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Hereditary hemochromatosis is a genetic iron overload disease related to a mutation

within the HFE gene that controls the expression of hepcidin, the master regulator of

systemic iron metabolism. The natural stable iron isotope composition in whole blood

of control subjects is different from that of hemochromatosis patients and is sensitive

to the amount of total iron removed by the phlebotomy treatment. The use of stable

isotopes to unravel the pathological mechanisms of iron overload diseases is promising

but hampered by the lack of data in organs involved in the iron metabolism. Here,

we use Hfe−/− mice, a model of hereditary hemochromatosis, to study the impact

of the knock-out on iron isotope compositions of erythrocytes, spleen and liver. Iron

concentration increases in liver and red blood cells of Hfe−/− mice compared to controls.

The iron stable isotope composition also increases in liver and erythrocytes, consistent

with a preferential accumulation of iron heavy isotopes in Hfe−/− mice. In contrast,

no difference in the iron concentration nor isotope composition is observed in spleen

of Hfe−/− and control mice. Our results in mice suggest that the observed increase

of whole blood isotope composition in hemochromatosis human patients does not

originate from, but is aggravated by, bloodletting. The subsequent rapid increase of

whole blood iron isotope composition of treated hemochromatosis patients is rather

due to the release of hepatic heavy isotope-enriched iron than augmented iron dietary

absorption. Further research is required to uncover the iron light isotope component

that needs to balance the accumulation of hepatic iron heavy isotope, and to better

understand the iron isotope fractionation associated to metabolism dysregulation during

hereditary hemochromatosis.
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INTRODUCTION

Iron (Fe) homeostasis tuning is essential as Fe deficiency or excess in the body can lead to clinical
severe consequences. Hereditary Hemochromatosis (HH) is a Fe overload disease, which is one of
the most common genetic disease in Western countries (1, 2). The first clinical symptoms appear
classically around 40 years old in men and 50 years in women. In absence of treatment, HH may
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favor liver cirrhosis, diabetes, heart failure, and reduced life
expectancy (1). The treatment is based on Fe depletion that
requires to perform phlebotomies, which must be done weekly
in the initial phase and then bimonthly during the maintenance
phase (3, 4). Promising chelating agents exist but are not
recommended in HH due to potential harmful side effects (4, 5).
HH is mainly related to a mutation of the HFE gene that plays a
role in the control of hepcidin expression, the master regulator of
systemic ironmetabolism. Hepcidin, by inducing the degradation
of the ferroportin protein, the only known Fe exporter from
cells toward plasma, limits Fe release and thus controls the
level of the saturation of transferrin, the Fe transport protein
in plasma (6). An increase of transferrin saturation exposes to
Fe overload, especially in the liver, pancreas and heart (6–10).
Therefore, regulation of hepcidin expression plays a major role
in the maintenance of Fe homeostasis since there is no, or
very limited, physiological mechanisms for Fe excretion. During
HH, transferrin saturation increases above 45%, leading to the
appearance of abnormal biochemical forms of Fe in plasma:
the Non-Transferrin Bound Iron (NTBI). The NTBI is not fully
characterized. It is associated to low molecular compounds such
as citrate or to proteins such as albumin (11, 12). During its
association to transferrin, Fe must undergo an oxidation step that
is reported to be enzyme-dependent. Importantly, NTBI that is
easily incorporated by liver, heart and pancreas plays a major role
in the development of Fe overload, especially in the liver (11–13).

The Human adult organism contains between 3 and 4 g
of Fe. Iron metabolism is typified by an important recycling
from erythrocytes, which contain about 70% of total Fe that is
associated to hemoglobin, the oxygen transporter. Senescent red
blood cells are taken up bymacrophages and Fe is recycled during
the erythrophagocytosis process that is the daily most important
source of Fe for plasma. Importantly, despite the fact that there
is no active mechanism for Fe excretion, there are few losses (1–
2mg per day) that cannot be avoided, such as cell desquamation,
urine, and bleeding. Therefore, an equivalent amount of dietary
Fe must be taken up daily by enterocytes. The main sources of Fe
for plasma are thus the recycling of erythrocytes by macrophages
during the erythrophagocytosis process, the dietary Fe absorption
through the duodenum, and also in certain circumstances, the
release of stored Fe from hepatocytes (14).

Iron is composed of 4 stable isotopes (54Fe, 56Fe, 57Fe and
58Fe, with respective relative abundances 5.8%, 91.8%, 2.1%
and 0.3%) which relative proportions, i.e. isotope composition
hereafter noted δ56Fe, may vary in health (15–19) and disease,
including HH (20–22). The blood δ56Fe value of HH bloodletting
treated patients is significantly higher compared to healthy age
matched controls (20–22), and increases as a function of total
Fe removed by phlebotomy (23). Two main mechanisms, the
increase of Fe absorption efficiency and Fe release from Fe storage
organs, which are not exclusive, have been proposed to explain
these observations. First, phlebotomy stimulates intestinal Fe
absorption (5) leading to a hypothesized reduced intensity of
isotopic fractionation between diet and blood and therefore an
increase of the blood δ56Fe value (24). Second, to maintain Fe
balance and ensure erythrocytes production after phlebotomy,
storage organs enriched in heavy isotopes, are solicited to release

Fe to the plasma. This iron is used to meet the increased need for
erythrocyte heme production (21, 23).

In this study, in order to unravel the specific Fe isotope
fractionation in HH, we measure the Fe isotope composition
in liver, spleen and erythrocytes in a genetically engineered
mouse model of HH, the knock-out Hfe−/− mouse model,
and in wild type Hfe+/+ (WT) controls. Plasma transferrin
saturation, plasma Fe concentration and hepcidin expression are
also measured.

METHODS

Animal Handling
The study was approved by the ethical Rennes committee for
animal experimentation. 12 months old male C57BL/6J mice
were included in the study within two groups i.e., control
Hfe+/+ mice (n = 6) and Hfe−/− mice (n = 6). Knock-out
Hfe−/− mice were generated by crossing heterozygous animals
as previoustly reported (25). All mice were housed in animal
facilities (ARCHE) of UMS Biosit in Rennes and fed a standard
diet CRM-E (Special Diet Services) with a Fe concentration of
about 140µg/g. Mice were sacrificed at 12 months to ensure that
iron overload was effective in the Hfe−/− group. After anesthesia
in the morning between 9 and 12 am, a trans-diaphragmatic
intracardiac puncture was done to collect blood in sodium
heparin tubes suitable for trace element analysis. Liver and spleen
samples were frozen in liquid nitrogen, and stored at -80◦C.

Sample Preparation
Plasma, erythrocytes, liver and spleen samples were handled
with special care in order to avoid environmental contamination.
After blood sample centrifugation, plasma was taken and frozen
in polypropylene cryotubes at−80◦C. Blood cell pellets, mainly
erythrocytes containing very high amount of Fe in hemoglobin,
were washed three times in NaCl 0.9%, centrifuged in NaCl
0.9% (3,000 g/min), and were then aliquoted and frozen in
polypropylene cryotubes at -80◦C.

Liver and spleen samples were desiccated for 15 h at 120◦C
in an oven and were weighed. Aliquots of about 10 µl were
collected from frozen erythrocytes and about 2 to 5mg were
taken from dried liver and spleen samples. Erythrocytes, liver and
spleen samples were mineralized in Teflon tubes filled with 2ml
of concentrated HNO3 (Fisher Chemical – Optima Grade). The
Teflon tubes were placed in a MARS6 (CEM) microwave with a
temperature maintained at 180◦C during 2 h. This procedure was
repeated twice by adding 1ml of concentrated HNO3 to ensure
a total mineralization of the samples. Dissolved samples were
preserved at 4◦C until elemental or isotopic analysis.

Elemental and Isotopic Analysis
A small aliquot (5%) was taken for the determination of Fe
concentration by inductively coupled plasma mass spectrometry
(ICP-MS, X-Series II, Thermo Scientific) at the ÆM2 Platform
from University of Rennes 1/Rennes Hospital, as previously
reported (26).

The remaining solution was evaporated to dryness and
devoted to Fe chemical purification prior to isotope analysis.
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Iron was isolated by ion-exchange chromatography as described
in details in previous study (27). Briefly, the dried residue was
taken up in HCl 6N and evaporated to dryness twice to guarantee
total removal of remaining nitrate from the digestion procedure.
Iron was then fixed on AG1-X8 anionic resin in HCl 6N media
with traces of H2O2 in which the matrix elements pass through
the column and are discarded. The elution of Fe was achieved
by diluted HNO3 0.5N and the total isolation procedure was
repeated twice. Iron isotope compositions were measured using
a Neptune Plus multi-collector inductively coupled plasma mass
spectrometer (MC-ICPMS, Thermo Scientific) in medium mass
resolution mode at ENS de Lyon. Iron solutions were diluted
to 0.9 mg/L and doped with Ni at the same concentration to
monitor and correct for instrumental mass fractionation. The
instrument settings and analytical conditions are described in
previous work (27). All the Fe isotope compositions are given
in the delta annotation (expressed in ‰) and reported relative
to the international isotopic standard NIST IRMM-014 with the
following formula:

δ56/54FeIRMM14 =





(

56Fe
54Fe

)

sample
(

56Fe
54Fe

)

std
− 1





And will be hereafter abbreviated δ56Fe.

Plasma Iron Concentration and Transferrin
Saturation
Plasma Fe concentration and unsaturated iron-binding capacity
(UIBC) were measured on Cobas 8,000 analyzer (Roche),
by colorimetric method using the kits Iron Gen.2–750 tests
(Roche) and Unsaturated Iron-Binding Capacity−100 tests
(Roche), respectively. Plasma transferrin saturation (%) was then
calculated as [Fe / (Fe+ UIBC)] ∗ 100.

Expression of Hepatic Hepcidin
The expression level of hepcidin 1 mRNA transcripts was
determined in the liver of WT and Hfe−/− mice by real
time quantitative polymerase chain reaction (RT-PCR).
Total liver RNAs were isolated using the Nucleospin 8 RNA
(Macherey-Nagel). The mRNAs were reverse transcribed
with the M-MLV reverse transcriptase (Promega). The
following primers were used to amplify hepcidin 1 (forward:
5′-TTCCCAGTGTGGTATCTGTTGC-3′ and reverse:
5′-GGTCAGGATGTGGCTCTAG GC-3′), and TBP (TATA-
binding protein) (forward: 5′-AAACTCTGACCACTGCACCG-
3′ and reverse: 5′-GTGTGGCAGGAGTGATAGGG-3′) as
references. Real-time quantitative PCR assays were performed
using the qPCR MasterMix Plus for SYBR Green I (Eurogentec)
and the system StepOne Plus (Real-Time PCR System–Applied
Biosystems). All results were analyzed by StepOne Software v2.1
(Applied Biosystems). For each cDNA sample, the difference
between the threshold cycle for hepcidin 1 amplification and
the threshold cycle for TBP was calculated (1Ct). This enables
normalization of the amount of target to the TBP endogenous
reference. Values of gene expression were expressed relatively
to the control group’s mean value (1Ct-M). M corresponds to

FIGURE 1 | Boxplots of the biological parameters commonly investigated in

hereditary hemochromatosis disease measured in the Hfe−/− mouse model

and compared to the WT group. (A), Fe plasma concentration. (B), Transferrin

Saturation. (C), Hepcidin Expression. The P-values of Wilcoxon test and

associated significance (***P < 0.001, **P < 0.01, *P < 0.05) are given.
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FIGURE 2 | Boxplots of Fe concentration in organs of the Hfe−/− mouse model compared to the WT group (A–C) and of Fe isotope composition in organs of the

Hfe−/− mouse model compared to the WT group (D–F). RBC stands for erythrocytes. The P-values of Wilcoxon test and associated significance (***P < 0.001, **P <

0.01, *P < 0.05) are given.

the 1Ct mean in the control group (WT mice). Results were
expressed as [2∧(−(1Ct−M))] ∗ 100 in arbitrary unit (au).

RESULTS

All the results are given in Supplementary Tables 1, 2. We
first assess plasma and liver biochemical parameters which are
shown in Figure 1. As expected, a significant increase of the Fe
concentration in plasma (Figure 1A), and transferrin saturation
(Figure 1B) is found in Hfe−/− mice, compared to WT mice.
Hepatic hepcidin mRNA level is lower in Hfe−/− than in WT
mice, although the difference does not reach the significance
threshold (P-value= 0.093; Figure 1C).

We next explore Fe concentration and isotope composition
in liver, erythrocytes and spleen. Results are presented in
Figure 2; Supplementary Table 2. As expected, the hepatic Fe
concentration is significantly increased in Hfe−/− compared to
WT mice (Figure 2A). In erythrocytes, the Fe concentration
is slightly but significantly increased in Hfe−/− compared to
WT mice (Figure 2B). Iron concentration in spleen is not
significantly different between the two groups (Figure 2C). The
quality of Fe isotopic analysis was assessed by a three isotopes plot
(Supplementary Figure 1). All the measured isotope ratios form
a line indistinguishable within errors from theoretical predictions
of both kinetic and thermodynamic isotope fractionation lines,

implying no sizeable contribution of isobaric interferences on the
isotopic measurements.

In liver and erythrocytes, the δ56Fe values are significantly
more positive in Hfe−/− than in WT mice (Figures 2D,E;
Supplementary Figure 2). In spleen, the Fe isotope composition
and concentration are not different between the two
groups (Figure 2F; Supplementary Figure 2). Liver and
spleen are enriched in heavy Fe isotopes relative to RBC
(Supplementary Figure 2), consistent with previous studies on
WT mice (28), healthy minipigs (29) and human (15, 30).

DISCUSSION

The biological parameters that we have determined in the Hfe−/−

mice compared to control animals (Figure 1) are consistent with
those previously reported in Hfe−/− mice and humans during
HH (4). The increase of serum Fe concentration and transferrin
saturation, together with hepatic but not splenic Fe concentration
increase, sign an hepcidin deficiency syndrome, confirmed by the
absence of hepatic hepcidin mRNA level expression increase that
is expected in condition of Fe overload (3, 4, 7).

Our study shows for the first time that the liver is enriched in
Fe heavy isotope in Hfe−/− mice compared to control animals
(Figure 2D). The existence of 56Fe-enriched hepatic stores in
Hfe−/− mice might reflect preferential dietary absorption of
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FIGURE 3 | Schematic representation of the mechanisms leading to iron overloaded during Hfe-related hemochromatosis according to general knowledge and

conclusions of this study. Tr-Sat and NTBI stand for Transferrin saturation level and Non-Transferrin Bond Iron, respectively. In normal situation, the regulation of

hepcidin expression allows control of Tr-Sat (<45%). Genetic hemochromatosis results in iron release in plasma from the dietary absorption through the duodenum

and the recycling of erythrocytes by macrophages during the erythrophagocytosis process. The Tr-Sat increases above 45%, leading to the appearance of abnormal

biochemical form of iron in plasma, the NTBI. The present study shows that Fe concentrations and isotope compositions of liver and erythrocytes, but not spleen,

increase in a mouse model of HH compare to wild type. Our results suggest that the altered erythrocyte Fe isotope composition of HH patients originates from the

disease and is aggravated by the cure. The heavy isotopes iron accumulation in liver could be related to the NTBI whose role should be confirmed by further studies.

heavy Fe isotopes and their presentation to the liver via the
portal circulation. Without being exclusive, we propose that the
accumulation of Fe heavy isotopes in liver could also be related to
the NTBI known to appear in plasma when transferrin saturation
increases during hemochromatosis. A schematic representation
of the process implied in Fe overloaded during Hfe-related
hemochromatosis is given in Figure 3. Mechanisms leading to
hepatic heavy isotope enrichment could indeed implicate (i)
differential Fe isotopic composition between transferrin iron and
NTBI chemical forms and/or, (ii) isotope fractionation during the
intracellular process following the NTBI cell ingress, including
associations with Fe chaperone molecules (31, 32) and ferritin-
related oxidative steps (33–35). Interestingly, when Fe is in excess
in liver, transferrin Fe uptake is decreased, the expression of
transferrin receptor 1 being strongly downregulated. However,
NTBI may continue to enter in hepatocytes through the ZIP14
protein that is not downregulated by cellular Fe excess. Thus,
in the double knock-out ZIP14 and Hfe−/− mouse model there
is no Fe accumulation in liver (36), which is consistent with
the hypothesis of NTBI hepatic accumulation during HH (37).
NTBI should be enriched in heavy Fe isotopes to account for
the liver isotopic signature. Importantly, in HH patients, it has
been reported a rapid increase of the blood δ56Fe value during
phlebotomy that cannot be explained by an increase of dietary
absorption only (23). Following the above evidence found in

Hfe−/− mice, we can hypothesize that the rapid increase of blood
δ56Fe value of HH patients during phlebotomy (23) could be
linked to the release of 56Fe-enriched hepatic stores necessary for
de novo erythropoiesis compensating blood subtraction. Indeed,
Fe depletion therapy that aims to avoid deleterious consequences
of Fe excess on organs is based on the fact that the removal
of red blood cells induces erythropoiesis, a process requiring
high amounts of iron that are mobilized from iron stores
especially in the liver, to compensate the loss of erythrocytes to
avoid hypoxia (7). Further studies aiming to analyze animals of
different age and/or with iron overloads of other origins will help
to better understand the mechanisms involved in the appearance
of isotopic fractionation in the liver.

Our study also shows for the first time, to the best of
our knowledge, a significant increase of the Fe concentration
in RBC of Hfe−/− compared to WT littermates (Figure 2A).
This finding is consistent with the slight elevated hemoglobin
concentration and inflated volume of erythrocytes reported in
HH (38, 39). This increase of Fe concentration in erythrocytes
is associated with higher δ56Fe value (Figure 2E). In humans,
the increase of the whole blood δ56Fe value, which is equivalent
to that of erythrocytes (40, 41), has also been observed in HH
patients relative to controls, but is significant only for those
patients who were treated by phlebotomy (21). The present
data, obtained in animals non-expressing the Hfe protein, shows

Frontiers in Medicine | www.frontiersin.org 5 October 2021 | Volume 8 | Article 711822

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Albalat et al. Hemochromatosis Bodily Iron Isotope Composition

FIGURE 4 | Scatterplot of the spleen Fe isotope composition as a function of

the erythrocytes Fe concentration for the WT (A) and Hfe-/- (B) mouse groups.

RBC stands for erythrocytes. The ρ coefficient and P-values of the Spearman

test with associated significance (***P < 0.001, **P < 0.01, *P < 0.05) are

given.

that Fe metabolism dysregulation in HH leads to an increase
of the blood δ56Fe value, which could be further aggravated by
bloodletting (23).

In spleen, there is no difference in both Fe concentration
and isotope composition between Hfe−/− and WT groups
(Figures 2C,F). Splenic macrophages are part of the
reticuloendothelial system, including specialized macrophage
cells from spleen, liver and bonemarrow, involved in Fe recycling
from senescent erythrocytes. Splenic macrophages are thought

to be the most active site of erythrocytes phagocytosis and
Fe recycling (42, 43). Under normal physiological conditions,
erythrocyte-recycled Fe is either released to the plasma by
ferroportin, or stored in macrophages in ferritin if Fe is not
needed in plasma. In HH, the hepcidin deficiency allows
constant Fe release in plasma, despite Fe excess in plasma and
liver. Also, in HH, the spleen is not overloaded such as it is
observed here in the Hfe−/− mouse. In WT mice, the spleen
δ56Fe value is correlated to erythrocytes Fe concentration (ρ
= −0.94, ∗P-value = 0.017; Figure 4A). Because erythrocytes
have a very negative δ56Fe value (∼−2.4‰), the amount of
senescent erythrocytes in spleen will drive the spleen δ56Fe
toward, negative values. This hypothetical inverse association
does not exist in Hfe−/− mice (ρ= 0.03, P-value= 1; Figure 4B),
and suggests that splenic reticuloendothelial cells, despite
any obvious pathological expression in HH, have however
a dysregulated Fe metabolism, with an apparent decoupling
between erythropoiesis and erythrophagocytosis.

Further studies are required to fully depict the abnormal
distribution of Fe in theHHdisease. Notably, HH is characterized
by a systemic accumulation Fe heavy isotope and further research
is required to uncover the missing Fe light isotope component,
that needs to balance the Fe isotopic budget. Unfortunately, we
could not measure the plasma Fe isotope composition due to
insufficient volume but this could be a challenge with dedicated
and well designated further studies.

CONCLUSION

The present study shows that the Fe isotope composition of liver
and erythrocytes, but not spleen, are altered in a mouse model of
HH. The Fe isotopic signature of liver can explain the origin of
the increase of the whole blood δ56Fe value as a function of Fe
removed by phlebotomy in HH patients, through the release of
a Fe heavy isotope-enriched component. Our results suggest that
the altered erythrocyte Fe isotope composition of HH patients
originates from the disease and is aggravated by the cure. The role
of abnormal biochemical forms of Fe, NTBI, that is avidly taken
up by hepatocytes should be confirmed by further studies.
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