomics-IDH model achieves an accuracy of 0.88 ±

0.17, a sensitivity of 0.93 ± 0.07, a specificity of 0.78 ± 0.16,
an F1 score of 0.92 ± 0.06, and a balanced accuracy of 0.85 ±

0.08, respectively.

Our radiogenomics-NB codeletion model (Figure 6B and
Table 3) performance is similar to NBLDA, RF-genomics,
VoomNSC, and RF-radiogenomics models, except for the
specificity and NPV performance when using RF-genomics
and VoomNSC. The specificity and NPV of our model are
significantly higher than those achieved by RF-genomics and
VoomNSC. Our radiogenomics-NB codeletionmodel achieves an
accuracy of 0.93 ± 0.06, a sensitivity of 0.84 ± 0.20, a specificity
of 0.96± 0.5, an F1 score of 0.86± 0.14, and a balanced accuracy
of 0.90± 0.10, respectively.

The performance of our radiogenomics-NB ATRX model
as shown in Figure 6C and Table 4 outperforms both NBLDA
and VoomNSC significantly (ANOVA test, p < 0.05). However,
comparing ourATRXmodel to RF-genomics, our model achieves
significantly better balanced-accuracy, F1 score, NPV, and
sensitivity. Additionally, comparing our ATRX model to RF-
radiogenomics, our model achieves significantly (ANOVA test, p
< 0.05) better sensitivity but achieves similar accuracy, balanced-
accuracy, F1 score, and sensitivity. Our radiogenomics-NBATRX
model achieves an accuracy of 0.85 ± 0.07, a sensitivity of 0.86
± 0.13, a specificity of 0.85 ± 0.09, an F1 score of 0.82 ±

0.08, and a balanced accuracy of 0.85 ± 0.07, respectively. The
RF-radiogenomics ATRX model achieves an accuracy of 0.84 ±

0.08, a sensitivity of 0.80 ± 0.14, a specificity of 0.86 ± 0.10,
an F1 score of 0.80 ± 0.09, and a balanced accuracy of 0.83 ±

0.08, respectively.

Gender–Specific Effect Analysis of
Radiogenomics-NB
In our LGG dataset, IDH mutated patients, unlike IDH WT
patients, have significantly longer survival (65.7 vs. 19.9 months,
log-rank test p = 0.004). The association between IDH status
and overall survival remains significant after stratifying for
gender (likelihood ratio test p= 0.015). However, the association
between 1p/19q codeletion and ATRX status and overall survival
is not significant. Additionally, the chi-square test shows no
significant association (p >0.05) between gender and IDH status,
1p/19q codeletion, and ATRX status. Table 5 shows patient IDH
status, 1p/19q codeletion, and ATRX status distribution based
on gender.

To explore the gender-specific effect in the performance
of the radiogenomics-NB, we build two radiogenomics-NB
models based on gender; male-specific radiogenomics-NB and
female-specific radiogenomics-NB. Our analysis indicates that
female-specific models significantly outperform (ANOVA test,
p < 0.05) male-specific models as illustrated in Figure 7. In
the radiogenomics-NB IDH, female-specific model achieves an
accuracy of 0.93 ± 0.08, a sensitivity of 0.93 ± 0.09, a specificity
of 0.91± 0.10, a PPV of 0.97± 0.05, an NPV of 0.83± 0.21, and a
balanced accuracy of 0.92 ± 0.11, respectively. The male specific
IDH model achieves an accuracy of 0.85 ± 0.08, a sensitivity
of 0.97 ± 0.06, a specificity of 0.35 ± 0.33, a PPV of 0.86 ±

0.07, an NPV of 0.55 ± 0.48, and a balanced accuracy of 0.66 ±

0.17, respectively.
In the radiogenomics-NB codeletion, female-specific model

achieves an accuracy of 0.91 ± 0.09, a sensitivity of 0.77 ±
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TABLE 2 | Probability of significant difference using ANOVA test between the differentially expressed radiogenomics-NB model and different classifiers using the IDH

dataset.

IDH Accuracy Sensitivity Specificity PPV NPV F1 Balanced accuracy

radiogenomics-NB vs. NBLDA 0.000 0.010 0.000 0.000 0.000 0.000 0.000

radiogenomics-NB vs. VoomNSC 0.000 0.075 0.000 0.000 0.000 0.000 0.000

radiogenomics-NB vs. RF 0.001 0.023 0.000 0.000 0.138 0.000 0.000

radiogenomics-NB vs. RF-radiogenomics 0.069 0.432 0.061 0.000 0.084 0.001 0.01

A statistically significant difference exists if p < 0.05. Values in bold show a significant improvement of our radiogenomics-NB IDH over the compared one.

TABLE 3 | Probability of significant difference using ANOVA test between the differentially expressed radiogenomics-NB model and different models using the 1p/19q

codeletion dataset.

CODEL Accuracy Sensitivity Specificity PPV NPV F1 Balanced accuracy

radiogenomics-NB vs. NBLDA 0.232 0.186 0.756 0.514 0.253 0.123 0.181

radiogenomics-NB vs. VoomNSC 0.072 0.228 0.001 0.057 0.042 0.742 0.317

radiogenomics-NB vs. RF 0.242 0.390 0.020 0.636 0.027 0.271 0.42

radiogenomics-NB vs. RF-radiogenomics 0.671 0.815 0.893 0.825 0.282 0.855 0.792

A statistically significant difference exists if p < 0.05. Values in bold show a significant improvement of our radiogenomics-NB codeletion over the compared one.

TABLE 4 | Probability of significant difference using ANOVA test between the differentially expressed radiogenomics-NB model and different models using the ATRX

dataset.

ATRX Accuracy Sensitivity Specificity PPV NPV F1 Balanced accuracy

Radiogenomics-NB vs. NBLDA 0.000 0.269 0.000 0.000 0.677 0.004 0.001

Radiogenomics-NB vs. VoomNSC 0.003 0.741 0.001 0.002 0.432 0.021 0.012

Radiogenomics-NB vs. RF 0.083 0.005 0.540 0.960 0.004 0.026 0.025

Radiogenomics-NB vs. RF-radiogenomics 0.183 0.003 0.215 0.561 0.003 0.052 0.053

A statistically significant difference exists if p < 0.05. Values in bold show a significant improvement of our radiogenomics-NB ATRX over the compared one.

TABLE 5 | Gender-based distribution of IDH status, 1p/19q codeletion, and ATRX status in the LGG dataset.

IDH status 1p/19q codeletion ATRX status

Mutant WT Codeletion Non-codeletion Mutant WT

Female 43 14 14 43 24 33

Male 42 9 13 38 19 32

0.31, a specificity of 0.96 ± 0.07, a PPV of 0.80 ± 0.32,
an NPV of 0.93 ± 0.07, and a balanced accuracy of 0.84 ±

0.17, respectively. The male specific codeletion model achieves
an accuracy of 0.84 ± 0.10, a sensitivity of 0.56 ± 0.32,
a specificity of 0.95 ± 0.08, a PPV of 0.79 ± 0.32, an
NPV of 0.86 ± 0.10, and a balanced accuracy of 0.77 ±

0.17, respectively.
In the radiogenomics-NB ATRX, female-specific model

achieves an accuracy of 0.80± 0.11, a sensitivity of 0.79± 0.20, a
specificity of 0.81 ± 0.15, a PPV of 0.76 ± 0.16, an NPV of 0.87
± 0.12, and a balanced accuracy of 0.80± 0.12, respectively. The
male specific ATRX model achieves an accuracy of 0.76 ± 0.12,
a sensitivity of 0.69 ± 0.23, a specificity of 0.81 ± 0.14, a PPV of
0.73 ± 0.18, an NPV of 0.81 ± 0.12, and a balanced accuracy of
0.75± 0.13, respectively.

DISCUSSION

In this study, we propose a novel radiogenomics-NB model

to fuse radiomics (imaging features) with RNAseq (genes) for
glioma grading and prediction. NB distribution is appropriate

for modeling RNAseq discrete read counts data and for
preserving the count-based nature of this data. In the proposed

radiogenomics-NB model, log-linear regression modeling is
fitted to the estimated mean of the NB distribution and is linked
with radiomics. We introduce this step to fuse the continuous
radiomics data with the RNAseq count-based data without the
need to transform the RNAseq data into a normal distribution.

The NB, unlike a Poisson distribution, has two parameters;
the mean (e.g., the expected value of the RNAseq read counts
data) and dispersion (e.g., a parameter that helps in capturing
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FIGURE 7 | Gender-based radiogenomics-NB models performance. (A) IDH

mutations, (B) 1p/19q codeletion, and (C) ATRX mutations which are

computed across 100 testing sets. The error bar represents one standard

deviation. The asterisk * illustrates a significant difference between the two

measurements. Y-axis represents the average performance of the different

statistics on the X-axis. Different colors represent the female- and

male-specific radiogenomics-NB models.

the variability of the RNAseq read counts). If the dispersion of
NB is zero, the model reduces to Poisson distribution. In Poisson
distribution, the mean is equal to the variance, which makes it
rather restrictive. However, variation is usually observed in the
real data of RNAseq counts data that the Poisson distribution
cannot handle properly. On the other hand, NB has an additional
parameter called the “dispersion” that allows the NB distribution
of RNAseq counts data to modify its variance without affecting
the mean. Thus, NB serves as a practical approximation

to model RNAseq count data with variability different from
its mean.

The mean of the proposed radiogenomics-NB model is
estimated as the size factor multiplied by the total number
of reads per RNAseq. Moreover, we utilize EdgeR to estimate
the dispersion of the proposed radiogenomics-NB assuming
RNAseq variability is assessed using the weighted conditional log-
likelihood model. In the weighted conditional model, RNAseq
counts data is assumed to have a distinct and individual
dispersion for each RNAseq in addition to a common dispersion.
Such an assumption can be more reliable when estimating the
dispersion of real data of RNAseq counts data.

The performance evaluation of the proposed work indicates
that linking simple, clinically feasible radiomics (i.e., tumor
volumetric features) to RNAseq improves the performance of
IDH and ATRX mutations prediction. The radiomics features
utilized in the proposed radiogenomics-NB model that are
described in Table 1 mainly depend on volumetric features. Our
analysis shows that these features are associated with particular
glioma mutations. This outcome supports previous studies that
show the association between volumetric features and glioma
mutations (32–35). The efficacy of the proposed radiogenomics-
NB model is further investigated using the top 10, 20, 30, 50,
100, and 150 DERs, respectively. Our analysis shows that the
smaller the number of DERs (fewer than 30 DERs) utilized in
radiogenomics-NB, the better is the radiogenomics-NB model
performance. Our analyses indicate that using fewer than 30
DERs in our analysis offers the best performance (statically
significant) in the radiogenomics-NB codeletion and ATRX
prediction model. This suggests that using large numbers of
DERs (more than 30) in the proposed radiogenomics-NB would
over parametrize the dataset and create model fitting problems
and thus degrade the performance.

Comparing our radiogenomics-NB model to NBLDA,
RF-genomics, FR-radiogenomics, and VoomNSC, our model
significantly outperforms NBLDA, RF-genomics, and VoomNSC
for prediction of IDH and ATRX mutations. Our radiogenomics-
NB model offers similar performance as NBLDA, RF-genomics,
RF-radiogenomics, and VoomNSC models for prediction
of 1p/19q codeletion. Specifically, for prediction of IDH
mutations, while the proposed radiogenomics-NB model
achieves significantly better balanced-accuracy, F1 score, and
PPV than RF-radiogenomics, our model achieves similar
accuracy, sensitivity, and specificity. Such results indicate
the power of fusing radiomics and genomics data to develop
radiogenomics models for classification and prediction models.
The findings in this work indicate that the radiomics volumetric
features may be vital for the prediction of IDH and ATRX
mutations along with the genomics.

Different studies have revealed that gender is a significant
factor in identifying cancer survival, prognosis, and treatment
response (39–41). Hence, improved glioma molecular mutation
prediction may require the development of gender-specific
models. In this study, we explore the gender-specific effect on
the radiogenomics-NB models. Our analysis reveals that IDH
mutated patients remain significant after stratifying for gender,
unlike 1p/19q codeletion andATRX status. Moreover, our analysis
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indicates that no association is found between gender and the
three specific mutations (IDH mutations, 1p/19q codeletion,
and ATRX status) using the Chi-square test. This result is
in agreement with the findings in Brat et al. (42), Li et al.
(43), and Ebrahimi et al. (44). However, our gender-specific
modeling shows that female-specific radiogenomics-NB models
significantly outperform the male-specific radiogenomics-NB
models for prediction of IDH status, 1p/19q codeletion, andATRX
status, respectively.

In conclusion, we present a glioma mutations radiogenomics-
NB prediction model that preserves the count nature of RNAseq
counts data in the NB model and utilizes radiomics to develop
a complete and a better characterization prediction model of
patient data. Our analysis shows the superiority of utilizing
both genomics and clinically feasible radiomics data when
compared to only genomics models. Use of tumor volumetrics
can be more easily and reproducibly implemented in clinical
practice compared to more complex radiomics metrics, such
as higher order texture analysis features. Finally, this study
shows the efficacy of volumetric radiomics features in the
radiogenomics-NB model for glioma molecular characterization
and prediction. This study is a first step toward implementing
joint modeling of RNAseq and MRI patient data for glioma
grading. However, further investigation is needed with a larger
dataset with both RNAseq and full multimodality MRI dataset
for each patient in a cohort. In the future, larger prospective
studies may be needed to investigate specific radiomics features
and their association with the different mutations and RNAseq
read counts data for implementation into clinical workflow.
Furthermore, it will be interesting to investigate the cause
of superior performance of female-specific radiogenomics-
NB models when compared to that of the male-specific
radiogenomics-NB models for prediction of IDH status, 1p/19q
codeletion, and ATRX status. Also, these models may be further

investigated in treatment response and survival prediction in
the future.
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