
ORIGINAL RESEARCH
published: 08 September 2021

doi: 10.3389/fmed.2021.711208

Frontiers in Medicine | www.frontiersin.org 1 September 2021 | Volume 8 | Article 711208

Edited by:

Balu Kamaraj,

Imam Abdulrahman Bin Faisal

University, Saudi Arabia

Reviewed by:

J. Francis Borgio,

Imam Abdulrahman Bin Faisal

University, Saudi Arabia

Udhaya Kumar S,

Vellore Institute of Technology, India

*Correspondence:

Palle Duun Rohde

palledr@bio.aau.dk

Specialty section:

This article was submitted to

Precision Medicine,

a section of the journal

Frontiers in Medicine

Received: 18 May 2021

Accepted: 05 August 2021

Published: 08 September 2021

Citation:

Rohde PD, Nyegaard M, Kjolby M and

Sørensen P (2021) Multi-Trait

Genomic Risk Stratification for Type 2

Diabetes. Front. Med. 8:711208.

doi: 10.3389/fmed.2021.711208

Multi-Trait Genomic Risk
Stratification for Type 2 Diabetes
Palle Duun Rohde 1,2*, Mette Nyegaard 2,3, Mads Kjolby 3,4,5,6 and Peter Sørensen 7

1Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark, 2Department of Health Science and

Technology, Aalborg University, Aalborg, Denmark, 3Department of Biomedicine, Aarhus University, Aarhus, Denmark,
4Department of Population Health and Genomics, University of Dundee, Dundee, United Kingdom, 5Department of Clinical

Pharmacology, Aarhus University Hospital, Aarhus, Denmark, 6 Steno Diabetes Center Aarhus, Aarhus University Hospital,

Aarhus, Denmark, 7Centre for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark

Type 2 diabetes mellitus (T2DM) is continuously rising with more disease cases every

year. T2DM is a chronic disease with many severe comorbidities and therefore remains a

burden for the patient and the society. Disease prevention, early diagnosis, and stratified

treatment are important elements in slowing down the increase in diabetes prevalence.

T2DM has a substantial genetic component with an estimated heritability of 40–70%,

and more than 500 genetic loci have been associated with T2DM. Because of the

intrinsic genetic basis of T2DM, one tool for risk assessment is genome-wide genetic risk

scores (GRS). Current GRS only account for a small proportion of the T2DM risk; thus,

better methods are warranted for more accurate risk assessment. T2DM is correlated

with several other diseases and complex traits, and incorporating this information by

adjusting effect size of the included markers could improve risk prediction. The aim

of this study was to develop multi-trait (MT)-GRS leveraging correlated information.

We used phenotype and genotype information from the UK Biobank, and summary

statistics from two independent T2DM studies. Marker effects for T2DM and seven

correlated traits, namely, height, body mass index, pulse rate, diastolic and systolic blood

pressure, smoking status, and information on current medication use, were estimated

(i.e., by logistic and linear regression) within the UK Biobank. These summary statistics,

together with the two independent training summary statistics, were incorporated into

the MT-GRS prediction in different combinations. The prediction accuracy of the MT-

GRS was improved by 12.5% compared to the single-trait GRS. Testing the MT-GRS

strategy in two independent T2DM studies resulted in an elevated accuracy by 50–94%.

Finally, combining the seven information traits with the two independent T2DM studies

further increased the prediction accuracy by 34%. Across comparisons, body mass

index and current medication use were the two traits that displayed the largest weights

in construction of the MT-GRS. These results explicitly demonstrate the added benefit

of leveraging correlated information when constructing genetic scores. In conclusion,

constructing GRS not only based on the disease itself but incorporating genomic

information from other correlated traits as well is strongly advisable for obtaining improved

individual risk stratification.
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INTRODUCTION

Type 2 diabetes mellitus (T2DM) is a chronic disease with severe
comorbidities, such as myocardial infarction, loss of kidney
function, blindness, and risk of amputations (1). Globally, the
prevalence of T2DM is expected to increase exponentially in
developing countries (2, 3), and it is a disease that places a
severe economic burden on health systems. Accurate disease risk
assessment is important for early disease diagnosis for initiating
lifestyle changes early in the disease progression or prompt the
clinician to treat high-risk patients more aggressively, which
is expected to slow down disease progression, reduce disease
symptoms, and prevent severe morbidity and mortality. Thus,
methods for accurate disease risk assessment are absolutely
critical for reducing morbidity and mortality.

Studies have unambiguously shown that T2DM is a complex,
multifactorial disease, where an individual’s risk of developing
the disease is influenced by a combination of genetic variation
at multiple sites across the genome acting in concert with
environmental factors (4–6). The heritability of T2DM has been
estimated to be 40–70% (7, 8), and more than 500 distinct
genetic loci have been implicated with T2DM risk (6, 9–12). As
T2DM is greatly impacted by genetics, genomic information has
the potential to not only aid with early disease diagnosis but
importantly also to stratify patients across disease subtypes (13)
to initiate treatment intervention and lifestyle changes early in
the disease progression.

During the last decade, an enormous effort has been in
method development and construction of disease risk scores
based on genomic information (14–17). However, until recently,
these genome-wide genetic risk scores (GRS) have mainly
been constructed using a single-trait approach. Because much
of the variation within the human genome contributes to a
large number of different complex traits and diseases (18), the
accuracy of risk stratification can be improved by developing
multi-trait (MT)-GRS accounting for the genetic correlation
among traits. Using correlated information to construct GRS has
theoretically—and to a minor extend empirical—been shown to
increase the accuracy of disease risk prediction (6–8). T2DM
is strongly correlated with a range of complex diseases and
traits, such as overweight (19), cardiovascular disease (1, 19–
21), hypertension (19, 22), and chronic kidney disease (19, 23);
hence, T2DM is an excellent case for developing accurate GRS by
leveraging correlated information.

The objective of the current study was to investigate the
predictive performance of a MT-GRS model that combines
marker effects from genome-wide association studies (GWAS)
of T2DM and a number of correlated traits. The types of
information included in this study were body mass index (BMI),
height, smoking status, pulse rate, diastolic and systolic blood
pressure, and a quantity of current medication use, as the total
count of different prescription and over-the-counter medications
is a proxy for general health and disease status. The aim of the
present study was to investigate whether a MT-GRS model based
on loci for multiple correlated traits had increased predictive
discriminative power compared with a traditional single-trait
(ST)-GRS model. This strategy was first applied within the UK

Biobank (UKB) (24), and then extended to include information
on two UKB-independent GWAS summary statistics and, finally,
a combined model incorporating information from the UKB and
the two independent T2DM GWAS data sets.

MATERIALS AND METHODS

Phenotype and Genotype Data
Only unrelated British Caucasian individuals from the UKB (24)
(n = 335,652 subjects) were used in the current study (excluding
individuals with more than 5,000 missing genotype values or if
having chromosomal aneuploidy). T2DM status was determined
based on in-hospital records (by ICD-10 E.11, UKB data field
41270, which contains both main and secondary diagnoses) and
self-reported disease state (UKB data field 20002) counting a
total of 18,809 individuals. Seven additional phenotypes were
also included: standing height, BMI, diastolic and systolic blood
pressure, pulse rate, smoking status, and current medication use
(measured as the number of different prescription and over-the-
counter medications taken). These phenotypes were all adjusted
for sex, age, UKB assessment center, and the first 10 genetic
principal components (to account for any cryptic relatedness that
were not accounted for by restricting to unrelated Caucasian
British individuals), following inverse rank normalization to
approximate normality.

Genotyped variants with minor allele frequency <0.01,
genotype missingness >5%, or variants within the major
histocompatibility complex were excluded from the analyses,
resulting in a total of 599,297 genetic variants.

Prediction of Diabetes Risk
T2DM risk was determined using GRS based on either summary
statistics obtained within the UKB cohort and other T2DM-
related GWAS studies (Table 1). The overall workflow is depicted
in Figure 1 and is described in detail below.

UKB Summary Statistics
The White-British UKB cohort of unrelated individuals (335,652
subjects) was split into 10 folds with no overlap of samples
within each fold, and for each fold, the marker effects for T2DM,
standing height, BMI, diastolic and systolic blood pressure, pulse
rate, smoking status, and current medication use, were estimated
using logistic or linear regression as implemented in PLINK2
(26). In all analyses, the same set of covariates were included as
those used during phenotypic adjustment as this has been shown
to increase statistical power (27).

Publicly Available Type 2 Diabetes Summary

Statistics
Two recently published GWAS for T2DM were identified
(Table 1). Common for the studies were that they did not include
UKB data, and therefore provide an independent training set.
The regression coefficients were flipped such that the marker
effect of the effect allele matched the effect allele within the
UKB data.
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TABLE 1 | Type 2 diabetes studies with available GWAS summary statistics independent of UKB.

Study References ntotal ncase mtotal mUKB

Scott et al. (2017) (10) 159,208 26,676 12,056,346 595,528

Zhao et al. (2017) (25) 265,678 73,337 8,796,184 558,105

ntotal is the sample size of the listed study. ncase is the number of T2DM cases within the listed study. mtotal is the number of genetic variants used in the GWAS of the listed study. mUKB

is the number of variants in the listed study that were among the 599,297 quality-controlled genotyped variants in the UKB.

FIGURE 1 | Schematic overview of the research design of the current study. Summary statistics (β) for T2DM and seven information traits were estimated from

individual-level genotypic information (X ) within the UKB using a 10-fold cross validation scheme. Two external GWAS summary statistics were identified. ST-GRS for

T2DM was computed based on either the summary statistics obtained within the UKB or from the two external data sets. Estimates of the heritability (h2) and genetic

correlations (rg) were estimated for T2DM, the seven information traits, and the two external T2DM studies. MT-GRS were computed based on four scenarios (S1–S4),

depending on which types of information the predictor variable was adjusted for.

Estimation of Genetic Parameters
Linkage disequilibrium (LD) between the genotyped variants was
estimated as the squared Pearson’s correlation coefficient (r2)
between two genetic variants adjusted for sample size (N) as the
standard estimator of the Pearson’s correlation coefficient has
an upward bias (28). The adjusted squared Pearson’s correlation
coefficient (r̃2) is obtained as (28):

r̃2 = r2 − 1− r2

N − 2
, (1)

which was computed with the R package qgg (29). LD
scores (l) for all variants within a window size of 5,000

markers (2,500 markers around the i-th variant) were
computed as

li =
∑m=5000

k=1
r̃2i,k. (2)

The MT-GRS model relies on selection index theory to obtain
marker weights that require estimates of genetic parameters (30).
The heritability (h2) and the genetic correlation (rg) between
traits can be computed based on GWAS summary statistics using
LD score regression (28). The heritability was estimated as the
regression of the summary statistics on the LD score:
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TABLE 2 | UKB cohort description (n = 335,652) of T2DM cases and controls

(count (%) or mean ± standard deviation).

Characteristics Controls T2DM cases Information

trait

N 316,935 18,809

Age (years) 56.4 ± 8.0 60.5 ± 6.7

Sex, male 144,070 (45.5%) 11,693 (62.2%)

BMI (kg/m2 ) 27.1 ± 4.5 31.9 ± 5.8 X

Height (cm) 168.8 ± 9.2 170.0 ± 9.3 X

Pulse rate (BPM) 69.1 ± 11.1 73.6 ± 13.1 X

Systolic blood pressure

(mmHg)

138.0 ± 18.6 142.6 ± 18.0 X

Diastolic blood pressure

(mmHg)

82.3 ± 10.1 82.3 ± 10.3 X

Smoking status X

Never 175,002 (55.4%) 7,687 (41.1%)

Former 109,007 (34.5%) 8,663 (46.3%)

Current 31,867 (10.1%) 2,345 (12.6%)

Number of medications 2.3 ± 2.4 5.7 ± 3.7 X

ĥ2 =
(

Z′Z
)−1 (

Z′y
)

, (3)

where Z = neff × l/m, with l being the LD score
(see Equation 2), m is the number of genetic variants, and
neff is the effective number of individuals and is neff =

median

(

1/2× af × (1− af )×SE
(

b̂
)2

)

, where af is the allele

frequency, and SE
(

b̂
)

is the estimated standard error of the

marker regression estimate. The response variable is y =
(

b̂

SE(b̂)

)2
, where b̂ is the estimated regression coefficient for the

genetic variants [for binary traits, the odds ratios (ORs) were

converted to b̂ = log(OR), and SE
(

b̂
)

=
∣

∣

∣
b̂/P(X < (1− p)/2)

∣

∣

∣
,

where P(X < (1 − p)/2) is the normal cumulative distribution
given the marker P-value, p (31)]. Similarly, the genetic
correlation between traits 1 and 2 can be estimated as:

r̂g =
(

Z′Z
)−1 (

Z′y
)

√

ĥ21

√

ĥ22

, (4)

where Z = √
n1
√
n2 × l

m , and y = b̂1
SE(b̂1)

× b̂2
SE(b̂2)

. LD score

regression was implemented in the R package qgg (29) and was
computed for each of the 10-folds of random data subdivisions
for T2DM and the seven information traits (Table 2), and among
the information traits and the publicly available T2DM summary
statistics (Table 1).

ST-GRS
The ST-GRS was computed as,

ST− GRS =
∑m

i=1
Xib̂i, (5)

where Xi is the i-th column of the genotype matrix containing

allelic counts, b̂i is the estimatedmarker effect for the i-th marker,
and m is the number of variants left after LD pruning (r2 < 0.1,
<0.5, or <0.9) and P-value thresholding (P < 0.001, 0.01, 0.05,
0.1, 0.2, 0.3, 0.5, 0.7, 0.9, and 0.99). The genetic scoring was
performed with the R package qgg (29).

MT-GRS
The accuracy of GRS can be improved by leveraging information

from correlated traits by adjusting themarker effects (b̂) (30). The
adjustment of the marker effects for the focal trait (f , i.e., T2DM)
is obtained by computing index weights for each marker (wi

′)

b̂wMTi = wi
′b̂i. (6)

From quantitative genetic theory, selection indices have been
developed for MT selection, in which many ST individual genetic
effects (i.e., breeding values) are combined with an index weight
allowing selection of the individuals with the best MT phenotype
(32, 33). The optimal weights can be derived asw = V−1C, where

C is a k× 1 column vector of covariances between the b̂ values of
the k traits and the true marker effects of the focal trait (bf ), and

V is a k× k variance–covariancematrix of the b̂ values:

w =







var(b̂1) . . . cov(b̂1, b̂k)
...

. . .
...

cov(b̂k, b̂1) . . . var(b̂k)







−1




cov(bf , b̂1)

. . .

cov(bf , b̂k)



 . (7)

The diagonal elements of variance–covariance matrix, V , are

var
(

b̂k

)

=
h2
k

M
+ 1

Nk
, (8)

whereM is the effective number of chromosomal segments [here
M = 60, 000 (30, 34)] and Nk is the number of observations for
trait k. The off-diagonal elements of V for trait k and l are

cov
(

b̂k, b̂l

)

=
rghkhl

M
, (9)

which is the same for the elements of C. Combining Equations
(8) and (9), Equation (7) becomes

w =











h21
M + 1

N1
. . .

rgh1hk
M

...
. . .

...
rghkh1
M . . .

h2
k
M + 1

Nk











−1






h21
M
. . .

rgh1hk
M






. (10)

The MT-GRS is then obtained as the sum of adjusted
marker effects,

MT− GRS =
m

∑

i=1

Xib̂wMTi . (11)

MT-GRS was computed by applying LD pruning (r2 < 0.1, <0.5,
or <0.9) and P-value thresholding (P < 0.001, 0.01, 0.05, 0.1,
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0.2, 0.5, 0.75, and 0.99) based on UKB genotypes and T2DM
summary statistics; thus, the same LD pruning and P-value
thresholding were applied across traits.

Four MT scenarios were applied, resulting in four different
predictors (Figure 1): (1) UKB T2DM summary statistics
combined with the seven UKB information traits; (2) external
T2DM summary statistics [i.e., results from Scott et al. (10) and
Zhao et al. (25)] combined with the seven UKB information
traits; (3) external T2DM summary statistics combined with
the seven UKB information traits and UKB T2DM summary
statistics; and (4) UKB T2DM summary statistics combined with
the seven UKB information traits and the two external T2DM
summary statistics.

GRS Accuracy
The accuracy of ST-GRS and MT-GRS was determined using
Nagelkerke’s variance explained (R2),

R2 = 1− e−LR/n

1− e−(−2L0)/n
(12)

where LR is the likelihood ratio comparing two nested logistic
regression models, L0 is the log-likelihood of a model neglecting
the GRS, and n is the number of observations. The full model
included sex, age, UKB assessment center, the first 10 genetic
principal components, and the GRS, whereas the reduced model
did not contain the GRS effect. For visualization, the GRS were
divided into percentiles, and the disease prevalence within each
bin was computed; the OR for each percentile was computed
adjusting for sex, age, UKB assessment center, and the first 10
genetic principal components, and the OR was expressed relative
to the 50-th percentile.

RESULTS

ST Prediction and Genetic Parameters
The analysis of T2DM was performed using 335,662 unrelated
individuals from UKB with more than 18,000 T2DM cases
(Table 2). A larger proportion of T2DM cases were males and
smokers; on average, T2DM cases were older than individuals
without T2DM, had higher BMI, and on average used more
medications than non-diabetic individuals (Table 2).

The UKB cohort was split into 10 training and validation
sets, and within-cohort marginal marker effects of common
genotyped variants were estimated for each training set. After LD
pruning and P-value thresholding, ST-GRS were computed for
individuals within the validation sets. The maximum prediction
accuracy for ST-GRS was R2 = 0.032 when using variants with
LD r2 < 0.9 and P < 0.05 (Figure 2; Supplementary Table 2).

Across the 10 training sets, the average heritability for T2DM
on the observed scale was 0.07 (0.31 on the liability scale).
Seven information traits were included and used in the MT
genetic risk scoring (Table 2). All seven traits showed non-
zero heritability estimates (Figure 3A), and the strongest genetic
correlation was observed between diastolic and systolic blood
pressure (Figure 3B). Current medication use was the trait that
showed the highest genetic correlation to most of the other traits,

and only standing height showed negative genetic correlation to
the other traits (Figure 3B).

Leveraging Correlated Information for MT
Prediction
The T2DM marginal effects were adjusted using the estimated
genetic parameters to compute MT-GRS (Scenario 1; Figure 1).
Across the three levels of LD pruning, the predictive ability was
generally improved when the marginal SNP effects were adjusted
by the seven information traits (Supplementary Figure 1;
Supplementary Table 2). The highest prediction accuracy
(R2 = 0.036) was obtained at LD r2 < 0.9 and P < 0.999
(Figure 2; Supplementary Table 2), which corresponds to an
improved prediction accuracy by 12.5%

Next, we estimated the T2DM risk within the UKB using
summary statistics from two independent external sets of
summary statistics (Figure 1). Both external data sets [Scott et al.
(10) and Zhao et al. (25)] showed low prediction accuracy when
the GRS solely were computed using T2DM summary statistics
[Scott et al. (10): R2 = 0.026 at LD r2 = 0.9 and P < 0.01; and
Zhao et al. (25): R2 = 0.017 at LD r2 = 0.9 and P < 0.001;
Figure 4; Supplementary Tables 3, 4; Supplementary Figure 2].
The external T2DM summary statistics were adjusted using
summary statistics from the seven information traits obtained
from the UKB (Scenario 2; Figure 1; Supplementary Table 1;
Supplementary Figure 3), which for the summary statistics from
Scott et al. (10) increased the prediction accuracy by 8%, but
for Zhao et al. (25), a marginal drop in accuracy was observed
when comparing the local maximum for ST-GRS with the local
maximum for MT-GRS [R2 = 0.017 (r2 = 0.9, P < 0.001)] vs.
0.016 [R2 = 0.016 (r2 = 0.9, P< 0.999); Supplementary Table 4];
however, comparing the accuracy within the P-value threshold,
the accuracy of the MT-GRS model was superior over the
ST (Supplementary Table 4). Extending the MT model to also
include UKB T2DM summary statistics (Scenario 3, Figure 1),
the accuracy was further increased by 50% (from 0.028 to
0.042; Figure 4) and 94% (from 0.016 to 0.031; Figure 4) using
the summary statistics of Scott et al. (10) and Zhao et al.
(25), respectively.

The MT model trained within the UKB was further extended
to also include summary statistics from the two independent
T2DM GWAS data sets (Scenario 4; Figure 1). Adjusting the
UKB T2DM summary statistics by the seven information traits
and the two independent T2DM GWAS data sets resulted in an
increase in prediction accuracy from 0.032 to 0.043 (Figure 5;
Supplementary Table 2), which is an increase of 34%.

T2DM Risk Stratification
Stratifying UKB participants based on their T2DM genetic risk
showed that a larger proportion of individuals with a T2DM
diagnosis were among the top 10% of individuals with highest
genetic score when applying theMT strategy (Figure 6). TheMT-
GRS that in addition to the seven information traits also included
information from the independent testing data gave a better
stratification of cases by distributing a larger proportion of T2DM
cases within the top risk (Figure 6), which also was apparent
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FIGURE 2 | Variance explained (R2) for type 2 diabetes by ST-GRS and MT-GRS (LD pruning r2 < 0.9) using P-value thresholding (X-axis). Points indicate mean R2 for

a given threshold, and the surrounding shading indicates the standard error of the mean. ns, non-significant difference between ST and MT, *significant difference

between ST and MT.

FIGURE 3 | Estimated genetic parameters. (A) Estimated heritabilities for T2DM and the seven information traits. Errors bars indicate the standard error of the

estimates across the 10 training sets. (B) Estimated genetic correlations between T2DM and the seven information traits.
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FIGURE 4 | Variance explained (R2) for type 2 diabetes by ST-GRS and MT-GRS (LD pruning r2 < 0.9) using publicly available summary statistics from (A) Scott et al.

(10) and (B) Zhao et al. (25). Statistics of model comparisons are found in Supplementary Tables 3, 4.

FIGURE 5 | Variance explained (R2) for type 2 diabetes using MT model with the seven information traits and publicly available T2DM summary statistics. Points

indicate mean R2 for a given threshold, and the surrounding shading indicates the standard error of the mean. The horizontal dashed lines indicate the maximum R2

obtained for ST-GRS and MT-GRS without publicly available summary statistics.
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FIGURE 6 | Comparison of T2DM risk gradient within the UKB according to GRS percentile for (A) ST model, (B) MT model using the seven information traits, and (C)

MT model with the seven information traits and the T2DM testing data. Each point indicates the average T2DM prevalence within each percentile of GRS across then

10 validation sets. Horizontal lines indicate the prevalence at the top 10 GRS percentile, and percentage indicates the prevalence among the top 10% with the highest

genetic risk.

with a large OR of the top 10% compared to the remaining
(Supplementary Figure 4).

DISCUSSION

Precision medicine is predicted to change the way we prevent,
diagnose, risk stratify individuals, and treat medical conditions
(35, 36) through development of targeted preventive or treatment
approaches based on the genetic background, biomarkers,
environmental exposures, and lifestyle of the individual.
Diagnosis and treatment plans based on genetic testing has been
effectively applied to several monogenic disorders (37); however,
for common complex diseases, genomic information has been
far less incorporated. One reason for the lack of incorporating
genomic information in disease prevention and diagnosis for
complex diseases is because a large proportion of the underlying
genetic variation remains unexplained (38, 39). In the current
study, we investigated whether an MT-GRS approach provided
more accurate risk stratification than traditional ST genetic
scoring approaches.

Adjusting the UKB T2DM marker effects by the genomic
correlation of the seven information traits increased the
prediction accuracy from R2 = 0.032 to 0.036, and further
adjusted by the two UKB-independent T2DM studies increased
the accuracy to R2 = 0.042. The great improvement in
prediction accuracy (31%) is achieved as a consequence of
abundant genomic pleiotropy (18, 30) and the apparent genomic
correlation with the selected traits. In comparison, Khera et al.
(14) reported a prediction accuracy of ST-GRS of R2 = 0.028
(14), and Maier et al. (30) obtained an accuracy of R2 < 0.01
for both ST-GRS and MT-GRS (30). Although Maier et al. (30)
showed increased prediction accuracy by combining the marker
effects of selected traits (30), our reported prediction accuracies
were greatly elevated compared with Maier et al. (30), most likely
driven by differences in the included traits, and thereby in the
optimal weights caused by differences in genomic correlation
among the traits.

One of the information traits we included in the MT-GRS
was the genetic liability to current medication use, which is the
number of different medications the UKB participants have taken
at the time of the verbal interview. Because most individuals that
suffers from temporary or chronic diseases will undergo medical
intervention and because of comorbidity many individuals will
have multiple medical conditions, those individuals will be
treated with a range of different medicines. Consequently, the
total set of prescription and over-the-counter drugs is potentially
an informative index of the current medical and health status
of an individual. Wu et al. (40) performed genetic analysis
of self-reported medication use within the UKB and found
that categories of different types of medication were strongly
genetically associated with a range of different diseases and traits
(40). We found that the genetic correlation between T2DM and
medication use was rg = 0.55 (only the correlation between
T2DM and BMI had higher estimate, rg = 0.58). This is also
evident by investigating the optimal weights (Equation 7), where
BMI and medication use were the two information traits with
the largest weights (Supplementary Figure 5A), besides T2DM
itself. Including summary statistics from the two published
T2DM association studies only marginally affected the optimal
weights (Supplementary Figure 5B).

Although the exact level of prediction accuracy of T2DM was
considerably lower when using external data from Zhao et al.
(25) compared to data from Scott et al. (10) (Figure 4), the
percentage increase when extending ST-GRS to the MT-GRS was
higher for Zhao et al. (25) (82%) compared with Scott et al. (10)
(62%), despite the much greater sample size by Zhao et al. (25)
(Table 1). The discrepancy in prediction accuracy is most likely
a consequence of different ancestries of the two external T2DM
studies (10, 25), where the ancestry of the individuals in the study
by Scott et al. (10) is more similar to the ancestry of the UKB
(European) than the study by Zhao et al. (25) (mixed ancestry).
It is well-established that across ancestry, risk prediction is very
difficult because the LD between populations is very diverse
(41–43).
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The last decade has shown us that the sample size of
human genetic association studies keeps increasing (44, 45),
not only entailing more association signals but also providing
more accurate effect estimates. This in conjunction with the
increasingly accessibility of publicly available GWAS summary
statistics (46, 47) implies that genomic prediction of complex
diseases will continually improve, in particular if multivariate
predictors are created by integrating information across studies.
Although we have demonstrated increased prediction accuracy
by constructing MT-GRS, our work has several limitations.
Firstly, as our training data were the UKB and with a 10-
fold cross-validation scheme, the number of cases became
limited, meaning less accurate marker effect estimation and
thereby less accurate risk stratification. Secondly, although we
in addition to the UKB summary statistics from the 10-fold
cross-validation obtained T2DM summary statistics from two
independent studies (Table 1), we only had access to genotype
information from the UKB and no other T2DM cohorts. Thirdly,
we restricted the number of information traits to seven (Table 2),
based on the criterion that it should be a type of information
that is easy and accurate to measure and obtain; height, BMI,
pulse rate, and diastolic and systolic blood pressure are things
that we easily and accurately can measure, and smoking status
and current medication use can easily be obtained by asking
the participants. Accurate observations lead to more accurate
estimation of marker effects and thereby better prediction
accuracies. It is compelling to speculate whether other types
of information traits would improve prediction accuracy even
more, and additional studies are warranted for developing
methods for identifying the set of information traits most
important for a particular disease.

Genomic information has the potential to change the way
we diagnose and treat individuals today and will be central for
implementing preventive healthcare in the clinics. An important
aspect of precision medicine is accurate prediction of genetic
risk toward common diseases, as it may guide the general
practitioners to better and earlier identify those individuals who
have an inherent genetically lifetime high disease risk, and then
to initiate lifestyle changes potentially before disease outcome.
Moreover, precise stratification of T2DM patients not only based
on their pathophysiological symptoms (13) but also on their
genetic makeup may help the general practitioners to treat high-
risk patients more aggressively, which has the potential to slow
down disease progression, reduce symptoms, and prevent severe
morbidity and mortality.

In conclusion, by incorporating information traits and two
previously published T2DM GWAS results, the prediction
accuracy for T2DM was increased by 31% (from R2 = 0.032
to R2 = 0.042), clearly demonstrating the added benefit of
incorporating correlated information in the construction of
GRS. Thus, incorporating genomic information on correlated
traits and disease is advisable for obtaining improved individual
genetic risk stratification.
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