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Kidney transplantation is the best option for patients with end-stage renal disease.

Despite the improvement in cardiovascular burden (leading cause of mortality among

patients with chronic kidney disease), cardiovascular adverse outcomes related to

the inflammatory process remain a problem. Thus, the aim of the present study

was to characterize the immune profile and microvesicles of patients who underwent

transplantation. We investigated the lymphocyte phenotype (CD3, CD4, CD8, CD19, and

CD56) and monocyte phenotype (CD14, CD16, CD86, and CD54) in peripheral blood,

and endothelium-derived microvesicles (annexin V+CD31+CD41–) in plasma of patients

with advanced chronic kidney disease (n= 40), patients with transplantation (n= 40), and

healthy subjects (n = 18) recruited from the University Hospital “12 de Octubre” (Madrid,

Spain). Patients with kidney transplantation had B-cell lymphopenia, an impairment in

co-stimulatory (CD86) and adhesion (CD54) molecules in monocytes, and a reduction

in endothelium-derived microvesicles in plasma. The correlations between those

parameters explained the modifications in the expression of co-stimulatory and adhesion

molecules in monocytes caused by changes in lymphocyte populations, as well as the

increase in the levels of endothelial-derivedmicrovesicles in plasma caused by changes in

lymphocyte and monocytes populations. Immunosuppressive treatment could directly or

indirectly induce those changes. Nevertheless, the particular characteristics of these cells

may partly explain the persistence of cardiovascular and renal alterations in patients who

underwent transplantation, along with the decrease in arteriosclerotic events compared

with advanced chronic kidney disease. In conclusion, the expression of adhesion

molecules by monocytes and endothelial-derived microvesicles is related to lymphocyte

alterations in patients with kidney transplantation.
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INTRODUCTION

Chronic kidney disease (CKD) is one of the leading causes
of mortality and morbidity in developed countries (1). This
pathology has a high frequency, affecting ∼9% of the population
worldwide (2). The incidence of CKD is expected to increase in
the future (3) due to the increase in the prevalence of risk factors,
such as hypertension and diabetes mellitus (2, 4, 5).

As CKD progresses and kidney function becomes less
effective, various substances collectively termed uremic retention
solutes accumulate in the body; those that exert adverse
biological effects are termed uremic toxins. Uremic toxins are
thought to contribute to inflammation, immune dysfunction,
vascular disease, platelet dysfunction and increased bleeding
risk, dysbiosis in the gut including increased translocation of
bacteria, altered drug metabolism, as well as CKD progression
(6–11). In addition, the risk of a cardiovascular event increases
with decreasing renal glomerular filtration rate (GFR) and
the occurrence of albuminuria (6, 12–14). The inflammatory
state in advanced chronic kidney disease (ACKD) due to
the inflammatory process in the kidney (15, 16) and the
increase in excretion products in blood (e.g., uremic toxins or
proinflammatory compounds) is particularly interesting (11, 17,
18). Both events lead to low-grade inflammation, similar to
the basal inflammation observed in aging (4, 11, 17), which
can be identified as inflamm-aging (19, 20). This low-grade
inflammation is also associated with a worsening response to
infections (21–23), an increased incidence of cancer (24, 25),
and senescent phenotypes in immune cells and the vascular
endothelium (4, 17, 18, 26–30). This inflammation and cellular
senescence entail the development of associated pathologies,
such as cardiovascular disease, which is the primary cause
of mortality in CKD (4, 31). Proinflammatory monocytes
(intermediate and non-classical) play a crucial role in the
development of this pathology (4, 27, 30–33). In recent years,
the extracellular vesicles—small particles which serve as a means
of communication between cells—have captured the attention
of researchers (34–37). The adhesion of monocytes to the
vascular endothelium leads to release of proangiogenic factors
and extracellular vesicles, including microvesicles (MV), by the
endothelial cells, thereby inducing vascular damage (4, 27, 34,
38).

Most patients reaching end-stage kidney disease are treated
with either dialysis or kidney transplantation (KT), which
is currently the best available therapeutic option (39–41).
However, KT does not entirely solve the problem primarily
because the leading cause of CKD continues to affect the
patient and prolongs the associated pathologies. Furthermore,
other conditions, such as nephrotoxicity (42), anemia (43),
oxidative stress (44), cardiovascular alterations (45, 46), or
mineral-bone alterations (47) persist in patients who underwent
transplantation. Moreover, immunosuppression (42), which is
fundamental for avoiding transplant rejection, may modulate

Abbreviations: ACKD, advanced chronic kidney disease; CKD, chronic

kidney disease; GFR, glomerular filtration rate; HS, healthy subjects; MV,

microvesicles; NK, natural killer.

FIGURE 1 | Description of cross-sectional study population.

the low-grade basal inflammation. Currently, this potential
relationship has not been extensively studied in situations of
normal renal transplantation.

Numerous alterations associated with ACKD and its different
treatments have been identified, including those that affect the
immune and vascular systems. However, the approach through
which these alterations can be corrected, at least partially by
the KT procedure, is not well-established. Thus, the aim of
the present study was to characterize the immune profile and
MVs of patients with KT. This knowledge can be advantageous
in designing strategies for monitoring patients and, above all,
assessing the effectiveness of different treatments.

MATERIALS AND METHODS

Study Population
We carried out a cross-sectional analysis involving 80 patients
with CKD and 18 healthy subjects (HS) to establish standard
criteria (Figure 1). Forty patients had stage 4–5 CKD, while
the remaining 40 had received initial KT at least 6 months
prior to sample collection. Patients with neoplasms, infections,
and inflammatory or active autoimmune diseases were excluded.
All patients were recruited at the Department of Nephrology,
University Hospital “12 de Octubre” (Madrid, Spain). All
procedures were performed according to the World Medical
Association’s Declaration of Helsinki and the protocol was
approved by the Instituto de Investigación Sanitaria Hospital 12
de Octubre Ethics Committee (CEI: 17/407).

Serum Sample Collection
Peripheral blood samples were obtained in
ethylenediaminetetraacetic acid-coated tubes during routine
medical reviews. All samples were analyzed within 18 h
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FIGURE 2 | Representative flow cytometry findings of monocyte subsets and CD54/CD86 expression in the three groups: healthy subjects (HS), patients with

advanced chronic kidney disease (ACKD), and patients with renal transplantation (RT). Monocyte subpopulations were assessed within the FSC-height/SSC-height.

The classical (CD14++CD16–), intermediate (CD14++CD16+), and non-classical (CD14+CD16+) monocytes were evaluated using anti-CD16-FITC and

anti-CD14–TRICOLOR. For each subpopulation, the expression of CD54 or CD86 was analyzed using anti-CD54-PE or anti-CD86-PE. FITC, fluorescein

isothiocyanate; FSC, forward scatter; PE, phycoerythrin; SSC, side scatter.

after collection. Biochemical and lymphocyte population
characterizations were performed at the Department of Clinical
Analysis and Department of Immunology of the “12 de
Octubre” Hospital, respectively. Monocyte population and MV
characterizations were conducted at the Department Genetics,
Physiology, and Microbiology of Complutense University of
Madrid (Spain). For MV characterization, plasma was obtained
through centrifugation of blood samples at 1,500× g for 20min.
Plasma samples were stored at−20◦C.

Lymphocyte Characterization
Total lymphocytes, T lymphocytes (CD3+), T-helper
lymphocytes (CD3+CD4+), T-cytotoxic lymphocytes

(CD3+CD8+), B lymphocytes (CD3–CD19+), and natural
killer (NK) cells (CD3–CD16+/CD56+) were analyzed (48, 49).
Whole blood was stained using BD Multitest 6-color TBNK
reagent (5:2 proportion; BD Biosciences, San José, CA, USA) for
15min. Red blood cell lysis was performed using fluorescence-
activated cell sorting (FACS) lysing solution (BD Biosciences).
The lymphocyte subpopulations were determined using a
FACSCanto II flow cytometer (BD Biosciences) and analyzed by
the FACSCanto clinical software (BD Biosciences).

Monocyte Characterization
Classical (CD14++CD16–), intermediate (CD14++CD16+)
and non-classical (CD14+CD16+) monocyte populations were
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TABLE 1 | Baseline characteristics of patients and healthy subjects.

HS Patients with ACKD Patients with KT

n 18 40 40

Age (years), mean ± SDb 51 ± 16 61 ± 17 54 ± 12

Male, n (%)a 9 (50%) 26 (65%) 27 (68%)

Etiopathology, n (%)a

Nephroangiosclerosis – 7 (17.5%) 6 (15%)

Diabetic nephropathy – 13 (32.5%) 8 (20%)

Glomerular nephropathy – 6 (15%) 4 (10%)

Polycystic kidney disease – 4 (10%) 8 (20%)

Interstitial nephritis – 6 (15%) 2 (5%)

Others – 4 (10%) 10 (25%)

Hypertension, n (%)a 1 (6%) 36 (90%)*** 39 (98%)***

Diabetes mellitus, n (%)a 2 (11%) 18 (45%)* 16 (40%)*

Dyslipidemia, n (%)a 0 (0%) 31 (78%)*** 21 (53%)***#

Hyperuricemia, n (%)a 0 (0%) 28 (70%)*** 13 (33%)***##

Smoking, n (%)a 4 (22%) 11 (28%) 10 (25%)

eGFR (mL/min/1.73 m2), mean ± SDd
>90 16 ± 17*** 49 ± 19***###

Serum creatinine (mg/dL), mean ± SDc 0.8 ± 0.2 4.2 ± 1.0*** 1.5 ± 0.5***###

Serum albumin (mg/dL), mean ± SDb 4.7 ± 0.3 4.3 ± 0.4*** 4.5 ± 0.4###

Proteins (mg/dL), mean ± SDb 7.1 ± 0.4 6.9 ± 0.5 7.0 ± 0.6

CRP (mg/dL), mean ± SDd 0.27 ± 0.5 0.45 ± 0.44** 0.47 ± 0.89*

aChi-squared test. bANOVA (Tukey test). cANOVA (Games–Howell test). dMann–Whitney U-test. Statistical significance was denoted by *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 vs. HS; #p

≤ 0.05, ##p ≤ 0.01, ###p ≤ 0.001 vs. ACKD.

ACKD, advanced chronic kidney disease; ANOVA, analysis of variance; CRP, C-reactive protein; eGFR, estimated glomerular filtration rate; HS, healthy subjects; KT, kidney transplantation;

SD, standard deviation.

analyzed as previously described (50) with modifications. In
addition, the expression of CD86/B-lymphocyte antigen B7-
2 (CD86/B7-2) and CD54/intercellular adhesion molecule 1
(CD54/ICAM1) in each population was determined. A triple-
staining immunofluorescence technique was utilized, and flow
cytometry analysis was performed. Monoclonal antibodies
conjugated with fluorochromes against CD14 (TuK4 clone,
TRI-COLOR R©; Invitrogen, Carlsbad, CA, USA), CD16 (3G8
clone, fluorescein isothiocyanate [FITC]; Invitrogen), CD86/B7.2
(BU63 clone, phycoerythrin; Biolegend, San Diego, CA, USA),
and CD54/ICAM1 (MEM-111 clone, phycoerythrin; Invitrogen)
were used.

Briefly, whole blood was incubated with the corresponding
antibody for 25min at room temperature in darkness. Red
blood lysis was performed using FACS Lysing Solution (BD
Biosciences) for 10min prior to centrifugation at 400 × g. The
cells were fixed using Cell Fix (BD Biosciences) and stored at
4◦C until assessment. The maximum storage period was 24 h.
The monocyte subpopulations and phenotypes were determined
using a FACSCalibur cytometer (BD Biosciences), with the
support of the staff of the cytometry associated research center
of Complutense University of Madrid (Spain) and analyzed by
the FlowJoTM software (Ashland, OR, USA). The results were
expressed as the percentage of monocyte subtype with respect to
the total monocyte population, in the case of three subtypes of

monocytes. Alternatively, data were presented as the percentage
of each population that expressed CD86/CD54 and the mean
fluorescence intensity (MFI), which represents the amount of
molecule expressed by each monocyte (Figure 2).

MV Characterization
The total number of MVs (AnnexinV+) and endothelial-derived
MVs (AnnexinV+CD31+CD41–), as well as the expression
of tissue factor (CD142) in endothelial-derived MVs, were
determined as previously described (49). A quadruple-staning
immunofluorescence technique was utilized, and flow cytometry
analysis was performed. Monoclonal antibodies conjugated
with fluorochromes against Annexin V (Annexin V-FITC Kit;
Miltenyi Biotec, Bergisch Gladbach, Germany), CD41/integrin
subunit alpha 2b (MEM-06 clone, peridnine chlorophyll
protein; Invitrogen), CD31/platelet and endothelial cell
adhesion molecule 1 [PECAM1] (WM-59 clone, phycoerythrin;
BD Bioscience), and CD142/tissue factor (HTF-1 clone,
allophycocyanin [APC]; Invitrogen) were used.

Briefly, platelet-free plasma samples were centrifuged at
110,000 × g for 2min and resuspended in Annexin-V binding
buffer (Annexin V-FITC Kit; Miltenyi Biotec). Subsequently,
the samples were incubated with the corresponding antibodies
for 40min at room temperature in darkness, fixed using Cell
Fix (BD Bioscience), and stored at 4◦C until assessment. The
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FIGURE 3 | Description of lymphocyte subpopulations. Number of total lymphocytesΨ (A), T lymphocytesΩ (B) (CD3+), B lymphocytesΩ (C) (CD3–CD19+), and

natural killer cellsΨ (D) (CD56+CD16+CD3–) in healthy subjects (HS), patients with advanced chronic kidney disease (ACKD), and patients with kidney transplantation

(KT). *p ≤ 0.05, **p ≤ 0.01 vs. HS. Statistical analysis: Ψ ANOVA (Tukey test). ΩANOVA (Games–Howell test). ANOVA, analysis of variance.

maximum storage period was 24 h. The MV subpopulations
were characterized through flow cytometry using a FACSCalibur
cytometer (BD Biosciences) with the support of the staff of the
cytometry associated research center of Complutense University
of Madrid (Spain) and analyzed by the FlowJoTM software. The
standardization on the FACSCalibur device was carried out as
previously described (49).

Statistical Analysis
SPSS version 21.0 (Armonk, NY, USA) was used for the
statistical analysis. The data were expressed as the mean ±

standard deviation. The normality of the samples and variance
homogeneity were checked using one-sample Kolmogorov–
Smirnov and Levene tests. Normal variables were evaluated using
one-way analysis of variance to determine individual differences
for each parameter followed by post-hoc analysis. The post-hoc
analysis was performed using Tukey’s test for variables with
homogeneous variances and the Games–Howell test for those
with heterogeneous variances. For non-normal variables, the
Mann–Whitney U-test was performed. For qualitative data, the
chi-squared test was performed, and the results were expressed
as relative and absolute frequencies. The Spearman correlation
test was carried out for correlation analysis between lymphocytes,

monocytes, and MV subpopulations in renal transplant patients.
P ≤ 0.05 denoted statistical significance.

RESULTS

Population Description
The baseline characteristics of patients with CKD and HS are
shown in Table 1. There was no difference between the age or
sex of patients with ACKD (61 ± 17 years; 65% males) and
transplantation (54 ± 12 years; 68% males). The numbers of
individuals affected by hypertension and diabetes mellitus were
similar in both groups of patients (ACKD: 90% and 45%; KT:
98% and 40%, respectively) as well as the smoking habit (ACKD:
28%; KT: 25%).Whereas de number of patients with dyslipidemia
and hyperuricemia was higher in ACKD (78%, p = 0.034; 70%,
p = 0.002, respectively) than in kidney transplantation (53;
33%, respectively). The estimated GFR was lower in patients
with ACKD (16 ± 17 mL/min/1.73 m2, p = 0.000) than
in those with kidney transplantation (49 ± 19 mL/min/1.73
m2). Moreover, there were no differences in the levels of C-
reactive protein in both patient groups (ACKD: 0.45 ± 0.44
mg/dL; KT: 0.47± 0.89 mg/dL).

Regarding the immunosuppressive treatment, the most used
treatment was a combination of tacrolimus and mycophenolic
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FIGURE 4 | Description of T lymphocyte subpopulations. NumberΨ (A) and percentageΨ (B) of T-helper lymphocytes (CD3+CD4+); numberΨ (C) and percentageΨ

(D) of T-cytotoxic lymphocytes (CD3+CD8+); relationship between helper and cytotoxic lymphocytesΩ (E) (CD4/CD8 ratio) in healthy subjects (HS), patients with

advanced chronic kidney disease (ACKD), and patients with kidney transplantation (KT). *p ≤ 0.05, ***p ≤ 0.001 vs. HS; #p ≤ 0.05, ##p ≤ 0.01, and ###p ≤

0.001 vs. ACKD. Statistical analysis: ΨANOVA (Tukey test). ΩANOVA (Games–Howell test). ANOVA, analysis of variance.

FIGURE 5 | Description of monocyte subsets. Percentage of classicalΦ (A) (CD14++CD16−); intermediateΨ (B) (CD14++CD16+) and non-classicalΨ (C)

(CD14+CD16+) monocytes in healthy subjects (HS), patients with advanced chronic kidney disease (ACKD), and patients with kidney transplantation (KT). *p ≤ 0.05

vs. HS. Statistical analysis: ΨANOVA (Tukey test). ΨMann–Whitney U-test. ANOVA, analysis of variance.

acid (26 patients, 65%), followed by a combination of tacrolimus
and everolimus (seven patients, 17.5%).

Lymphocyte Characterization
The present results did not show any differences in the total
number of lymphocytes (Figure 3A), T lymphocytes (Figure 3B),
or NK cells (Figure 3D). A decrease in the number of B

lymphocytes was observed in ACKD (130.86 ± 155.55 cells/µL)
and KT (123.05± 71.07 cells/µL) patients vs. HS (198.77± 87.08
cells/µL, p= 0.047 and 0.009, respectively) (Figure 3C).

Regarding the T-lymphocyte subpopulations, we did not find
differences in the total numbers of T-helper and T-cytotoxic
cells (Figures 4A,C, respectively). Nevertheless, patients with KT
showed a decrease in the percentage of T-helper lymphocytes
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FIGURE 6 | Expression of CD86/B7.2 in different monocyte subsets. Percentage of classicalΦ (A) (CD14++CD16–), intermediateΩ (B) (CD14++CD16+), and

non-classicalΨ (C) (CD14+CD16+) monocytes expressing CD86. Mean fluorescence intensity of CD86 in classicalΩ (D) (CD14++CD16–), intermediateΩ (E)

(CD14++CD16+), and non-classicalΩ (F) (CD14+CD16+) monocytes in healthy subjects (HS), patients with advanced chronic kidney disease (ACKD), and patients

with kidney transplantation (KT). **p ≤ 0.01, ***p ≤ 0.001 vs. HS; #p ≤ 0.05 vs. ACKD. Statistical analysis: Ψ ANOVA (Tukey test). ΩANOVA (Games–Howell test).
ΦMann–Whitney U-test. ANOVA, analysis of variance.

(40.62 ± 9.16%, p = 0.062 vs. HS and p = 0.016 vs. ACKD;
Figure 4B). They also exhibited an increase in the cytotoxic
subpopulation (33.67± 11.01%, p= 0.000; Figure 4D) compared
with HS (46.76 ± 7.64 and 23.06 ± 6.41%, respectively)
and patients with ACKD (46.51 ± 9.96 and 24.89 ± 7.97%,
respectively), resulting in a decreased CD4/CD8 ratio (KT: 1.4 ±
0.68, HS: 2.18 ± 0.93, p = 0.011; ACKD: 2.13 ± 1.11, p = 0.002;
Figure 4E).

Monocyte Characterization
There were no differences between groups in the percentages of
classical (Figure 5A) and intermediate (Figure 5B) monocytes.
Patients with KT had a lower percentage of non-classical
monocytes (6.38 ± 3.11%) (Figure 5C) compared with
HS (8.72± 3.7%, p= 0.036).

However, the most notable differences were observed in CD86
and CD54 in different subpopulations. There was a higher
percentage of classical monocytes that express CD86 in KT
patients (93.63 ± 11.99%) vs. HS (88 ± 6.15%, p = 0.000)
and ACKD patients (87.92 ± 15.15%, p = 0.03; Figure 6A).
Notably, the percentage of monocytes expressing this molecule

did not change in the intermediate (Figure 6B) and non-classical
(Figure 6C) subtypes. Meanwhile, the number of cells expressing
CD86 was increased in patients with ACKD (classical: 91.76 ±

36.68 MFI, p = 0.000; intermediate: 172.21 ± 56.94 MFI, p =

0.008; non-classical: 164.43 ± 45.79 MFI, p = 0.000) and those
with KT (classical: 100.7 ± 38.97 MFI, p = 0.000; intermediate:
208.88 ± 78.01 MFI, p = 0.000; non-classical: 188.97 ± 64.18
MFI, p= 0.000) compared with HS (classical: 58.94± 12.98 MFI;
intermediate: 133.76 ± 32.41 MFI; non-classical: 120.78 ± 31
MFI) in the three monocyte subpopulations (Figures 6D–F).

Regarding the expression of CD54 in the different subsets of
monocytes, there was an increase in the percentage of classical
monocytes expressing this molecule in patients with KT (96.13
± 4.49%) vs. HS (89 ± 6.18%, p = 0.001) and patients with
ACKD (85.95 ± 13.25%, p = 0.000; Figure 7A). However, there
was no difference in the percentage of intermediate (Figure 7B)
and non-classical monocytes (Figure 7C). The expression level of
CD54 in the three subsets (Figures 7D–F) was higher in patients
with KT (classical: 167.9 ± 66.43 MFI; intermediate: 316.6 ±

100.41 MFI; non-classical: 210 ± 64.06 MFI) compared with HS
(classical: 123.11± 30.55 MFI, p= 0.008; intermediate: 245.18±
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FIGURE 7 | Expression of CD54/ICAM1 in different monocyte subsets. Percentage of classicalΩ (A) (CD14++CD16−), intermediateΨ (B) (CD14++CD16+), and

non-classicalΨ (C) (CD14+CD16+) monocytes expressing CD54. Mean fluorescence intensity of CD54 in classicalΩ (D) (CD14++CD16−), intermediateΨ (E)

(CD14++CD16+), and non-classicalΨ (F) (CD14+CD16+) monocytes in healthy subjects (HS), patients with advanced chronic kidney disease (ACKD), and patients

with kidney transplantation (KT). **p ≤ 0.01, ***p ≤ 0.001 vs. HS; #p ≤ 0.05, ##p ≤ 0.01, ###p ≤ 0.001 vs. ACKD. Statistical analysis: ΨANOVA (Tukey test).
ΩANOVA (Games-Howell test). ANOVA, analysis of variance.

67.73, p = 0.014; non-classical: 148.78 ± 46.05 MFI, p = 0.001),
and patients with ACKD (classical: 133.67 ± 37.29 MFI, p =

0.041; intermediate: 250.51± 68.92MFI, p= 0.004; non-classical:
171.92± 54.24 MFI, p= 0.02).

MVs Characterization
The total numbers of MVs (Figure 8A) and endothelial MVs
(Figure 8B) were increased in patients with ACKD (94,335.97 ±
124,672 MVs/µL; 66,355.47± 124,672.09 MVs/µL; respectively)
compared with HS (8,599.14 ± 5,341.19 MVs/µL, p = 0.001;
7,417.7± 11,418.63MVs/µL, p= 0.02; respectively) and patients
with KT (12,286.87 ± 11,637.93 MVs/µL, p = 0.001; 6,412.73
± 764.68 MVs/µL, p = 0.001; respectively). There were no
differences observed in the percentage of endothelial MVs
(Figure 8C). The percentage of endothelialMVs expressing tissue
factor (CD142) (Figure 8D) was higher in patients with ACKD
(8,327.29 ± 1,736.99%) vs. HS (664.29 ± 703.9%, p = 0.003)
and patients with KT (845.76 ± 1,390%, p = 0.000). A lower
number of endothelial MVs expressing tissue factor (Figure 8E)
was observed in patients with KT (128.78 ± 139.2 MVs/µL)
compared with HS (153.5 ± 151.55 MVs/µL, p = 0.017) and
patients with ACKD (378.68± 315.89 MVs/µL, p= 0.000).

Correlations
The correlations between the subpopulations of lymphocytes,
monocytes, and MVs in patients with KT are shown
in Figures 9–13.

The total number of lymphocytes showed a positive
correlation with the percentage (r= 0.376, p= 0.041; Figure 9A)
and expression (r = 0.339, p= 0.062 statistical trend; Figure 9B)
of CD86 and percentage (r = 0.589, p = 0.001; Figure 9C)
and expression (r = 0.421, p = 0.026; Figure 9D) of CD54 in
non-classical monocytes in all cases.

Regarding T lymphocytes, we observed a positive correlation
with the expression of CD86 in non-classical monocytes (r =

0.430, p = 0.018; Figure 9E), the percentage of classical (r =

0.430, p = 0.018; Figure 9F), intermediate (r = 0.471, p = 0.011;
Figure 9G) and non-classical (r = 0.494, p = 0.008, Figure 9H)
CD54+ monocytes, and the expression of CD54 in non-classical
monocytes (r = 0.363, p= 0.063 statistical trend, Figure 9I).

We found a positive correlation between B cells and
monocytes in the percentage of intermediate (r = 0.413, p =

0.017; Figure 10A) and non-classical (r = 0.323, p = 0.067;
Figure 10B) monocytes, intermediate (r = 0.433, p = 0.013;
Figure 10C) and non-classical (r= 0.354, p= 0.051; Figure 10D)
monocytes that express CD86, and the expression of CD86 in
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FIGURE 8 | Description of the microvesicles phenotype. Total number of microvesiclesΦ (A) (annexin V+); numberΩ (B) and percentageΩ (C) of endothelial

microvesicles (annexin V+CD31+CD41–); and percentageΨ (D) and numberΦ (E) of endothelial microvesicles expressing tissue factor (CD142) in healthy subjects

(HS), patients with advanced chronic kidney disease (ACKD), and patients with kidney transplantation (KT). *p ≤ 0.05, **p ≤ 0.01, and ***p ≤ 0.001 vs. HS; ###p ≤

0.001 vs. ACKD. Statistical analysis: Ψ ANOVA (Tukey test). ΩANOVA (Games–Howell test). ΦMann–Whitney U-test. ANOVA, analysis of variance.

classical (r = 0.446, p = 0.010; Figure 10E) and intermediate (r
= 0.371, p= 0.040; Figure 10F) monocytes.

There was a positive correlation between the number of
NK cells and the percentage of non-classical monocytes that
expressed CD86 (r = 0.349, p = 0.054; Figure 10G), the
expression of CD86 in classical (r = 0.401, p = 0.023;
Figure 10H), intermediate (r = 0.461, p = 0.009; Figure 10I),
and non-classical (r = 0.469, p = 0.007; Figure 10J) monocytes,
and the percentage of non-classical monocytes that expressed
CD54 (r = 0.472, p= 0.009; Figure 10K).

Regarding the number of T-cytotoxic lymphocytes, we
observed a positive correlation with the percentage of classical
(r = 0.456, p = 0.013; Figure 11A) and non-classical (r = 0.453,
p = 0.012; Figure 11B) monocytes that expressed CD54, and the
expression of CD54 in classical (r= 0.351, p= 0.062; Figure 11C)
and intermediate (r = 0.369, p= 0.049; Figure 11D) monocytes.

With respect to the relationship between lymphocytes and
MVs, the percentage of T-helper lymphocytes was negatively
correlated with the number (r =−0.500, p= 0.006; Figure 12A)
and percentage (r = −0.364, p = 0.037; Figure 12B) of
endothelial MVs, and positively correlated with the percentage of
endothelial MVs (r = 0.588, p = 0.000; Figure 12C). CD4/CD8
was negatively correlated with the number (r = −0.429, p =

0.023; Figure 12D) and percentage (r = −0.588, p = 0.000;
Figure 12E) of endothelial MVs.

Finally, the percentage of non-classical monocytes expressing
CD86 was negatively correlated with the total number of MVs
(r = −0.447, p = 0.025; Figure 13A). Moreover, there was a
negative correlation between the expression of CD86 in classical
monocytes and the percentage of endothelial MVs expressing
tissue factor (r = −0.440, p = 0.025; Figure 13B). Of note,
the expression of CD86 in intermediate (r = 0.378, p = 0.062;
Figure 13C) and non-classical (r= 0.378, p= 0.057; Figure 13D)
monocytes was positively correlated with the number of total
MVs. There was a negative correlation between the percentage of
intermediate monocytes expressing CD54 and the total number
ofMVs (r=−0.448, p= 0.028; Figure 13E) and endothelial MVs
(r =−0.458, p= 0.037; Figure 13F).

DISCUSSION

In this cross-sectional study, we analyzed the immune phenotype
of lymphocytes, monocytes, andMVs in patients with ACKD and
KT vs. HS. The patients with KT showed B-cell lymphopenia, an
increased proportion of T-cytotoxic lymphocytes, and increased
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FIGURE 9 | Correlation between the number of total lymphocytes and T lymphocytes with monocytes in renal transplantation. Correlation of the total number of

lymphocytes with the percentage of non-classical monocytes CD86+ (A), expression of CD86 in non-classical monocytes (B), percentage of non-classical monocytes

expressing CD54 (C), and expression of CD54 in non-classical monocytes (D). Correlations of T lymphocytes with the expression of CD86 in non-classical monocytes

(E), percentage of classical (F), intermediate (G), and non-classical (H) CD54+ monocytes, and the expression of CD54 in non-classical monocytes (I) are shown.

levels of adhesion (CD54) and co-stimulatory (CD86) molecules
in all monocyte subsets. Furthermore, the changes in lymphocyte
subpopulations were positively correlated with the monocyte
phenotypes, and both types of leukocytes were negatively
correlated with changes in the MV phenotype. This is the
first study that investigated the correlations between changes
in lymphocytes, monocytes, and MVs. Although those changes
could be directly or indirectly influenced by immunosuppressive
treatment, the characteristic of those cells and molecules could
participate in the development of cardiovascular and renal
complications that persisted in patients with KT.

Currently, KT is the best therapy for CKD; however,
patients require immunosuppressive treatment to avoid allograft
rejection. The treatment may differ between patients due
to numerous factors, such as the immunological risk for
rejection, nutritional status, and the presence of other co-
morbidities (51). Most patients with KT receive different
immunosuppressive therapies that seek a balance to avoid acute
rejection, toxicity (52), and possible deleterious effects, such
as infections (53) and tumors (54). Most patients undergoing
renal transplantation receive a combination (two or more) of
calcineurin inhibitors (tacrolimus), azathioprine, mycophenolic

acid, mammalian target of rapamycin (mTOR)-inhibitors,
prednisone, and belatacept (51, 55–58).

The main objective of immunosuppressive treatment is the
regulation of the T cell-mediated alloimmune response (51),
which is induced by the response of the immune system to
non-self-antigens of the same species. In this process, T cells
play an essential role in recognizing the non-self-antigen in
the context of the major histocompatibility complex (59, 60).
Therefore, most immunosuppressors inhibited the activation of
T cells and avoided the proliferation of activated B, T, and NK
cells due to alteration in the synthesis of cytokines (61, 62). The
present findings did not show changes in the total number of
T lymphocytes and NK cells, whereas B-cell lymphopenia was
noted in both groups of patients. Thus far, only a few studies have
measured the total number of lymphocytes or the total number
of T lymphocytes, without reporting any differences (63, 64).
Other studies also showed the presence of B-cell lymphopenia
in patients with ACKD (65, 66) and KT. Meanwhile, in ACKD,
this diminution may be associated with a decrease in GFR.
Nevertheless, in renal transplantation, the effect of treatment
on GFR remains unclear. Some studies reported an increase
in the number of NK cells (63); however, the changes in NK
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FIGURE 10 | Correlation between the number of B lymphocytes and natural killer (NK) cells with monocytes in renal transplantation. Correlation between B

lymphocytes and the percentage of intermediate (A) and non-classical (B) monocytes, the percentage of intermediate (C) and non-classical (D) CD86+ monocytes

and the expression of CD86 in classical (E) and intermediate (F) monocytes. Correlations of NK cells with the percentage of CD86+ monocytes (G), expression of

CD86 in classical (H), intermediate (I), and non-classical (J) monocytes, and the percentage of non-classical monocytes expressing CD54 (K) are shown.

cells appeared to depend on the immunosuppressor treatment
(64, 67).

Changes in the T-helper and T-cytotoxic subpopulations have
been more widely investigated. The majority of the research
studies, similar to the present investigation, did not report
differences in the number of T subpopulations. Instead, they
reported an increase in the proportion of the T-cytotoxic
subpopulation compared with that of T-helper cells (63, 64).
The regulation of T-helper cells may play a key role in the
prevention of negatives outcomes in patients undergoing renal
transplantation. Persistent CD4+ lymphopenia has been related

to atherosclerosis (68) and an increase inmorbidity andmortality
in patients with KT (69).

Changes in monocyte subsets in renal transplantation have
not been thoroughly studied. Intermediate (CD14++CD16+)
and non-classical monocytes exhibited pro-inflammatory and
proatherogenic activities (CD14+CD16+) in health individuals
and in patients with CKD (4, 32, 70, 71). Some studies
showed a depletion of non-classical monocytes due to treatment
with glucocorticoids (72–74). The wide use of corticoids in
immunosuppression may explain the decrease in non-classical
monocytes recorded in the renal transplantation group.

Frontiers in Medicine | www.frontiersin.org 11 September 2021 | Volume 8 | Article 705159

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Ceprian et al. Accelerated Immunosenescence in Renal Transplantation

FIGURE 11 | Correlation between T-cytotoxic lymphocytes and monocytes in renal transplantation. Correlations between T-cytotoxic lymphocytes and the percentage

of classical (A) and non-classical (B) CD54+ monocytes, and the expression of CD54 in classical (C) and intermediate (D) monocytes are shown.

There is limited research on the expression of CD86/B7.2
and CD54/ICAM1 in the monocyte subsets, particularly in CKD.
CD80/b7.1 and CD86/B7.2 are co-stimulatory molecules, which
are essential for the activation of T cells. This co-stimulation
is exhibited by the antigen-presenting cells. Some studies did
not report changes in the expression of CD86 in monocytes
of patients with chronic renal failure (75), whereas others
showed a decrease in its expression in monocytes (75) and
dendritic cells (76) of patients undergoing dialysis. Nevertheless,
the proinflammatory and proatherogenic monocytes showed an
increase in CD86 expression (77, 78).

Although further research is warranted, the
microinflammatory state of the CKD transplant could lead
to the development of senescent monocytes with an increased
expression of CD86, explaining the present results. Regarding
the expression of CD86 by monocytes in patients with KT,
the blockage of B7/CD28 co-stimulation required a specific
antibody against B7 components (79–81). This is rarely used and
had shown more significant effect but differs between the two
subtypes of B7 due to differences in biochemical characteristics
(82, 83). CD54/ICAM1 is an adhesion molecule expressed by
immune and endothelial cells. The increased expression of
ICAM1 in allograft tissue is related to rejection (84, 85). The
monocytes of patients who underwent transplantation and

were treated with mycophenolate mofetil did not show any
differences in the expression of CD54 (86). The expression of
CD86 and CD54 is markedly increased in intermediate and
non-classical monocytes (4, 87, 88). These monocytes are highly
proinflammatory and participate in atherosclerosis (4). The
elevation in the expression of these molecules in all monocyte
subsets of patients with transplantation may indicate an increase
in senescent monocytes participating in cardiovascular disease,
which is one of the main causes of death in patients with KT (89).
The increase on the expression in costimulatory molecules has
been shown in autoimmune disease; in particular, a increase of
these costimulatory molecules in monocytes and in plasma lead
to dysregulation of the immune response toward an exacerbate
inflammatory one (90–92).

It was recently discovered that MVs are a form of extracellular
communication. They play an essential role in the development
of multiples disease (93, 94), but they have been extensively
studied in cardiovascular alterations (95–98). In disease, there is
an increase in the number and changes in the content of MVs
(96). The increase in indoxyl sulfate shown in CKD has been
related to the increase in endothelial MVs that participated in
vascular calcification (98, 99). This increase in indoxyl sulfate and
other uremic toxins may explain the increased number of MVs
and endothelial MVs in patients with ACKD. Transplantation
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FIGURE 12 | Correlation between lymphocytes and microvesicles in renal transplantation. Correlation between T-helper lymphocytes and the number (A) and

percentage (B) of endothelium microvesicles. Correlation between T-cytotoxic lymphocytes and percentage of endothelium microvesicles (C). Correlation of CD4/CD8

ratio with the number (D) and percentage (E) of endothelium microvesicles.

partially solves this problem by increasing kidney function.
Tissue factor (CD142) triggers thrombotic responses and plays an
important role in atherosclerosis. Thus, elevated levels of tissue
factor in microparticles is associated with an increased risk of
atherosclerosis and thrombosis (100–102). The elevation in the

expression of tissue factor in patients with ACKD contributes
to the increased risk of cardiovascular disease in patients
with CKD.

To the best of our knowledge, this is the first study to
correlate changes in lymphocyte subsets with different monocyte
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FIGURE 13 | Correlation between monocytes and microvesicles in renal transplantation. Correlations between the percentage of CD86+ non-classical monocytes

and the total number of microvesicles (A), the expression of CD86 in classical monocytes and the percentage of 142+ endothelium microvesicles (B), the expression

of CD86 in intermediate monocytes and the total number of microvesicles (C), the expression of CD86 in non-classical monocytes and the total number of

microvesicles (D), the percentage of CD54+ intermediate monocytes and the total number of microvesicles (E), and the percentage of CD54+ intermediate

monocytes and the number of endothelium microvesicles (F) are shown.

subtypes in renal transplantation. The cells of the immune system
communicate through cytokines and microparticles to maintain
the homeostasis of the organism. Monocytes influence T-cell
differentiation by antigenic presentation, release of cytokines,
or cell-cell communications (103). The present results showed
the correlations of different phenotypes of lymphocytes with the
three different subsets of monocytes and the expression of CD86
and CD54. Despite the renal transplantation, the leading cause of
CKD and the co-morbidities persist.

Consequently, the microinflammation process continues,
based on the persistence of the main cause of the disease
and the alteration of renal alteration function (showed by a
decreased GFR compared to with HS), which can modulate
the different subsets of leukocytes in patients who undergo
transplantation. Despite the immunosuppressive treatment, the
monocytes are influenced by these effects. This leads to
further alteration of the vascular endothelium, resulting in
adverse cardiovascular outcomes. This is more important in
the interaction between cytotoxic T-cells and endothelial MVs,
leading to an increased risk of atherogenic complications in
patients with transplantation.

Even though the promising results of this work, the vast
variety of treatment, not only immunosuppression, but also
concomitant medications such as statins and allopurinol, that
CKD patients suffers complicates the study and analysis of
these patients. Most of this concomitant medication has anti-
inflammatory effects (104–107) and affected immune phenotypes
(108–111). Also, said medication can change the number and
content of MVs (112–114).

The main limitation of this study is the number of
volunteer HS of the same socioeconomic status (2), which

is an important factor influencing the outcome of the
disease. Furthermore, the wide variety of immunosuppressive
treatment options, as well as concomitant meditation and
comorbidities, complicate the study of the effects of the
drugs in monocytes and MV subsets. However, this study
provides original and integrative knowledge regarding the
differences and relationships of leukocyte subpopulations. This
could lead to a better comprehension of the participation of
the immune function in negative outcomes in patients who
undergo transplantation.

In conclusion, B-cell lymphopenia and an increase in
the expression of costimulatory and adhesion molecules
were observed in patients with KT. These changes
were interrelated and associated with the number of
MVs. These findings can partially explain the negatives
outcomes of cardiovascular disease in patients with renal
transplantations and the persistence of adverse renal outcomes.
Further prospective studies are warranted to elucidate this
communication mechanism and its role in negative outcomes.
The increase in risk factor linked to CKD and the high
cost associated with renal substitutive therapies could
bring a heavy burden to public healthcare systems in the
near future.
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