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Objective: To identify novel immune-related genes expressed in primary Sjögren’s

syndrome (pSS).

Methods: Gene expression profiles were obtained from the Gene Expression

Omnibus (GEO) database, and differentially expressed genes (DEGs) were

screened. The differences in immune cell proportion between normal and

diseased tissues were compared, weighted gene co-expression network

analysis was conducted to identify key modules, followed by a protein–protein

interaction (PPI) network generation and enrichment analysis. The feature genes

were screened and verified using the GEO datasets and quantitative real-time

PCR (RT-qPCR).

Results: A total of 345 DEGs were identified, and the proportions of gamma

delta T cells, memory B cells, regulatory T cells (Tregs), and activated dendritic

cells differed significantly between the control and pSS groups. The turquoise

module indicated the highest correlation with pSS, and 252 key genes were

identified. The PPI network of key genes showed that RPL9, RBX1, and RPL31

had a relatively higher degree. In addition, the key genes were mainly enriched

in coronavirus disease-COVID-2019, hepatitis C, and influenza A. Fourteen feature

genes were obtained using the support vector machine model, and two subtypes

were identified. The genes in the two subtypes were mainly enriched in the

JAK-STAT, p53, and toll-like receptor signaling pathways. The majority of the feature

genes were upregulated in the pSS group, verified using the GEO datasets and

RT-qPCR analysis.

Conclusions: Memory B cells, gamma delta T cells, Tregs, activated dendritic cells,

RPL9, RBX1, RPL31, and the feature genes possible play vital roles in the development

of pSS.

Keywords: primary Sjögren’s syndrome, weighted gene co-expression network analysis, immune cell, protein–

protein interaction network, support vector machine model
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HIGHLIGHTS

- The proportions of four immune cells were significantly
different between the control and pSS groups.

- RPL9, RBX1, and RPL31 had relatively higher degrees in the
PPI network of key genes.

- Fourteen feature genes were obtained that were verified using
GEO datasets and RT-qPCR.

INTRODUCTION

Primary Sjögren’s syndrome (pSS) is an autoimmune disease
characterized by focal lymphocytic infiltration of the exocrine
glands causing dry eyes and dry mouth (1). Although dryness is
the main symptom, some pSS patients also experience systemic
manifestations (2, 3). pSS can affect 0.1–0.6% of the general adult
population, with a female-to-male predominance of 9:1, and the
average age at diagnosis being approximately 50 years (4–6). The
underlying causes and pathogenesis of pSS are not clear, making
its effective treatment an enduring clinical challenge.

Several factors are expected to determine the occurrence
of pSS: genetic predisposition, infection, and endocrine factors
can work together to abnormally activate innate or adaptive
immunity, resulting in the production of cytokines and
antibodies, and lymphocyte infiltration (7, 8). Several studies
have elucidated the genetics of pSS. Lin et al. found that the
expression of several pSS-associated candidate genes, including
CXCL9, CXCL13, and PTPRC, was upregulated (9). Inamo et al.
identified differential expression levels of SOX4 between patients
with pSS and healthy controls (10). Zhang et al. indicated
that the expression of some pSS-associated genes, for example
TAP2, IFI16, and HLA-DRA, was upregulated (11). Vitali et
al. found that IFNG, TRIM26, and EDN1 were overexpressed
in pSS patients (12). Although studies have linked pSS to the
immune system response in vivo (13, 14), there is a lack of
novel immune-related genes to study the underlying causes and
inform treatment.

Using weighted gene co-expression network analysis
(WGCNA), Yao et al. identified key genes and pathways in SS
(15). Lei and Zhang identified key genes and pathways involved
in B cells in patients with pSS (16). However, these studies
used fewer datasets with a small sample-size and conducted
no experimental validation. Therefore, in the present study,
we aimed to identify novel immune-related genes in pSS using
several bioinformatic approaches to ultimately inform the
research and development of pSS therapies. The workflow of
this study is illustrated in Figure 1. First, differentially expressed
genes (DEGs) were screened based on the gene expression
profiles obtained from the Gene Expression Omnibus (GEO)
database. The differences in immune cell proportions were
compared between normal and diseased tissues, and WGCNA

Abbreviations: AUC, Area under the curve; BP, Biological processes; GEO,

Gene Expression Omnibus; GO, Gene Ontology; GSEA, Gene set enrichment

analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes; ROC, Receiver

operating characteristic; SVM, Support vector machine; WGCNA, Weighted gene

co-expression network analysis.

was conducted to identify the key modules. The key genes
were identified, followed by a protein–protein interaction (PPI)
network generation and enrichment analysis. Finally, the feature
genes were screened by a recursive feature elimination algorithm
and verified using the GEO datasets and quantitative real-time
PCR (RT-qPCR).

MATERIALS AND METHODS

Microarray Data
The gene expression profiles of the datasets GSE84844,
GSE66795, GSE140161, GSE48378, and GSE23117 were acquired
from the GEO database. GSE84844 included data for whole blood
samples from 30 patients with pSS and 30 healthy volunteers and
was analyzed using the GPL570 [HG-U133_Plus_2] Affymetrix
Human Genome U133 Plus 2.0 Array. GSE66795 contained
data for 131 whole blood samples from patients with fully
phenotyped pSS and 29 healthy controls and was analyzed
using the GPL10558 Illumina HumanHT-12 v4.0 expression
beadchip. GSE140161 contained data for 351 whole blood
samples from 30 patients with pSS and was analyzed using the
GPL23159 platform [Clariom_S_Human] Affymetrix Clariom
S Assay, human (includes Pico Assay). GSE48378 contained
data for peripheral blood mononuclear cells from 11 patients
with pSS and 16 healthy controls and was analyzed using the
GPL5175 [HuEx-1_0-st] Affymetrix Human Exon 1.0 ST Array
[transcript (gene) version] platform. GSE23117 contained data
for minor salivary gland samples from 10 patients with SS and 5
controls and was analyzed using the GPL570 [HG-U133_Plus_2]
Affymetrix Human Genome U133 Plus 2.0 Array.

Data Preprocessing and Identification of
DEGs
The preprocessed and standardized probe expression value
matrices of the four datasets were downloaded from the GEO
database. The probes were annotated based on the annotation
files. The probes that did not match any gene symbols were
removed. When multiple probes matched one gene symbol,
the mean value was selected as the expression value. Based
on the GSE84844 dataset, the DEGs between the pSS patients
and healthy controls were screened using the classical Bayesian
method of the R “limma” package (17) (https://cran.r-project.
org). The Benjamini–Hochberg method was used to correct the
P-value. The threshold values of the DEGs were set as adjusted
P-value < 0.05 and |logFC| > 0.585.

Immune Infiltration Estimation
Based on the expression profile of the GSE84844 dataset, we used
the CIBERSORT algorithm (18) with the parameters perm= 100
and QN = F to estimate the relative proportions of 22 immune
cells. The proportions of the respective immune cells were then
compared between the normal and diseased samples. The EPIC
online tool (https://gfellerlab.shinyapps.io/EPIC_1-1/) was also
utilized to evaluate the proportions of immune cells.
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FIGURE 1 | Workflow of this study. Differentially expressed genes (DEGs) were screened based on the gene expression profiles obtained from the Gene Expression

Omnibus (GEO) database. The differences in respective immune cell proportions between control and diseased tissues were compared. Weighted gene co-expression

network analysis (WGCNA) was performed to identify the key modules, followed by a protein-protein interaction (PPI) network generation and enrichment analysis. The

feature genes were screened using the recursive feature elimination algorithm and verified using the GEO datasets and quantitative real-time PCR (RT-qPCR).

WGCNA
We identified the modules related to pSS using the WGCNA
package (19) in R. The procedures for network construction
and module identification consisted of estimating the gene
co-expression correlation matrix, defining the adjacent
function, determining the phase difference between nodes,
and identifying correlation among network module,
disease, and relative abundance of different immune
cells. Then, the phenotype–immune cell related modules
were obtained.

Construction of the PPI Network
The key genes were identified as those overlapping when
intersecting the DEGs with the genes in the phenotype–immune
cell-related modules. The PPIs of the key genes were screened
using the STRING database (20), with the species as “human” and
a PPI score of 0.9. Using Cytoscape (21), the PPI network was
constructed, and the nodes with high degrees were considered
as hub genes. Moreover, to elucidate the functional role of the
key genes in pSS, enrichment analysis was performed using a
clusterProfiler tool (22) with a threshold P-value < 0.05 and
number of enriched genes ≥2.

Identification of Feature Genes
A random forest model was established based on the key
genes, and the top 50 genes were obtained. Based on the
GSE66795 dataset, the recursive feature elimination algorithm
of the caret package (23) in R and the repeated CV sampling
method were used to identify the feature genes. Based on the
feature genes, a support vector machine (SVM) (23) model
was constructed using the GSE66795 dataset with the default
parameters. A receiver operating characteristic (ROC) curve was
used to evaluate the accuracy of the model by the area under the
curve (AUC) estimate.

Identification of Subtypes Based on the
GSE140161 Dataset
Based on the centered Pearson correlation algorithm, the
pheatmap package in R was used to perform bidirectional
hierarchical clustering, and an unsupervised cluster analysis was
conducted on the obtained feature genes based on the GSE140161
dataset to identify the subtypes. A heatmap of the clinical
characteristics of the subtypes was computed. The gene set
file c2.cp.kegg.v7.2.symbols.gmt from the Molecular Signatures
Database v7.2 was used as an enrichment background, the GSVA
algorithm (24) in R was employed to perform the enrichment
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analysis, with the threshold set according to the adjusted P-value
< 0.05, and the Benjamini-Hochberg method was used to correct
the P-value.

Validation Analysis
To verify the identified feature genes, their expression levels
in the GSE48378, GSE23117, and GSE140161 datasets were
used as feature values, and the SVM model was constructed
with the default parameters. To evaluate the accuracy of the
model, the ROC curve was constructed. The expression level
of the 14 feature genes was evaluated in the GSE48378 dataset.
Additionally, we performed RT-qPCR to verify the expression
levels of these feature genes. A total of 20 whole blood samples
from 10 pSS patients and 10 healthy controls were obtained
from the Lianyungang Second People’s Hospital. The study group
was determined by the following criteria: (a) patients who met
the diagnostic criteria for the 2002 international classification
of SS were included; (b) patients receiving moderate to high
doses of corticosteroids, immunosuppressants, or biologics were
excluded. The control group consisted of healthy individuals
showing no symptoms for SS or other autoimmune-related
diseases, with no family history of the disease, and were not
currently receiving any medication. This study was approved
by the ethics committee of the Lianyungang Second People’s
Hospital (approval number: 2021K005). Written consent was
provided by all of the participants in this study. RT-qPCR
was performed as described previously (25). All experiments
were performed in triplicate. GAPDH was used as an internal
control. A t-test was used for comparisons of means between
the groups. The primers used in this study are listed in
Table 1.

RESULTS

Identification of DEGs and Immune
Infiltration Estimation
A total of 345 DEGs were obtained between the samples
from patients with pSS and the healthy controls (Figures 2A,B;

Supplementary File 1). Because follicular helper T cells and
activated NK cells were not observed, the relative abundance of
20 immune cells was obtained for each sample. According to the
CIBERSORT algorithm, the abundance distribution of memory
B cells, regulatory T cells (Tregs), gamma delta T cells, and
activated dendritic cells differed significantly between the control
and pSS groups (P < 0.05; Figure 2C). According to the EPIC
tool analysis results (Figure 2D), the abundance distributions
for B cells, cancer associated fibroblasts, T cells, and endothelial
cells differed significantly between the control and pSS groups (P
< 0.05).

WGCNA and Module Identification of pSS
The adjacency matrix weighting parameter power was analyzed
to meet the prerequisite of a scale-free network distribution.
The power of β = 6, where the square of the correlation
coefficient between log2k and log2p(k) = 0.9, was selected
as the soft thresholding parameter (Figure 3A). To obtain
a system clustering tree of the DEGs, combined with the
dissimilarity matrix, hierarchical clustering was conducted. A
total of six modules were screened, with the least number of
genes set as 30 and the pruning height set as cutHeight =

0.3 (Figure 3B). Among the six modules, the turquoise and
yellowmodules had the highest association with pSS (Figure 3C).
The gene significance was calculated to identify the modules
that were highly correlated with pSS, and the results showed
that the turquoise module had the highest correlation with
pSS (Figure 3D). Thus, the turquoise module was selected for
further analysis.

Construction of the PPI Network
A total of 252 key genes were screened (Figure 4A;
Supplementary File 2); the PPI network of the key genes
(Figure 4B) included 102 nodes and 210 interactions. RPL9,
RBX1, and RPL31 showed a relatively higher degree in the
PPI network (Table 2), and were identified as hub genes. The
enrichment analysis showed that the key genes were involved in
104 Gene Ontology (GO)-biological processes (BP) (Figure 4C),

TABLE 1 | Primers used in this study.

Gene name Forward primer (5
′

-3
′

) Reverse primer (5
′

-3
′

)

CHMP5 AGATTTCTCGATTGGATGCTGAG TGTTGGGCAAGATTGTCCCG

SLFN12 TTGGAAACGAATTATGCCGAGT AGAGCACACATAGCTCGTGAG

IL15 CATCCATCTCGTGCTACTTGTG GCCTCTGTTTTAGGGAGACCT

VRK2 GTGGATAGAACGCAAACAACTTG CGGATACCTAATTGCAGGACAGT

GMNN GCCCTGGGGTTATTGTCCC AGCGCCTTTCTCCGTTTTTCT

CKS2 TTCGACGAACACTACGAGTACC GGACACCAAGTCTCCTCCAC

PRDX4 AGAGGAGTGCCACTTCTACG GGAAATCTTCGCTTTGCTTAGGT

UBL5 GGGAAGAAGGTCCGCGTTAAA ACGTGGTCCTTAAAAATCGTGT

CMC2 CCTGACTTATCTCCACACTTGC TCTCAACTCCCGATCAACATCA

MRPL15 GGCTCCAAGAAACCGGAGAG GCGTCTGAAACTATGTCCTTCGT

PKD2 CTCTGGGGAACAAGACTCATGG TCATCATGCCGTAGGTCAAGA

PDIK1L ATGGTGAGTAGCCAGCCAAAG CTGCTTCATACACAACACCGTA

METTL4 TCTGTGGTACACCAGTTGTCA CCTTTTTACGGCAACAAGGTTCA

C1GALT1C1 AGTTTGCCTGAAATATGCTGGA GGGGTGATAAGTCATTGCCTCT

GAPDH CAGCCTCAAGATCATCAGCA GGATCTCGCTCCTGGAAGATG
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FIGURE 2 | Identification of differentially expressed genes (DEGs) and immune infiltration estimation. (A) Heatmap and (B) volcano plot of the DEGs. (C) Violin plot

depicting the abundance distribution of 20 immune infiltrating cell types identified using the CIBERSORT algorithm. (D) Violin plot of the abundance distribution of

seven types of immune cells identified using the EPIC tool. The blue strip represents the normal control group and the yellow strip represents the primary Sjögren’s

syndrome (pSS) group.
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FIGURE 3 | Results of weighted gene co-expression network analysis (WGCNA). (A) Determination of the soft threshold for adjacency matrix. The horizontal axis

represents the soft threshold power, and the vertical axis represents the square of the correlation coefficient of log2k and log2p(k). The red line indicates the location

when the correlation coefficient is 0.9, and the corresponding soft threshold power is 6. (B) Gene dendrogram derived from hierarchical clustering. The different

modules are indicated by colors underneath the dendrogram. (C) Correlations between modules and diseases. The horizontal axis represents modules, and the

vertical axis represents the overall correlation coefficient between genes and disease states in the module. (D) Correlations between modules and traits. The upper

figure in each row represents the correlation whereas the lower figure represents the P-value. Blue represents a negative correlation, and red represents a positive

correlation.
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FIGURE 4 | Construction of protein–protein interaction (PPI) network. (A) Venn diagram of key genes. (B) PPI network of key genes. The large nodes have a higher

degree, and red nodes have a large log FC. The Gene Ontology (GO) (C) and Kyoto Encyclopedia of Genes and Genomes (KEGG) (D) pathway enrichment analyses

of key genes. Circle colors represent P-values as indicated. The circle size represents the GeneRatio, which is the ratio of the number of genes enriched in a certain

pathway to the number of genes in the group.

such as cellular response to interleukin-1 (involving RBX1)
and response to interleukin-1 (involving RBX1), and 23 Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways,
including coronavirus disease (COVID-19) (involving RPL9 and
RPL31), hepatitis C, influenza A, and ribosome (involving RPL9
and RPL31) (Figure 4D; Supplementary Files 3, 4).

Identification of the Feature Genes
The SVM model was constructed using the samples in the
GSE66795 dataset with default parameters based on the top 50
genes obtained using the recursive feature elimination algorithm.
There were 14 feature genes in the SVMmodel:CHMP5, SLFN12,
IL15, VRK2, GMNN, CKS2, PRDX4, UBL5, CMC2, MRPL15,
PKD2, PDIK1L, METTL4, and C1GALT1C1 (Figure 5A). The
AUC was 0.882 (Figure 5B).

Identification of Subtypes Based on the
GSE140161 Dataset
According to the unsupervised cluster analysis, two subtypes
were screened: Cluster 1 and Cluster 2. Bidirectional hierarchical
clustering was performed to generate a heatmap of the clinical
characteristics of the subtypes (Figure 6A). Gene set enrichment
analysis (GSEA) showed that the genes related to the subtypes
were enriched in 50 KEGG pathways, including the p53, JAK-
STAT, and toll-like receptor signaling pathways (Figure 6B).

Validation Analysis
ROC curve analyses estimated an AUC of 0.852 in the GSE48378
dataset (Figure 7A), 0.780 in the GSE23117 dataset (Figure 7B),

and 0.878 in the GSE48378 + GSE23117 + GSE140161
datasets (Figure 7C). The majority of the 14 feature genes
were upregulated in the pSS group of the GSE48378 dataset
(Figure 7D). According to RT-qPCR analyses, all the genes were
upregulated in the pSS group, and significantly higher expression
levels were observed for SLFN12, IL15, VRK2, GMNN, CKS2,
PKD2, PDIK1L, METTL4, and C1GALT1C1 in the pSS group
compared to the control group (P < 0.05, Figure 8).

DISCUSSION

SS is an autoimmune exocrine disease characterized by chronic
inflammation and destruction of the salivary and lacrimal glands
(3). Therefore, based on a large-scale SS cohort, combined with
the identification of immune-related genes, effective immune
markers were screened in this study. A total of 345 DEGs were
identified, and the proportions of memory B cells, Tregs, gamma
delta T cells, and activated dendritic cells differed significantly
between the control and pSS samples. The turquoise module
had the highest correlation with pSS, and 252 key genes were
identified. The PPI network of the key genes showed that RPL9,
RBX1, and RPL31 had a relatively higher degree. In addition, the
key genes were involved in 104 GO-BPs and 23 KEGG pathways,
including COVID-19, hepatitis C, influenza A, and ribosome.
A total of 14 feature genes were identified in the SVM model:
CHMP5, SLFN12, IL15, VRK2, GMNN, CKS2, PRDX4, UBL5,
CMC2, MRPL15, PKD2, PDIK1L, METTL4, and C1GALT1C1.
Two subtypes were screened, and the feature genes in the two
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TABLE 2 | Degree of proteins (top 10) in the protein–protein interaction (PPI) network.

Proteins Betweenness Closeness Degree logFC

RPL9 68.27821 0.012041 14 0.837228

RBX1 733.3333 0.014844 13 0.857245

RPL31 25.56026 0.012038 12 0.614054

RPS7 25.56026 0.012038 12 1.174916

RPL34 16.13462 0.012037 11 0.894338

MRPL13 26.70256 0.012034 11 0.959121

MRPL1 26.70256 0.012034 11 0.69091

POLR2K 412.3333 0.014816 11 1.336471

RSL24D1 70 0.012031 10 1.236482

MRPL15 18.27692 0.012032 10 0.692194

FIGURE 5 | Identification of the feature genes. (A) The support vector machine (SVM) mode screens 14 feature genes using the RFE algorithm. (B) Receiver operating

characteristic (ROC) curve for the SVM model.

FIGURE 6 | Identification of subtypes based on the GSE140161 dataset. (A) Heatmap of subtypes and clinical information. (B) Gene set enrichment analysis of genes

in the two subtypes.

subtypes were enriched in 50 KEGG pathways. The 14 feature
genes were finally verified using GEO datasets and RT-qPCR.

The importance of immune cells in the pathogenesis of pSS
has been studied extensively. Hansen et al. reported that B cells
are an indication of selection disorder and differentiation in

ectopic lymphoid tissue in SS (26). The infiltration of B and T
cells in the salivary gland and the formation of germinal center-
like structures are characteristic of pSS (27). Dendritic cells are
key candidates for activating T cells and B cells in pSS (28).
Moreover, the abnormality of memory B cells seems to be closely
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FIGURE 7 | Validation analysis in the Gene Expression Omnibus (GEO) datasets. Receiver operating characteristic curve for the feature genes in the GSE48378

dataset (A), GSE23117 dataset (B), and GSE48378 + GSE23117 + GSE140161 datasets (C). (D) The expression level of the 14 feature genes in the GSE48378

dataset. The blue strip represents the normal control group and the yellow strip represents the primary Sjögren’s syndrome (pSS) group. *P < 0.05; **P < 0.01; ***P <

0.001; ns indicates with no statistical significance.

related to the pathogenesis of pSS and itsmalignant complication,
B-cell lymphoma (29). Although Tregs prevent autoimmunity
and maintain immunological homeostasis, Bernard et al. found
that Tregs were related to systemic autoimmune diseases,
including pSS (30). Lamour et al. found that the proportions
of both CD16+ and HLA-DR+ gamma delta T cells were
significantly higher in patients with pSS than in controls
(31). In this study, the proportions of 20 immune cells were
evaluated using the CIBERSORT algorithm, Among them, the
proportions of gamma delta T cells, memory B cells, Tregs,
and activated dendritic cells differed significantly between the
control and pSS groups. According to analyses with the EPIC
tool, the proportions of B cells, cancer associated fibroblasts,
T cells, and endothelial cells differed significantly between the
control and pSS groups. Both analyses indicated significant
differences between the control and pSS groups, with respect to
immune cell composition. Taken together, our results suggest

that these immune cells play vital roles in the pathogenesis
of pSS.

A total of 252 key genes were identified in this study,
and RPL9, RBX1, and RPL31 were identified as hub genes
according to the PPI network. The key genes were involved
in 23 KEGG pathways, including COVID-19 (involving RPL9
and RPL31), hepatitis C, influenza A, and ribosome (involving
RPL9 and RPL31). Bosaeed and Kumar revealed that, compared
with the general population, the risk of influenza infection in
patients with autoimmune diseases, such as pSS, is significantly
increased (32). Ferri et al. reported that patients with systemic
autoimmune diseases were more susceptible to COVID-19
owing to a weakened immune system (33). Ramos-Casals
et al. suggested that hepatitis C virus infections are related
to the development of SS in specific subgroups of patients
(34). Multiple defects in the process of ribosome production
have been reported to cause a spectrum of human diseases
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FIGURE 8 | Quantitative real-time PCR (RT-qPCR) analysis to verify the feature genes. *P < 0.05; **P < 0.01; ***P < 0.001.

(35). The strong association of pSS with infectious diseases
has led to an enthusiastic scientific debate regarding the
cause and pathogenesis, though understanding the underlying
mechanisms will require innovative and intensive research.
Although our study provides a promising baseline evaluation
of pSS associated genes, the results need to be verified using
appropriate wet-lab experiments. The GO functional analysis
revealed that the key genes were also enriched in the cellular
response to interleukin-1 (involving RBX1) and response to
interleukin-1 (involving RBX1) terms. Yamada et al. revealed
that interleukin-1 plays vital roles in the onset and development
of SS by controlling systemic or local immune responses and
maintaining the survival and mucosal defense of target epithelial
cells (36). To date, there are no reports on RPL9, RBX1,
and RPL31 in pSS, and the potential correlations should be
further evaluated.

In this study, 14 feature genes were identified—CHMP5,
SLFN12, IL15, VRK2, GMNN, CKS2, PRDX4, UBL5, CMC2,
MRPL15, PKD2, PDIK1L, METTL4, and C1GALT1C1—which
were verified using several GEO datasets and RT-qPCR. The
RT-qPCR results showed that the expression of all these genes
was upregulated in the pSS group, and significantly higher

expression levels of SLFN12, IL15, VRK2, GMNN, CKS2,
PKD2, PDIK1L, METTL4, and C1GALT1C1 were observed
in the pSS group compared with the control group. IL15,
also known as IL-15, is a multifunctional molecule with
therapeutic potential and is a member of the immune
regulatory cytokine family (37). Sisto et al. reported that IL-
15 is overexpressed at both mRNA and protein levels in
pSS patients (38), which is consistent with the results of the
present study. However, few studies have reported on the
other feature genes identified in this study. According to the
GSEA results, the feature genes in the two subtypes were
enriched in 50 KEGG pathways, including the p53, JAK-STAT,
and toll-like receptor signaling pathways. p53 is important in
DNA repair, cell cycle arrest, hypoxia, and inflammation in
various cells and tissues (39). Takatori et al. reported that
p53 is supposedly involved in the pathogenesis of systemic
autoimmune diseases in humans and mice (40). Aota et al.
suggested that by regulating JAK/STAT signaling, baricitinib
inhibited IFN-γ-induced CXCL10 expression and weakened
immune cell chemotaxis, indicating its potential as a therapeutic
strategy for pSS (41). Shimizu et al. indicated that toll-
like receptor 7-dominant innate immunity is related to the

Frontiers in Medicine | www.frontiersin.org 10 January 2022 | Volume 8 | Article 719958

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Cui et al. Immune-Related Genetic Expression in pSS

development of sialadenitis in pSS (42). The present study has
identified 14 feature genes that could play vital roles in the
development of pSS via the p53, JAK-STAT, and toll-like receptor
signaling pathways.

However, this study has some limitations. First, RPL9,
RBX1, and RPL31, identified as hub genes in the PPI
network, should be further verified in different datasets
and using other relevant experiments. Second, as the
immune cell composition of the samples was estimated
using CIBERSORT algorithm and EPIC tool, further relevant
experiments are required to verify their accuracy. Further
experiments, using larger datasets, are needed to provide in-
depth evaluations of the etiopathogenic basis of these genes
in pSS.

CONCLUSIONS

Several cells and genes (memory B cells, Tregs, gamma delta
T cells, activated dendritic cells, RPL9, RBX1, RPL31, and
feature genes) could play potential roles in the development
of pSS. These findings add to our understanding of the
pathogenesis of pSS and may inspire the development of new
therapeutic approaches.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries that
support the findings of this study are available in GEO database
at (https://www.ncbi.nlm.nih.gov/geo/).

AUTHOR CONTRIBUTIONS

JC and HH conceptualized and designed the research and
conceived of the study, participated in its design and
coordination, and contributed to the writing and revision
of the manuscript for important intellectual content. HL and
XY contributed to data acquisition. TW participated in data
analysis and interpretation. QS and YY designed the study and
performed the statistical analysis. All authors read and approved
the final manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmed.
2021.719958/full#supplementary-material

REFERENCES

1. Fox RI. Sjögren’s syndrome. Lancet. (2005) 366:321–

31. doi: 10.1016/S0140-6736(05)66990-5

2. Gøransson LG, Herigstad A, Tjensvoll AB, Harboe E, Mellgren SI, Omdal

R. Peripheral neuropathy in primary sjogren syndrome: a population-based

study. Arch Neurol. (2006) 63:1612–5. doi: 10.1001/archneur.63.11.1612

3. Bowman SJ. Primary Sjögren’s syndrome. Lupus. (2018) 27:32–

5. doi: 10.1177/0961203318801673

4. Qin B,Wang J, Yang Z, YangM,MaN,Huang F, et al. Epidemiology of primary

Sjögren’s syndrome: a systematic review and meta-analysis. Ann Rheum Dis.

(2015) 74:1983–9. doi: 10.1136/annrheumdis-2014-205375

5. Odani T, Chiorini JA. Targeting primary Sjögren’s syndrome.Mod Rheumatol.

(2019) 29:70–86. doi: 10.1080/14397595.2018.1546268

6. Seror R, Bowman S. Outcome measures in primary Sjögren’s syndrome.

Arthritis Care Res.(2020) 72:134–49. doi: 10.1002/acr.24331

7. Björk A, Mofors J, Wahren-Herlenius M. Environmental factors in the

pathogenesis of primary Sjögren’s syndrome. J Intern Med. (2020) 287:475–

92. doi: 10.1111/joim.13032

8. Bombardieri M, Argyropoulou OD, Ferro F, Coleby R, Pontarini E, Governato

G, et al. One year in review 2020: pathogenesis of primary Sjögren’s syndrome.

Clin Exp Rheumatol. (2020) 126:3–9.

9. Lin Y, Yao X, Yan M, Zhou L, Huang W, Xiao Y, et al. Integrated analysis

of transcriptomics to identify hub genes in primary Sjögren’s syndrome. Oral

Dis. (2021)doi: 10.1111/odi.13943

10. Inamo J, Suzuki K, Takeshita M, Kassai Y, Takiguchi M, Kurisu R, et

al. Identification of novel genes associated with dysregulation of B cells

in patients with primary Sjögren’s syndrome. Arthritis Res Ther. (2020)

22:153. doi: 10.1186/s13075-020-02248-2

11. Zhang L, Xu P, Wang X, Zhang Z, Zhao W, Li Z, et al. Identification of

differentially expressed genes in primary Sjögren’s syndrome. J Cell Biochem.

(2019) 120:17368–77. doi: 10.1002/jcb.29001

12. Vitali C, Dolcino M, Del Papa N, Minniti A, Pignataro F, Maglione

W, et al. Gene expression profiles in primary Sjögren’s syndrome with

and without systemic manifestations. ACR Open Rheumatol. (2019) 1:603–

13. doi: 10.1002/acr2.11082

13. Lucchesi D, Coleby R, Pontarini E, Prediletto E, Rivellese F, Hill

DG, et al. Impaired interleukin-27-mediated control of CD4+ T cell

function impact on ectopic lymphoid structure formation in patients with

Sjögren’s syndrome. Arthritis Rheumatol. (2020) 72:1559–70. doi: 10.1002/art.

41289

14. Fessler J, Fasching P, Raicht A, Hammerl S, Weber J, Lackner A,

et al. Lymphopenia in primary Sjögren’s syndrome is associated with

premature aging of naïve CD4+ T cells. Rheumatology. (2021) 60:588–

97. doi: 10.1093/rheumatology/keaa105

15. Yao Q, Song Z, Wang B, Qin Q, Zhang JA. Identifying key genes

and functionally enriched pathways in Sjögren’s syndrome by

weighted gene co-expression network analysis. Front Genet. (2019)

10:1142. doi: 10.3389/fgene.2019.01142

16. Lei S, Zhang Y. Identification of the key genes and pathways involved

in B cells in primary Sjögren’ s syndrome. Bioengineered. (2021) 12:2055–

73. doi: 10.1080/21655979.2021.1930753

17. Smyth GK. Limma: linear models for microarray data. In: Bioinformatics and

Computational Biology Solutions Using R and Bioconductor. New York, NY:

Springer (2013). p. 397–420.

18. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust

enumeration of cell subsets from tissue expression profiles. Nat Methods.

(2015) 12:453–7. doi: 10.1038/nmeth.3337

19. Langfelder P, Horvath S. WGCNA: an R package for weighted

correlation network analysis. BMC Bioinformat. (2008)

9:559. doi: 10.1186/1471-2105-9-559

20. Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar

S, Mathivanan S, et al. Human protein reference database-−2009

update. Nucleic Acids Res. (2009) 37:D767–772. doi: 10.1093/nar/g

kn892

21. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage

D, et al. Cytoscape: a software environment for integrated

models of biomolecular interaction networks. Genome Res. (2003)

13:2498–504. doi: 10.1101/gr.1239303

22. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for

comparing biological themes among gene clusters. Omics. (2012) 16:284–

7. doi: 10.1089/omi.2011.0118

Frontiers in Medicine | www.frontiersin.org 11 January 2022 | Volume 8 | Article 719958

https://www.ncbi.nlm.nih.gov/geo/
https://www.frontiersin.org/articles/10.3389/fmed.2021.719958/full#supplementary-material
https://doi.org/10.1016/S0140-6736(05)66990-5
https://doi.org/10.1001/archneur.63.11.1612
https://doi.org/10.1177/0961203318801673
https://doi.org/10.1136/annrheumdis-2014-205375
https://doi.org/10.1080/14397595.2018.1546268
https://doi.org/10.1002/acr.24331
https://doi.org/10.1111/joim.13032
https://doi.org/10.1111/odi.13943
https://doi.org/10.1186/s13075-020-02248-2
https://doi.org/10.1002/jcb.29001
https://doi.org/10.1002/acr2.11082
https://doi.org/10.1002/art.41289
https://doi.org/10.1093/rheumatology/keaa105
https://doi.org/10.3389/fgene.2019.01142
https://doi.org/10.1080/21655979.2021.1930753
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1093/nar/gkn892
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1089/omi.2011.0118
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Cui et al. Immune-Related Genetic Expression in pSS

23. Wang Q, Liu X. Screening of feature genes in distinguishing different types

of breast cancer using support vector machine. Onco Targets Ther. (2015)

8:2311–7. doi: 10.2147/OTT.S85271

24. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation

analysis for microarray and RNA-seq data. BMC Bioinformatics. (2013)

14:7. doi: 10.1186/1471-2105-14-7

25. Rosseto SM, Alarcon TA, Rocha DMC, Ribeiro FM, Ferguson SSG, Martins-

Silva C, et al. DYNLT1 gene expression is downregulated in whole blood of

patients at different Huntington’s disease stages. Neurol Sci. (2021) 42:1963–

7. doi: 10.1007/s10072-020-04772-0

26. Hansen A, Lipsky PE, Dörner T. B cells in Sjögren’s syndrome: indications for

disturbed selection and differentiation in ectopic lymphoid tissue. Arthritis

Res Ther. (2007) 9:218. doi: 10.1186/ar2210

27. Abdulahad WH, Kroese FG, Vissink A, Bootsma H. Immune regulation

and B-cell depletion therapy in patients with primary Sjögren’s syndrome. J

Autoimmun. (2012) 39:103–11. doi: 10.1016/j.jaut.2012.01.009

28. Hillen MR, Ververs FA, Kruize AA, Van Roon JA. Dendritic cells, T-

cells and epithelial cells: a crucial interplay in immunopathology of

primary Sjögren’s syndrome. Expert Rev Clin Immunol. (2014) 10:521–

31. doi: 10.1586/1744666X.2014.878650

29. Hansen A, Daridon C, Dörner T. What do we know about memory

B cells in primary Sjögren’s syndrome? Autoimmun Rev. (2010) 9:600–

3. doi: 10.1016/j.autrev.2010.05.005

30. Bernard F, Romano A, Granel B. Regulatory T cells and systemic

autoimmune diseases: systemic lupus erythematosus, rheumatoid

arthritis, primary Sjögren’s syndrome. Rev Med Interne. (2010)

31:116–27. doi: 10.1016/j.revmed.2009.03.364

31. Lamour A, Smith MD, Lydyard PM, Youinou PY. The majority of Fc

gamma RIII-positive gamma delta T cells do not express HLA-DR in

patients with primary Sjögren’s syndrome. Immunol Lett. (1995) 45:153–

5. doi: 10.1016/0165-2478(94)00252-M

32. Bosaeed M, Kumar D. Seasonal influenza vaccine in

immunocompromised persons. Hum Vaccin Immunother. (2018)

14:1311–22. doi: 10.1080/21645515.2018.1445446

33. Ferri C, Giuggioli D, Raimondo V, L’Andolina M, Tavoni A, Cecchetti

R, et al. COVID-19 and rheumatic autoimmune systemic diseases: report

of a large Italian patients series. Clin Rheumatol. (2020) 39:3195–

204. doi: 10.1007/s10067-020-05334-7

34. Ramos-Casals M, Muñoz S, Zerón PB. Hepatitis C virus and Sjögren’s

syndrome: trigger or mimic? Rheum Dis Clin North Am. 34:869–84, vii.

(2008). doi: 10.1016/j.rdc.2008.08.007

35. Venturi G, Montanaro L. How altered ribosome production can cause or

contribute to human disease: the spectrum of ribosomopathies. Cells. (2020)

9:2300. doi: 10.3390/cells9102300

36. Yamada A, Arakaki R, Kudo Y, Ishimaru N. Targeting

IL-1 in Sjögren’s syndrome. Expert Opin Ther Targets.

(2013) 17:393–401. doi: 10.1517/14728222.2013.7

54427

37. Patidar M, Yadav N, Dalai SK. Interleukin 15: a key cytokine

for immunotherapy. Cytokine Growth Factor Rev. (2016) 31:49–

59. doi: 10.1016/j.cytogfr.2016.06.001

38. Sisto M, Lorusso L, Lisi S. Interleukin-15 as a potential new target

in Sjögren’s syndrome-associated inflammation. Pathology. (2016) 48:602–

7. doi: 10.1016/j.pathol.2016.06.001

39. Green DR, Kroemer G. Cytoplasmic functions of the tumour

suppressor p53. Nature. (2009) 458:1127–30. doi: 10.1038/nature

07986

40. Takatori H, Kawashima H, Suzuki K, Nakajima H. Role of

p53 in systemic autoimmune diseases. Crit Rev Immunol.

(2014) 34:509–16. doi: 10.1615/CritRevImmunol.20140

12193

41. Aota K, Yamanoi T, Kani K, Ono S, Momota Y, Azuma M. Inhibition of

JAK-STAT signaling by baricitinib reduces interferon-γ-induced CXCL10

production in human salivary gland ductal cells. Inflammation. (2021)

44:206–16. doi: 10.1007/s10753-020-01322-w

42. Shimizu T, Nakamura H, Takatani A, Umeda M, Horai Y, Kurushima S,

et al. Activation of Toll-like receptor 7 signaling in labial salivary glands

of primary Sjögren’s syndrome patients. Clin Exp Immunol. (2019) 196:39–

51. doi: 10.1111/cei.13242

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Cui, Li, Wang, Shen, Yang, Yu and Hu. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Medicine | www.frontiersin.org 12 January 2022 | Volume 8 | Article 719958

https://doi.org/10.2147/OTT.S85271
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1007/s10072-020-04772-0
https://doi.org/10.1186/ar2210
https://doi.org/10.1016/j.jaut.2012.01.009
https://doi.org/10.1586/1744666X.2014.878650
https://doi.org/10.1016/j.autrev.2010.05.005
https://doi.org/10.1016/j.revmed.2009.03.364
https://doi.org/10.1016/0165-2478(94)00252-M
https://doi.org/10.1080/21645515.2018.1445446
https://doi.org/10.1007/s10067-020-05334-7
https://doi.org/10.1016/j.rdc.2008.08.007
https://doi.org/10.3390/cells9102300
https://doi.org/10.1517/14728222.2013.754427
https://doi.org/10.1016/j.cytogfr.2016.06.001
https://doi.org/10.1016/j.pathol.2016.06.001
https://doi.org/10.1038/nature07986
https://doi.org/10.1615/CritRevImmunol.2014012193
https://doi.org/10.1007/s10753-020-01322-w
https://doi.org/10.1111/cei.13242
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles

	Novel Immune-Related Genetic Expression for Primary Sjögren's Syndrome
	Highlights
	Introduction
	Materials and Methods
	Microarray Data
	Data Preprocessing and Identification of DEGs
	Immune Infiltration Estimation
	WGCNA
	Construction of the PPI Network
	Identification of Feature Genes
	Identification of Subtypes Based on the GSE140161 Dataset
	Validation Analysis

	Results
	Identification of DEGs and Immune Infiltration Estimation
	WGCNA and Module Identification of pSS
	Construction of the PPI Network
	Identification of the Feature Genes
	Identification of Subtypes Based on the GSE140161 Dataset
	Validation Analysis

	Discussion
	Conclusions
	Data Availability Statement
	Author Contributions
	Supplementary Material
	References


