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Cytokine signaling represents one of the cornerstones of the immune system, mediating

the complex responses required to facilitate appropriate immune cell development and

function that supports robust immunity. It is crucial that these signals be tightly regulated,

with dysregulation underpinning immune defects, including excessive inflammation, as

well as contributing to various immune-related malignancies. A specialized family of

proteins called suppressors of cytokine signaling (SOCS) participate in negative feedback

regulation of cytokine signaling, ensuring it is appropriately restrained. The eight SOCS

proteins identified regulate cytokine and other signaling pathways in unique ways.

SOCS1–3 and CISH are most closely involved in the regulation of immune-related

signaling, influencing processes such polarization of lymphocytes and the activation of

myeloid cells by controlling signaling downstream of essential cytokines such as IL-4,

IL-6, and IFN-γ. SOCS protein perturbation disrupts these processes resulting in the

development of inflammatory and autoimmune conditions as well as malignancies. As

a consequence, SOCS proteins are garnering increased interest as a unique avenue to

treat these disorders.
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CYTOKINE SIGNALING IN IMMUNITY AND ITS REGULATION

Overview
Appropriate immune cell development and function relies on the complex interplay between
various cell lineages, much of which is mediated by cytokines. These include the interleukin (IL)-2
family, comprising IL-2, IL-7, IL-9, IL-15, and IL-21, that play important roles in the development
of specific lymphoid lineages (1, 2), the IL-3 family, IL-3, IL-5, and granulocyte/macrophage
colony-stimulating factor (GM-CSF) (3) and members of the IL-6 family, especially IL-6, IL-10,
and granulocyte-CSF (G-CSF) (4), that regulate myeloid lineage development and also impact on
inflammation, as well as the interferons (IFNs), that mediate antiviral responses and modulate
immune cell development and inflammation. Signaling by cytokines needs to be tightly controlled
in order to ensure the immune system is maintained at homeostatic levels, as this could result in
the development of inflammatory conditions, increased susceptibility to infectious disease and for
pathologies as well as an increased propensity to develop cancer (5–7).

Cytokine Signaling and Its Control
Cytokines bind to cell surface receptors on responsive cells triggering a series of intracellular
events that ultimately alter the state of the cell through the stimulation of important genes
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(8). The majority of cytokine receptors utilize the Janus kinase
(JAK)/Signal transducer and activator of transcription (STAT)
pathway in order to transmit signals to the nucleus (Figure 1)
(6). Mammals possess four JAKs (JAK1, JAK2, JAK3, and TYK2)
(9) and seven STATs (STAT1, STAT2, STAT3, STAT4, STAT5A,
STAT5B, and STAT6) (10), with specific cytokine receptors
using a particular combination of these to influence immune
cell production and function. In response to cytokine binding
to specific receptors, a phosphorylation cascade is initiated
resulting in tyrosine phosphorylation of STATs found in the
cytoplasm (11). Upon phosphorylation, STATs dimerize through
reciprocal interactions, with STAT dimers subsequently entering
the nucleus via an active process involving importin proteins (12)
and GTPases such as Rac1 and Ran (13, 14), allowing them to
initiate transcription of target genes (15).

A variety of proteins are involved in the negative regulation
of cytokine receptor signaling through the JAK/STAT pathway
such as SH2-containing phosphatases (SHPs), protein inhibitors
of activated STATs (PIASs) and suppressors of cytokine signaling
(SOCS) proteins (16). Both SHP and PIAS proteins are
present in the cytosol prior to the onset of signaling. SHPs
regulate signaling through mediating dephosphorylation of
various pathway components following recruitment via their
SH2 domain (17). Alternatively, PIASs inhibit the activity of
STATs at various levels and thereby dissipate signaling (17). In
contrast, SOCS proteins are negative feedback regulators that are
induced directly by STAT proteins and in turn act to negatively
regulate the JAK/STAT pathway via various mechanisms to
ensure appropriate signal dissipation (18).

SOCS PROTEINS

There are eight human SOCS proteins, SOCS1–7 and cytokine
inducible SH2-containing protein (CISH) (Figure 2) (19). All
SOCS proteins show conserved structural similarities and
mechanisms of action but with unique aspects for different family
members (16, 20), with pairs of SOCS proteins showing greater
similarity reflecting their evolutionary history (21). Indeed, there
is strong conservation of SOCS proteins, with other mammalian
species harboring an equivalent complement and other higher
vertebrates having homologs for each, with additional duplicates
in teleost fish (22). Invertebrates such as Drosophila also
possess multiple SOCS proteins that also participate in the
regulation of cytokine and other signaling (23), highlighting
the importance of these negative regulators within the cytokine
receptor/JAK/STAT pathway.

Structure of SOCS Proteins
All SOCS family members contain two conserved regions
organized in a signature arrangement comprising a central Src-
homology 2 (SH2) domain and a C-terminal SOCS box domain
(Figure 2) (24). The SH2 domain allows SOCS proteins to
bind target substrates through interactions with phosphorylated
tyrosine residues (25). However, unlike the canonical SH2
domain found in many signaling proteins, those of SOCS
proteins contain an N-terminal α-helical extension, called the
extended SH2 domain (ESS) (26). The SOCS box is able to

assemble components of an E3 ubiquitin ligase complex via two
motifs, the Elongin B/C (BC) box and the Cullin (Cul) box
(27, 28). The largest variability in SOCS protein structure is
observed at the N-terminus (19). The N-terminal domains of
SOCS1–3 and CISH are of similar length, but those of SOCS4–7
are considerably longer (29). Specialized motifs within the N-
terminal domains have been identified in related SOCS proteins.
SOCS1 and SOCS3 contain a unique kinase inhibitory region
(KIR) that is able to bind and inhibit JAKs (30), while SOCS3
and CISH contain a PEST motif between the SH2 domain and
SOCS box (26, 31), with SOCS4 and SOCS5 having a distinct N-
terminal conserved region (NTCR), the exact function of which
is yet to be determined (29).

Mechanisms of SOCS Action
SOCS proteins regulate cytokine receptor signaling through
several different mechanisms such as competitive binding,
targeting proteins for degradation/re-routing, and inhibition
of kinase activity, which utilize different combinations of
protein domains and motifs (Table 1). However, in each case
the SH2 domain typically allows SOCS proteins to bind to
specific components of the cytokine receptor signaling complex
or downstream signaling proteins through interactions with
appropriate phosphotyrosine containing motifs (Figure 3) (7).

Competitive Binding
SOCS proteins are able to bind to receptor complexes and
sterically block binding of other molecules. This is generally
through interactions of their SH2 domain to phosphotyrosine
motifs to impede binding of other SH2 domain-containing
proteins, notably including STATs, thereby inhibiting their
activation (Figure 3A), but other mechanisms also exist (7).

Protein Targeting
SOCS proteins are also able to target proteins, including the
receptor and associated JAK and other signaling proteins (24,
53), through formation of an E3 ubiquitin ligase complex
(Figure 3B). Elongin BC and Cullin 5 are recruited directly to
specific motifs in the SOCS box domain as part of a complex
containing Ring box protein 2 (Rbx2) and a ubiquitin conjugating
enzyme (E2) (54). Once the E3 ubiquitin ligase complex is
assembled, target proteins bound through the SH2 domain
undergo ubiquitination, leading to their proteasomal degradation
or intracellular re-routing (55).

Inhibition of JAK Activity
SOCS1 and SOCS3 can also directly inhibit the kinase activity
of receptor-associated JAK proteins thereby suppressing signal
propagation (Figure 3C) (56). SOCS1 binds to the JAK proteins
directly through its SH2 domain (57), whereas SOCS3 instead
binds to the associated receptor (57, 58). In each case the
respective KIR motif is then able to act as a pseudo-substrate
thereby blocking the substrate-binding groove of the JAK kinase
domain to inhibit its activity (57).
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FIGURE 1 | Cytokine signaling via the JAK/STAT pathway and its regulation by SOCS proteins. Schematic representation of a cytokine (pink) binding to the

extracellular portion of its cognate cytokine receptor (CytoR—gray), to cause activation of associated intracellular Janus kinases (JAK—blue), which mediate

phosphorylation (P—purple) of tyrosine residues found on components of the receptor complex. These form docking sites for signal transducer and activator of

transcription proteins (STAT—green), which also undergo phosphorylation to form STAT dimers. These translocate into the nucleus to activate transcription of target

genes encoding effector proteins (orange) as well as SOCS proteins (red) that provide negative feedback regulation.

Regulation of SOCS Proteins
SOCS protein levels have been shown to be regulated by multiple
layers of control. At the transcriptional level, SOCS genes—
particularly SOCS1, SOCS2, SOCS3, and CISH—are strongly
induced by activated STATs (59), but other transcription factors
can additionally mediate this (60). SOCS genes can also repressed
by others, as described for SOCS1 and SOCS3 by growth factor
independence-1 (GFI-1) through promoter binding (61, 62),
and can be silenced epigenetically through regulation through

methylation of CpG islands or histone deacetylation (63–65).
SOCS mRNAs are typically short-lived, with AU2−4A motifs
in the 3′UTR linked to stability (31, 66), along with m6A
methylation (67). Furthermore, the 5′UTR of the SOCS1 mRNA
has an inhibitory effect on translation mediated by an upstream
open reading frame (68), and can also influence translation of
different protein isoforms (69). In addition to this, translation is
controlled by a myriad of micro-RNAs (miRNAs) that typically
bind to sites located in the 3′UTR (70–74). SOCS proteins are also
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FIGURE 2 | Structure of the SOCS proteins. Schematic representation of the eight mammalian SOCS proteins presented in pairs based on conserved structure and

function. Shown are the universal central SH2 domain (yellow), including a unique extra α-helical structure termed the extended SH2 domain (ESS) (green) found in all

SOCS proteins and a PEST motif (purple) found in SOCS3 and CISH as well as the C-terminal SOCS box domain (blue), containing Elongin BC (BC) and Cullin (Cul)

boxes (pink). In addition, there is a variable N-terminal domain, containing a specialized kinase inhibitory region (KIR) in SOCS1 and SOCS3 (red) and an N-terminal

conserved region (NTCR) in SOCS4 and SOCS5 (brown).

relatively unstable, with binding to elongins and phosphorylation
of the SOCS box found to influence relative protein stability (75–
77). CISH and SOCS3 also possess a PEST motif adjacent to their
SH2 domain, which provides an additional mechanism to impact
protein stability (26, 31).

SOCS PROTEINS AS REGULATORS OF
IMMUNITY AND ITS PERTURBATION IN
DISEASE

SOCS proteins, particularly, SOCS1–3 and CISH are closely
involved in the regulation of cytokine receptor signaling (19, 78).
Since cytokines play a key role in immune cell development and
function, SOCS proteins influence multiple aspects of immune
system development and function, notably including helper T
(Th) cell differentiation (Figure 4) and myeloid cell development
and function (Figure 5). They are also implicated in a range
of inflammatory and autoimmune diseases as well as immune-
related cancers.

SOCS1
SOCS1 is induced by a wide range of cytokines, including IFN-
γ via STAT1 and those that utilize the IL-2 receptor common
gamma chain (the IL-2Rγc) receptor subunit via STAT5 (35).
SOCS1 most commonly interacts directly with JAK1, JAK2, and
TYK2 including in their dephosphorylated states, with its major

mechanism of action being to inhibit the activity of these JAKs
through the pseudosubstrate KIR, with the SOCS box of SOCS1
having a poor affinity for E3 ligase components (57). SOCS1
can also bind to phosphotyrosine residues on cytokine receptor
chains such as IL-2Rβ through its SH2 domain (39). Through
these mechanisms SOCS1 regulates a raft of cytokines central to
the control of immunity and inflammation, including IFN-γ and
downstream STAT1 (32) and various IL-2R γc subunit utilizing
cytokines and downstream STAT5 and STAT6 (38, 79).

Transgenic expression of SOCS1 in T cells resulted in an
increased CD4+/CD8+ T cell ratio and peripheral T cell defects,
with reduced IFN-γ-induced STAT1 activation (80). In contrast,
SOCS1−/− mice succumbed to early lethality at 2–3 weeks
post-gestation due to pathological inflammation characterized
by T cell activation (81, 82), which could be substantially
alleviated through injection of anti-IFN-γ or by crossing onto
a IFN-γ deficient background, suggesting that excessive IFN-
γ signaling was largely responsible (32). Transgenic expression
of SOCS1 with a deleted SOCS box in the SOCS1−/− mice
also facilitated enhanced survival, highlighting the importance
of KIR-mediated negative regulation (83). Moreover, the
inflammatory phenotype could be mitigated by crossing onto a
RAG2 deficient background (81) or in thymocyte-specific SOCS1
knockout mice (84), indicating lymphocytes were responsible for
much of the inflammation. However, SOCS1−/− IFN-γ−/− mice
still displayed markedly lower numbers of total T cells, reduced
CD4/CD8T cell ratio, and increased T cell activation (85). The
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TABLE 1 | Mechanisms of SOCS action on cytokine signaling in immune cells.

SOCS protein Mechanism of action Cytokine STAT References

SOCS1 JAK inhibition IFN-γ STAT1 (32)

IFN-α/β STAT1/2 (33)

IL-12 STAT4 (34)

IL-2,7,15,21 STAT5 (35–37)

IL-4 STAT6 (38)

Competitive binding IL-2,15 STAT5 (39)

SOCS2 JAK inhibition IL-2,15 STAT5 (40, 41)

IL-3, GM-CSF STAT5 (42)

IL-4 STAT6 (40)

SOCS3 JAK inhibition IL-6, 23, G-CSF STAT3 (43–45)

Degradation/re-routing IL-12 STAT4 (46)

G-CSF STAT3 (47)

CISH Competitive binding IL-12 STAT5 (48)

Degradation/re-routing IL-15 STAT5 (49)

IL-3, GM-CSF STAT5 (50)

? IL-4,13 STAT6 (51)

SOCS5 Competitive binding IL-4 STAT6 (52)

SOCS4,6,7 ? ? ?

?, not known.

T cells in these mice were hypersensitive to a range of cytokines
that utilize IL-2Rγc, including IL-2 and IL-4 and IL-7, resulting
in enhanced proliferation and survival (84, 85).

SOCS1 influences the development of CD8+ T cells, with
both SOCS1−/− and SOCS1−/−IFN-γ−/− mice exhibiting a
significant increase in CD8+ T cells (86, 87). This was mediated
by enhanced signaling by the cytokines IL-7, IL-15, and IL-21
which stimulate CD8+ T cell production (88, 89). In the absence
of SOCS1, STAT5 was constitutively activated by IL-7 and IL-
15, stimulating pathological generation of CD8+ T cells (79, 86),
which was blunted in both SOCS1−/−IL-7−/− and SOCS1−/−IL-
15−/− mice (36). The excessive IL-15 signaling also impaired
elimination of auto-reactive CD8+ T cells thereby contributing
to autoimmunity (79).

SOCS1 has additionally been shown to control the
polarization of CD4+ T cells toward their various subtypes
(35) (Figure 4). Induction of SOCS1 by IL-4 and IL-6, as
well as by IFN-γ itself, directly inhibits IFN-γ-mediated
STAT1 activation that facilitates Th1 differentiation (34, 90).
Accordingly, deficiency of SOCS1 in CD4+ T cells resulted
in an elevated Th1 response as a direct result of enhanced
IFN-γ signaling, but also indirectly through reduced IL-
6/STAT3-mediated Th1 suppression mediated by enhanced
levels of SOCS3 (87). As a corollary, overexpression of SOCS1
in CD4+ T cells suppressed Th1 differentiation (90). SOCS1
can also inhibit both IL-4-mediated STAT6 activation that
drives Th2 polarization, and IL-12-mediated STAT4 that drives
Th1 polarization, with loss of SOCS1 resulting in enhanced
signaling via both pathways and increased Th cell differentiation
(91). SOCS1−/− IFN-γ−/− knockout mice were skewed
toward a Th2 response, highlighting the role of SOCS1 in the
inhibition of Th2 polarization (92). Loss of SOCS1 in CD4+
T cells additionally suppressed Th17 cell development, with

enhanced IFN-γ signaling antagonizing transforming growth
factor (TGF)-β mediated SMAD activation and also indirectly
blunting IL-6 mediated STAT3 signaling (87). SOCS1 has
been further demonstrated to suppress STAT5 activation in
response to IL-2, providing an alternative mechanism to inhibit
differentiation of Th17 cells (93, 94). SOCS1 is also required for
the maintenance and activity of Foxp3+ regulatory T (Treg) cells
(95). Interestingly several similarities exist between SOCS1−/−

mice and the Treg-deficient scurfy mice, both of which face
premature death 2–3 weeks after birth and display inflammatory
phenotypes associated with increased IFN-γ signals (81, 96).
SOCS1 is highly expressed in Treg cells, but T cell-specific
over expression of SOCS1 was associated with decreased Treg
cells whereas T cell-specific knockout resulted in increased
Tregs in the thymus (97). This was due at least partially to the
ability of SOCS1 to inhibit IL-2-mediated STAT5 activation that
contributes to the proliferation of these cells (97, 98). SOCS1−/−

mice were however deficient in peripheral Treg cells despite the
enhanced thymocyte development, with adoptive transfer of
SOCS1+/+ Treg cells able to reduce inflammation and increase
survival (99). Treg-specific SOCS1 ablation resulted in a loss of
suppressor functions (98). SOCS1−/− Treg cells also showed
hyperactivation of STAT1 and STAT3, enhancing the production
of IFN-γ and IL-17, respectively, with Foxp3 expression rapidly
lost, and these cells converting to Th1- or Th17-like cells (95).
This decrease in Foxp3 expression was rescued by deletion of
IFN-γ, showing that SOCS1 inhibits IFN-γ mediated STAT1
activation that would otherwise suppress Foxp3 expression (95).
In addition, SOCS1 is required in Treg cells to suppress the
IL-12-mediated activation of STAT4, which modifies the Treg
cells into an inflammatory Th1-like cell (34).

SOCS1−/− mice showed altered natural killer T (NKT) cells,
with a decrease in invariant NKT cells but an increased activation
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FIGURE 3 | Mechanisms of SOCS action. Schematic representation of the mechanisms by which SOCS proteins negatively regulate cytokine receptor signaling via

the JAK/STAT pathway. (A) Competitive binding. SOCS proteins bind to phosphorylated tyrosine residues on the cytokine receptor via their SH2 domain, thereby

preventing docking of STAT (and other) proteins and so inhibiting their subsequent activation. (B) Degradation. SOCS proteins bind through their SH2 domains to

(Continued)
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FIGURE 3 | phosphorylated target proteins such as receptor-associated JAK proteins (left) or receptors themselves (right), subsequently assembling components of

the E3 ubiquitin ligase complex: elongins B and C binding to the BC box and Cullin 5 binding to the Cul box located within the SOCS box. Other components of the

complex such as Rbx2 and E2 are assembled through interactions with Cullin 5. Ubiquitin molecules are transferred from the ligase to the target protein substrates,

which signals their degradation along with that of associated proteins within the complex. (C) Inhibition of kinase activity. Both SOCS1 and SOCS3 utilize their SH2

domain to bind to phosphorylated tyrosine residues on either JAKs (left) or receptors (right), respectively. Both then directly inhibit JAK kinase activity via their KIR

domain.

FIGURE 4 | Cytokine mediated differentiation of naïve CD4+ T cells to their various subsets and its regulation by SOCS proteins. Schematic representation of naïve

CD4+ T cell differentiation toward the indicated subtypes and its control by specific cytokines and downstream STAT proteins and their regulation by specific SOCS

proteins. Green arrows indicate stimulation and red lines indicate suppression of developmental pathways, with black arrows delineating SOCS induction.

of conventional NKT cells that supplemented the inflammation
and autoimmunity observed in these mice (84). This was due
to enhanced IFN-γ activation and IL-2 and IL-15 proliferative
signaling (100). NKT cells displayed sustained IFN-γ and IL-4
signaling in the absence of SOCS1, including loss of the cross-
inhibitory action of IFN-γ on IL-4. This resulted in enhanced
NKT cell activation that stimulated inflammation, which could
be alleviated either by removing NKT cells or by deletion
of STAT1 or STAT6 which are activated by IFN-γ and IL-4,
respectively (38).

SOCS1 also influences the differentiation and function of
dendritic cells (DCs) to suppress systemic autoimmunity and
maintain their tolerogenic phenotype. Restoration of SOCS1
expression in T and B cells of SOCS1−/− mice resulted in
accumulation of DCs in the thymus and spleen, and pertubed
activation of these cells due to hyperresponsiveness to IFNγ

and IL-4, which resulted in aberrant B cell expansion and
autoreactive antibody production (101). Autoimmunity in
SOCS1−/− mice was largely mediated by a specific increase in
CD8+ DCs, resulting in increased IFNγ and IL-12 production
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FIGURE 5 | Cytokine mediated differentiation and activation of myeloid cells and its regulation by SOCS proteins. Schematic representation of myeloid cell

differentiation along the indicated lineages, including their subsequent activation as well as its control by specific cytokines and downstream STAT proteins and their

regulation by specific SOCS proteins. Green arrows indicate stimulation and red lines indicate suppression of developmental pathways, with black arrows delineating

SOCS induction.

(102). DCs from SOCS1−/− mice exhibited stronger Th1
responses, also including increased IFNγ production by T
cells (103). The mechanisms by which SOCS1 regulates DC
development remain controversial, but SOCS1 expression
can block GM-CSF-mediated signaling and differentiation
of DCs, with SOCS1 shown to induce the ubiquitin-
mediated degradation of the GM-CSF-R βc subunit (104)
(Figure 5).

SOCS1−/− mice additionally display increased numbers of
eosinophils and macrophages, although this appears to be largely
an indirect effect of aberrant T cells in these mice rather
than impacts on their development per se. SOCS1 is rapidly
induced by Toll-like receptors (TLR) in response to ligands such
as lipopolysaccharide (LPS) and has been found to influence
the activation and subsequent polarization of macrophages
(105). Indeed, SOCS1−/− mice challenged with LPS show
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augmented innate immune responses characterized by enhanced
macrophage activation, including high levels of tumor necrosis
factor (TNF)-α and IL-12 (106, 107). However, the mechanism
of action remains somewhat controversial. Several studies have
indicated that the effect is indirect, with the SOCS1 induced
by TLRs blocking downstream IFNα/β signaling (33, 108). In
contrast, others have shown that SOCS1 can directly negatively
regulate TLR signaling through interactions with various adapter
proteins that such as IL-1 receptor associated kinase (106) and
Mal/TIRAP (109) which are responsible for the induction of
inflammatory genes via NF-κB. Intriguingly, even in the absence
of IFN-γ and STAT1, SOCS1−/− mice were hypersensitive to
LPS, showing that this regulation is at least partially distinct from
the effect of SOCS1 on IFN signaling (106). Either way SOCS1
plays significant immunosuppressive roles in the myeloid lineage
mitigating the development of excessive inflammation (110).

With the strong role of SOCS1 in the regulation of
multiple aspects of immunity, it is perhaps not surprising
that SOCS1 impacts on a variety of inflammatory diseases. T-
and NK-cell specific SOCS1 knockout mice displayed increased
sensitivity to ConA-induced hepatitis, due hyperresponsive of
these cells to IL-2 and IL-15 (100). SOCS1+/− mice and those
with T cell-specific SOCS1 ablation were more susceptible to
experimentally-induced colitis due to enhanced IFNγ/STAT1-
mediated suppression of Treg cells (111). SOCS1−/− mice
also showed enhanced formation of atherosclerotic plaques
due to increased M1 macrophages and neutrophils (112). In
contrast, T cell-specific SOCS1 knockout mice were resistant
to experimental autoimmune encephalomyelitis (EAE) in this
case a result of enhanced IFNγ/STAT1-mediated suppression
of Th17 cells that drive this model of autoimmunity (87).
Moreover, transgenic SOCS1 expression in T cells resulted
in the development of intestinal inflammation (113). Mice
with DC-specific SOCS1 ablation, showed a skewed immune
response to bacterial antigen, with reduced CD8+ T cells and
NK cells but enhanced innate responses (114). Knockdown of
SOCS1 in DCs resulted in reduced susceptibility to Candida
albicans, with increased phagocytosis and killing by DCs (115),
but also increased Th1 cells and elevated serum IFN-γ that
blunted inflammation during late stages of infection (116).
Altered SOCS1 expression has been observed in patients with
systemic lupus erythematosus (117) and rheumatoid arthritis
(118), with SOCS1 polymorphisms demonstrated to predict
severity of the latter disease (119). Recently, heterozygous loss-
of-function germline mutations in SOCS1 have been shown to
be associated with early onset human autoimmune diseases,
with lymphocytes showing hyperactivation concomitant with
increased STAT activation in response to IFN-γ, IL-2, and IL-4
that is reverted with a JAK1/2 inhibitor (120).

SOCS1 has additionally been implicated in a variety of
immune cell malignancies, with silencing of SOCS1 due to
methylation or mutation commonly reported, reflective of the
negative regulatory roles played by SOCS1 in the cytokine-
mediated proliferation, differentiation and survival of immune
cells (121, 122). For example, SOCS1 is frequently methylated
in cases of acute (AML) and chronic myeloid leukemia (CML)
(123–125), which is thought to block the ability of SOCS1 to

negatively regulate JAK2 activity through kinase inhibition (126),
thereby promoting activation of STAT3 and STAT5 which are
major drivers of leukemia development (123). However, SOCS1
deficiency can also impact on therapeutic responses, being
associated with poor outcomes to IFN-α treatment in AML (127).
In CML, SOCS1 is strongly induced by BCR-ABL, but its role
is complex, since it can inhibit both pro-proliferative responses
mediated by IL-3 and IL-6, as well as anti-proliferative responses
to IFNs. In a mouse model, BCR-ABL-dependent growth
was resistant to SOCS1 expression, but a subset of SOCS1-
expressing mice showed extended disease latency or indeed an
absence of disease (128). SOCS1 methylation has also been
observed inmultiplemyeloma, where it correlated with enhanced
STAT3 activation and was associated with poorer prognosis
(129). Loss-of-function somatic mutations of SOCS1 have also
been frequently observed in a range of B cell malignancies.
These include Hodgkin’s lymphoma (130–132), where they are
associated with shorter patient survival (133), SOCS1 deficiency
in this disease correlated with hyperactivation of JAK2 and
downstream STAT6 leading to excessive proliferation (134),
with SOCS1 mutations synergizing with presumed gain-of-
function STAT6 mutations (135). Somatic SOCS1 mutations
have also been commonly found in diffuse large B cell
lymphoma (DLCBL) (131, 136), where they contribute to
unrestrained IL-6 signaling (137). Interestingly, patients with
such mutations responded less well to anti-CD20 therapy
resulting in reduced survival (138). Similar loss-of-function
mutations have been reported in gray zone lymphoma (139),
primary mediastinal B cell lymphoma (PMBCL) (140) and HIV-
associated plasmablastic lymphoma (141). SOCS1 has also been
found to be mutated in malignancies involving other lymphoid
malignancies, including T cell prolymphocytic leukemia (T-PLL)
(142), NK/T cell lymphoma (143), enteropathy-associated T
cell lymphoma (EATL) (144), as well as mycosis fungoides, a
cutaneous T cell lymphoma (CTCL) (145). Indeed, in CTCL cells,
SOCS1 knockdown was shown to increase aggressiveness, with
cooperation seen with activating JAK3 mutations (93).

SOCS2
SOCS2 is strongly activated by and in turn negatively
regulates STAT5 and to a lesser extent STAT6 and STAT3
(146, 147). The negative regulation is principally mediated
by SOCS box-dependent degradation of target substrates
(148), including receptors and downstream signaling molecules
(149). Intriguingly SOCS2 also regulates other SOCS proteins,
particularly SOCS1 and SOCS3 (150, 151), but in a dose-
dependent manner (152). Through this mechanism SOCS2 can
actually indirectly stimulate cytokine-induced STAT activation
by removing the negative regulation mediated by those SOCS
proteins targeted (151). SOCS2 is primarily involved in
regulation of developmental and homeostatic pathways, such
as those mediated by growth hormone, insulin-like growth
factor and prolactin signaling (153, 154). However, more recent
studies have illuminated novel functions of SOCS2 within the
immune system.

SOCS2−/− mice showed no obvious basal defects in T cells
(40, 155–157). However, SOCS2 has been demonstrated to
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influence lymphoid cell activation and polarization (Figure 4). In
the absence of SOCS2, TCR stimulation of CD4+ T cells resulted
in enhanced levels of IL-4, IL-5 and IL-13 thereby stimulating
the differentiation of Th2 cells at the expense of Th17 cells (40).
SOCS2 was also found to be induced by IL-4 and IL-6, with
loss of SOCS2 leading to enhanced activation of STAT5 and
STAT6 in response to IL-2 and IL-4, respectively, but blunted IL-
6-mediated STAT3 activation potentially mediated indirectly by
SOCS1 and SOCS3 which were upregulated in SOCS2−/− mice
(40). Thymic Foxp3+ Treg cells were unaffected in SOCS2−/−

mice, but enhanced IL-4-induced STAT6 peripheral inducible
Treg cells (iTreg) were observed, resulting in increased levels
of inflammatory cytokines such as IL-13 and IFN-γ (156). This
suggests that SOCS2 is required to conserve the intrinsic anti-
inflammatory phenotype of iTreg cells (156).

NK cells were elevated in the bone marrow and spleen of
SOCS2−/− mice (41). This was shown to be a cell autonomous
effect, with SOCS2 able to inhibit IL-15 signaling specifically
through the JAK2/STAT5 pathway, but not the JAK1/STAT3
pathway, mediated via direct interaction with JAK2. This caused
increased NK cell differentiation and although these cells showed
unaltered cytolytic activity and IFNγ secretion, SOCS2−/− mice
showed enhanced resistance to melanoma (41). SOCS2 was also
found to be induced by IL-15 in human NK cells, although in this
case it was found to target phosphorylated proline-rich tyrosine
kinase 2 for proteasomal degradation, leading to enhanced
cytolytic activity and other effector functions, including secretion
of inflammatory cytokines, in these cells (158).

SOCS2 deficiency also impacted on hematopoietic stem cells
(HSCs) (42). In these cells, SOCS2 was induced by IL-3, GM-
CSF, and thrombopoietin (TPO) via STAT5 activation in HSCs,
with proliferation mediated by these cytokines increased in HSC
derived from SOCS2−/− mice. There was also unrestrained
myelopoiesis following bone marrow ablation in these mice,
which leads to exhaustion of long-term HSC (42).

Expression of SOCS2 has been shown to be markedly
increased during maturation of DCs, both mouse (159) and
human (160). Even though its role in DC production is unclear,
SOCS2 is induced by ligands such as LPS and Lipoxin A4 that
signal through TLR4 and TLR2, respectively (161, 162), although
this is probably caused by indirect induction of SOCS2 stimulated
by type 1 IFNs produced in DCs in response to LPS in a unique
autocrine-paracrine loop (161). Indeed, SOCS2 is required for the
propagation of MyD88-dependent and -independent signaling
pathways downstream of TLR4 (160). As a result, in the absence
of SOCS2, LPS induced expression of inflammatory cytokines
such as TNFα, IL1-β, and IL-6 was markedly diminished (160).
However, another study showed SOCS2 suppression in DCs
caused hyperphosphorylation of STAT3 resulting in an increase
in inflammatory cytokines (163). In contrast, SOCS2 did not
influence TLR signaling in mouse macrophages (33).

SOCS2 has been shown to suppress inflammation in a
range of disease models, but the cellular mechanism differs
substantially depending on the model. Thus, in models of atopic
dermatitis and allergen-induced airway inflammation SOCS2−/−

mice showed enhanced allergic responses with increased
IgE, eosinophilia and inflammatory pathology attributable to

increased Th2 responses, which were also seen following
helminth challenge (40). However, in EAE, SOCS2 deficiency
resulted in reduced acute phase damage due to increased Th17
and decreased Th1 and Th2 cells, but exacerbated inflammation
during the late phase of disease, characterized by increased
Th1 cells and decreased Th2 and Treg cells (164). In a
mouse model of cerebral malaria SOCS2−/− mice initially
showed reduced parasitemia, however at late stages they showed
increased parasitemia associated with increased Th1 and Th17
cells and pro-inflammatory cytokines such as IL-6 and IL-
17 with decreased Treg cell activation (165). Interestingly, the
aberration in T cell ratios and abnormal cytokine production
were alleviated when mice were treated with a nitric oxide
synthase (NOS) inhibitor, suggesting a role for SOCS2 in
regulating NO synthesis (165). In comparison, SOCS2−/− mice
showed reduced parasitemia and decreased IFNγ and TNFα
following T. cruzi infection, which was associated with increased
generation of Treg cells but reduced memory T (Tm) cells (166).

SOCS2 has also been implicated in various malignancies
(167, 168), notably including myeloproliferative disorders and
leukemias although this can be both pro- and anti- tumorigenic.
As a major STAT5 target gene, its expression is strongly
increased in a range of myeloproliferative disorders where
STAT5 is activated, including BCR/ABL-induced CML (169)
and JAK2 V617F-induced disease (170). However, SOCS2
has been shown to be dispensable for the induction and
propagation of BCR/ABL-mediated disease (155). In contrast,
it was demonstrated to be a negative regulator of JAK2
V617F and was epigenetically downregulated in MPD patients
(170). Moreover, SOCS2 expression predicted poor outcomes in
pediatric AML (171), while high levels of SOCS2 correlated with
progression for both myeloid and lymphoid leukemias (42). In
this case SOCS2 expression was under the control of themyocyte-
specific enhancer factor 2C and was involved in maintaining the
stemness of the leukemias (42). SOCS2 has also been identified
as a prognostic signature for the development and progression
of AML (172). SOCS2 knockdown reduced growth of AML cells
in vitro and delayed disease upon transplantation into mouse
models, with these cells showing mature myeloid cell markers
(172), suggesting a potential oncogenic role for SOCS2.

SOCS3
SOCS3 is principally induced by cytokines that activate STAT3
via JAK2, such as those that utilize the GP130 subunit [for
example, IL-6, IL-10, and leukemia inhibitory factor (LIF)], or
related receptor chains (G-CSF and leptin) but also by those
that activate STAT1 (such as IFN-γ), and STAT5 [such as
erythropoietin (EPO)] (173). The major mechanism of action
for SOCS3 is through docking to cytokine receptors via its SH2
domain allowing the KIR to inhibit the activity of adjacent
JAKs, but it can also compete with STAT docking and mediate
proteasomal degradation (174, 175). It plays a particularly
important role in immunity and inflammation via its negative
regulation of members of the IL-6 family of cytokines that act via
STAT3, notably including IL-6 and G-CSF (58).

SOCS3−/− mice display embryonic lethality (176, 177),
principally as a result of placental defects caused by excessive
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LIF signaling, with no direct impact on early hematopoiesis
(177, 178). Hematopoietic-specific SOCS3 ablation was able
to overcome these effects but resulted in the development of
a lethal inflammatory disease, characterized by splenomegaly,
pericarditis, hepatitis, and neutrophilia (43). This was largely
a macrophage and neutrophil-driven process, although
non-hematopoietic tissues have also been implicated (179).
Hematopoietic-specific SOCS3 knockout mice display elevated
IL-6 (43), and are highly susceptible to IL-1β-mediated
inflammation leading to rapid mortality (180). IL-6 deficiency
ameliorated the inflammatory disease, including that mediated
by IL-1β (179). SOCS3 ablation prolonged STAT3 activation by
IL-6 (44, 181), but interestingly also resulted in extended STAT1
activation by IL-6, which promoted a IFN-like response, but
IL-10 responses were not surprisingly impacted (181). SOCS3
has been shown to dock directly to the GP130 subunit of the
IL-6R to suppress signaling (182), with mice harboring a specific
mutation at this site (Y759F) displaying similar splenomegaly,
lymphadenopathy, B and T cell defects and autoimmune arthritis
to SOCS3-deficient animals (183), highlighting the key role of
perturbed IL-6R signaling.

SOCS3 knockout did not affect the overall numbers of
CD4+ or CD8+ T cells (45, 184), but SOCS3 is believed to
influence the polarization of T helper cells (Figure 4). SOCS3 is
able to directly block IL-12-mediated STAT4 activation through
competitive binding to STAT4 docking sites on the IL-12Rβ2
subunit (46), with high levels of SOCS3 correlating with reduced
activation of STAT4 by IL-12 that induces the production
of IFN-γ thereby inhibiting Th1 differentiation and favoring
Th2 differentiation (184, 185). Enforced expression of SOCS3
impacted T cell development in the thymus and peripheral
T cell homeostasis through impaired IL-7-mediated signaling
(186), and also inhibited Th cell proliferation (187), presumably
through blocking IL-2 production (188, 189). Despite this, T cell
specific deletion of SOCS3 was found to suppress production
of both Th1 and Th2 cells, as a result of enhanced IL-10
and TGF-β mediated STAT3 activation, producing an anti-
inflammatory response resulting in an increase in regulatory
Th3 and Th17 cells (190). The increased Th17 cells appears to
be due to the loss of negative regulation of IL-23 signaling by
either a feedback loop (45) or by crosstalk from inflammatory
cytokines such as IFN-γ and LIF (191, 192), as well as ablation
of TGF-β-mediated inhibition of IL-6 signaling (193), which
each serve to increase STAT3 activation and thus drive Th17
differentiation. Increased expression of pro-inflammatory genes
by macrophages from SOCS3-deficient mice further supports
Th1 and Th17 differentiation (194). Deletion of SOCS3 in
CD4+ T cells revealed an essential role in maintaining the
expression of costimulatory molecules CD28 and CTLA-4
and for the induction of IL-2 upon TCR stimulation, that
resulted in expansion of Treg cells at the expense of Th17 and
Th1 (184). This is consistent with impaired Treg production
and immune suppressive capabilities leading to defective self-
tolerance following overexpression of SOCS3 in Foxp3+ Treg
cells (195) as well as in SOCS3 transgenic mice (186). Indeed,
SOCS3 was also shown to serve as a negative regulator of Foxp3
expression to directly inhibit Treg function (196). SOCS3 is

also expressed in NKT cells, in response to cytotoxic cytokines
such as IL-10 (197), playing an immunosuppressive role through
regulation of cytokine signaling (198). Finally, SOCS3 expression
in thymic stromal cells has also been demonstrated to be
important for normal T cell development (199).

SOCS3 also plays a role in DCs to regulate their tolerogenic
capabilities. IL-6 was shown to induce the expression of
SOCS3 in DCs, with SOCS3-deficient DCs exhibiting enhanced
STAT3 activation and increased tolerogenic activity compared to
their wildtype counterparts (200). In human DCs, SOCS3 was
shown to induce proteasomal degradation of the key enzyme
indoleamine 2,3-dioxygenase (201), providing an additional
mechanism by which it can suppress tolerogenic activities.

SOCS3 has several important functions within the myeloid
lineage, controlling the differentiation and activation of both
neutrophils and macrophages (Figure 5) (202). In neutrophils,
G-CSF induces SOCS3 via STAT3 activation (203), facilitating
negative feedback regulation to maintain G-CSF signaling at
homeostatic levels (204). SOCS3 binds directly to the activated
G-CSF receptor (G-CSFR) and inhibits signaling through either
suppression of JAK2 activity (58) or by ubiquitination of the
G-CSFR thereby stimulating the rerouting of the receptor
through lysosomes (47). As a consequence, SOCS3−/− mice
exhibit excessive G-CSF signaling resulting in neutrophilia (178).
HSC-specific SOCS3 ablation resulted in increased colony size
in response to G-CSF, whereas neutrophil-specific ablation
resulted in neutrophilia, with enhanced and extended G-
CSF signaling and increased survival (205). Disruption of
SOCS3 in hematopoietic cells also triggered the development of
neutrophilia and inflammatory pathologies in later adulthood,
including infiltration of neutrophils into multiple tissues such
as liver, lung, and muscle tissue accompanied by elevated IL-6
and G-CSF levels. Stimulation of these mice by G-CSF triggered
increased progenitor proliferation and enhanced neutrophilia
and increased formation of both macrophage and neutrophil
colony formation (43). This ultimately resulted in cerebral
infiltration by neutrophils hyperactivated by G-CSF (206).
Surprisingly, G-CSF increased the formation of both neutrophil
and macrophage colonies (43), with the differentiation of
progenitors skewed toward macrophages in response to G-CSF
or IL-6 (207).

Within the macrophage lineage there is evidence that SOCS3
has both pro-inflammatory as well as anti-inflammatory roles.
SOCS3 suppresses the inflammatory activities of macrophages
by providing negative feedback regulation of inflammatory
cytokines such as IL-6, IL-1β, and IL-12, with myeloid-specific
SOCS3 knockouts showing enhanced and prolonged JAK/STAT
signaling, increasing the levels of M1 pro-inflammatory genes
(194). Furthermore, LPS and TNF-α are also able to induce
SOCS3 to provide additional negative regulation of IL-6-
mediated STAT3 activation (208, 209), with bacterial infections
associated with enhanced SOCS3 expression in macrophages,
presumably as an alternative mechanism to suppress their
inflammatory capabilities (210, 211). Hence, it can be predicted
that SOCS3 attenuates STAT3 activation thereby promoting
macrophage activation via positive regulation by TGF-β and IL-
6 (212). Independent of this pathway, knockdown of SOCS3 in
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myeloid cells resulted in an increase in phosphatidyl insotiol-
3-kinase (PI3K)-AKT signaling which is known to suppress
the production of IL-6 and induction of NF-κB, providing an
alternative mechanism for SOCS3 to promote inflammation
(212, 213). However, LPS-induced SOCS3 in macrophages also
indirectly stimulated the induction of inflammatory genes such
as NF-κB, although the mechanism that has not been identified
(213, 214). These opposing effects could be attributed to the
kinetics of STAT3 signaling, and the antagonistic roles of IL-
6 on LPS signaling (211). Lastly, in the absence of SOCS3
the phagocytic abilities of macrophages were found to be
heightened, attributed to enhanced IL-6 and IL-12 signaling
(215, 216). Intriguingly, PI3K-AKT was found to contribute to
the heightened ability of macrophages to undergo phagocytosis
by promoting the cytoskeletal rearrangement required for this
process, with inhibition of PI3K signaling in SOCS3 silenced cells
found to suppress the heighted phagocytic capabilities (217).

A variety of disease models have highlighted critical roles
for SOCS3 in both the development and resolution phases
of inflammation (218). In mouse models of inflammatory
arthritis, SOCS3 deficiency in the hematopoietic compartment
caused more severe joint inflammation associated with elevated
levels of IL-6 and G-CSF, increased neutrophil numbers and
constitutively activated CD4+ T cells and macrophages (180).
Mice with myeloid-specific SOCS3 ablation also develop more
severe EAE (216, 219) and show enhanced LPS induced
sepsis (194) and acute lung injury (220). In addition, they
are susceptible to experimentally-induced aortic dissection
associated with enhanced STAT3 activation in macrophages
and increased inflammation (215). In contrast, CD4+ T cell-
specific SOCS3 ablation provided protection from uveitis due
to an expansion of Treg cells at the expense of Th17 cells
(184). Moreover, acute nephritis was associated with increased
SOCS3 activation that facilitated activation of macrophages
toward a pro-inflammatory M1 phenotype with increased iNOS
production (213). SOCS3 deficiency in either the myeloid or
lymphoid lineage independently increased susceptibility to M.
tuberculosis (202). Ablation of SOCS3 within myeloid cells
resulted in enhanced IL-6 signaling which inhibited the secretion
of TNF-α and IL-12 required to mediate the development of a
robust CD4+ T cell response against the infection (221), as well
as increased production of NOS2 and Arg1, leading to higher
bacterial loads and exacerbated pulmonary inflammation (210).
DC-specific SOCS3 ablation resulted in increased susceptibility
to infection as a result of reduced cross-talk with T cells
(218). Separately, SOCS3 deficiency in lymphoid cells resulted
in an increase in IL-17 secretion during M. tuberculosis
infection, which mediated enhanced neutrophilic inflammation
(221). Hematopoietic-specific SOCS3 deficiency also caused
increased sensitivity to lymphocytic choriomeningitis virus-
mediated lethality (179). Finally, in mice models of inflammatory
arthritis, SOCS3 induction alleviated bone degradation and
significantly suppressed the autoimmune inflammation within
the joints (222).

As a corollary, SOCS3 has also been implicated in specific
human inflammatory diseases. These include inflammatory
bowel disease (IBD) and its more severe phenotype, Crohns

disease (223, 224), with SOCS3 responsible for suppressing the
activation of inflammatory genes induced by STAT3 during IBD
(224). In mice, activation of STAT3 and expression of SOCS3 is
characteristic for the development of IBD and colitis, with SOCS3
acting as a regulatory mechanism to limit pathogenesis, which
is primarily driven through macrophages (225). In addition,
inflamed tissue obtained from IBD patients showed an increase
in classically activated inflammatory macrophages, with a large
majority of these cells displaying an upregulation of SOCS3,
a reflection of the roles played by SOCS3 in macrophage
polarization (212, 213). Indeed, increased SOCS3 expression
predicts mucosal relapse in ulcerative colitis (226). Similarly,
SOCS3 expression in human arthritic chondrocytes contributed
to cartilage damage during arthritis (227, 228).

Due to its role in controlling the activation of the STAT3
oncogene, SOCS3 is typically considered a tumor suppressor
protein, although this is not always the case in immune cancers
(229). Loss of SOCS3 expression, particularly via promoter
methylation, has been identified in a variety of hematopoietic
malignancies. Thus, SOCS3 methylation occured at high
frequency in BCR-ABL-negative chronic myeloproliferative
disease (CMPD) and post-CMPD acute myeloid leukemia (230),
as well as chronic lymphoproliferative disease of NK cells (CLPD-
NK) (231). SOCS3 hypermethylation in multiple myeloma was
associated with drastically shortened patient survival, believed
to be due to enhanced responsiveness to IL-6, a major driver
of this disease (232). SOCS3 expression was also ablated in
Lck LSTRA leukemia, with enforced ectopic expression of
SOCS3 reducing cell proliferation and increasing apoptosis
in Lck-transformed cells (233). Decreased SOCS3 expression
due to methylation was detected in a considerable proportion
of mantle cell lymphoma (MCL) patients, with a trend for
worse outcomes in this cohort. Enforced re-expression of
SOCS3 reduced IL-10-mediated STAT3 activation and increased
apoptosis (234–236). SOCS3 hypermethylation was also common
in idiopathic myelofibrosis, but not other MPDs, although no
significant correlation with survival or other clinical parameters
was found, whereas SOCS3 expression was increased in JAK2
V617F-positive myeloproliferative disorders (MPDs) (234–236).
SOCS3 was consistently down-regulated in CML cell lines and
bone marrow nuclear cells (BMNCs) from CML patients, with
enforced expression inhibiting growth (237). Moreover, in cases
where SOCS3 was expressed, it enhanced cell survival as a
result of BCR-ABL-mediated phosphorylation (238). However,
constitutive SOCS3 expression in CML conferred resistance
to IFNα (239, 240). Similarly, in CTCL constitutive SOCS3
expression was found to play a protective role by blocking
IFN-α mediated growth suppression and differentiation without
impacting STAT3 activation (241). Indeed overexpression of
SOCS3 in the peripheral blood of non-Hodgkin lymphoma
(NHL) patients correlated with advanced disease and a poor
response to treatment (242). In one form of this disease, de novo
follicular lymphoma with t(14;18), SOCS3 expression induced by
overexpressed BCL2 was associated with poor prognosis (243,
244). Ablation of SOCS3 within the myeloid lineage was found
to promote tumor development in mice. This was mediated by
tumor-derived G-CSF driven proliferation of myeloid-derived
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suppressor cells in the tumor microenvironment via STAT3,
which suppressed CD8+ T cell responses against the tumor
(245). Inmicemodels of colitis associated cancer, SOCS3 deletion
in intestinal epithelial cells (IEC) exacerbated the development
of cancer through constitutive STAT3 activation leading to
IEC proliferation (246, 247). Furthermore, downregulation of
SOCS3 was also observed in patients where colitis resulted
in carcinogenesis, suggesting that loss of inhibition on STAT3
promotes the development of cancer during colitis (248).

CISH
CISH is particularly relevant for cytokines that utilize STAT5,
being induced largely by STAT5 and predominantly regulating
STAT5 activation (19). CISH has been suggested to play a variety
of roles outside the immune system, but more recent studies
have identified important roles in the regulation of immune cell
development and function (30, 249). Intriguingly it appears to
serve as a break on both pathological inflammations, as seen in
allergy and arthritis, but also anti-tumor responses (49–51).

CISH participates in T cell development mediated through its
negative regulation of, principally IL-2 signaling through STAT5
and IL-4/IL-13 signaling through STAT6. This was evidenced
from CISH transgenic mice, which showed increased Th2
polarization proposed to be due to suppressive effects of CISH on
IL-2 signaling, including STAT5 activation (250), with CISH able
to bind to the IL-2 receptor β chain component, which blocks
activation of the associated JAK3 (48). A similar mechanism
is likely to explain the heightened embryonic lymphopoiesis
observed following knockdown of the zebrafish CISH paralogue
Cish.a, which also correlated with enhanced STAT5 activation
(251). CISH−/− mice suffered from airway inflammation and
progressively developed a pulmonary disease characterized by
enhanced eosinophils within the airways and epithelial cell
hyperplasia (51). This was due, at least in part, to preferential
differentiation of T cells into Th2 and Th9 subsets through
enhanced IL-4-mediated STAT6 activation, resulting in excessive
production of IL-13 and IL-9 by Th2 and Th9 cells, respectively
(51) (Figure 4). CISH suppressed activation of STAT6 and STAT5
in response to IL-4 and IL-2 respectively, both of which drive
Th9 and Th2 differentiation (51). IL-9 induced CISH expression
in CD4+ T cells but CISH did not significantly effect IL-9
signaling, suggesting that IL-9 stimulates CISH in CD4+ T cells
for crosstalk inhibition of other cytokines such as IL-4 (252).
This contradicted previous studies where CISH overexpression
resulted in elevated Th2 expression, possibly due to differences
in methodology (250). Alternatively, this could also be due to
compensation by other SOCS proteins in response to CISH
ablation, causing an imbalance in Th1/Th2 polarization. Indeed
human Th2 cells have been shown to express markedly more
CISH compared to Th1 cells, supporting a negative regulatory
role (253). Lastly, CISHwas also able to inhibit IFN-γ signaling to
some degree, although this is overshadowed by themuch stronger
effects of SOCS1 in most lineages, especially CD4+ T cells (254).

CISH also plays important roles in regulating the development
of both CD4+ and CD8+ T cells through regulation of T-
cell receptor (TCR) signaling, although there is conflicting data
regarding the mechanism of action. Enforced expression of CISH

in CD4+ T cells markedly increased their proliferation, survival,
and activation. This resulted in enhanced MAP kinase activity
in response to TCR stimulation, suggesting CISH acts as a
positive regulator of TCR signaling, with CISH found to associate
with protein kinase C epsilon as a potential mechanism (255).
However, deletion of CISH in CD8+ T cells increased their
proliferation and activity, including their cytotoxic anti-tumor
capabilities (256). This suggested that CISH instead acts as a
negative regulator of TCR signaling in these cells, proposed to be
mediated by the ability of CISH to degrade the TCR intermediate
protein PLC-γ1 rather than by impacting on STAT5 signaling
(256, 257).

CISH serves a major role in controlling NK cell production
and function, which is mediated by its negative regulation of IL-
15. CISH is induced by IL-15, which strongly activates STAT5,
and then targets IL-15R-associated JAK1 to mediate degradation
of the receptor complex. In the absence of CISH the maturation
and cellular turnover of NK cells in response to IL-15 is enhanced
(258). However, additional mechanisms are present in order to
prevent accumulation of NK cells in the absence of CISH (258).
Despite this, CISH deficient NK cells showed enhanced survival
and expansion even with low concentrations of IL-2 and IL-
15 (259). The hypersensitivity of CISH−/− mice to IL-15 also
enhances the anti-tumor effects of NK cells, suggesting that CISH
plays a more significant role in the effector functions of NK
cells rather than just their differentiation (49). Indeed, in the
absence of CISH, IL-15 stimulated increased cytotoxicity of NK
cells through the secretion of IFN-γ (49, 259). CISH−/− NK
cells additionally displayed enhanced metabolic fitness attributed
to increased mTOR signaling complementing their anti-tumor
activities, highlighting the multiple roles played by CISH in NK
cells (259).

CISH can also influence both DC and macrophage
development, in this case through control of GM-CSF and
IL-3 mediated STAT5 activity (Figure 5). CISH expression
is strongly upregulated during GM-CSF-induced ex vivo
maturation of bone marrow-derived DC which correlated with
high levels of STAT5 activation. Knockdown of CISH in these
cells resulted in increased STAT5 activation and enhanced
production of DC precursors but impaired maturation of type
1 DCs, which showed reduced ability to stimulate cytotoxic
T cells (249). Similarly, in the absence of CISH, GM-CSF
stimulated pathological myeloid cell driven inflammation
through enhanced responses to inflammatory cytokines while
IL-3 stimulated increased myeloid progenitors (50).

CISH has also been implicated in the control of eosinophil
function through regulation of IL-13 and IL-5 signaling. CISH
was induced by IL-13 in lung fibroblasts via STAT6, with CISH
ablation leading to increased expression of chemokines such as
CCL26 in response to IL-13 to enhance eosinophil migration
to the airways (260). Moreover, airway eosinophils expressed
CISH at a higher level compared to peripheral blood eosinophils,
which correlated with their reduced sensitivity to IL-5 signaling
via STAT5 (261), with bone marrow cells from CISH−/− mice
producing more eosinophils in response to IL-5 (50). It is likely
that these effects on eosinophils contributes to the progressive
pulmonary disease observed in CISH−/− mice.
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CISH has been shown to impact on several models of disease.
CISH−/− mice succumbed to experimental allergic asthma at a
higher rate than their wildtype counterparts due to enhanced
airway inflammation (51). Inflammation was also increased
during inflammatory arthritis as well during EAE in CISH−/−

mice (50), which also showed resistance to metastasis of tumor
cells both in vivo and in vitro (49). Finally, a variety of CISH
single nucleotide polymorphisms (SNPs) have been associated
with increased susceptibility to and/or morbidity from a variety
of infectious agents. In particular, CISH SNP-292 (rs414171) has
been frequently associated with an increase in susceptibility to
pathogens such as hepatitis B virus, malaria and tuberculosis
infections (262–264). This SNP reduces the expression of CISH
in response to IL-2 and is presumed to result in enhanced IL-2
signaling (264). However, how this results in reduced immunity
to such a broad range of pathogens remains to be determined.

Other SOCS Proteins
SOCS4–7 havemore pronounced roles outside cytokine signaling
(7), particularly in the regulation of receptor tyrosine kinases that
mediated the effects of hormones such as insulin and growth
factors like epidermal growth factor (EGF) (7).

A specific role for SOCS4 in immune cell development has
not been identified, with SOCS4−/− mice showing no significant
alterations in steady-state immune cell populations (265).
However, these mice were hypersusceptible to influenza virus
infection, with delayed viral clearance, impaired trafficking of
influenza virus-specific CD8+ T cells and a pathological increase
in pro-inflammatory cytokine such as IL-1β and TNF-α, which
resulted in early lethality compared to wild-type counterparts
(265). The viral susceptibility was shown to be mediated by cells
derived from the hematopoietic compartment (265). However,
the SOCS4−/− mice showed no difference in CD8+ memory
T cell generation or their efficient recall during subsequent
infection (266). Furthermore, a recombinant herpes simplex
virus (HSV) expressing SOCS4 caused reduced morbidity and
mortality compared to standard HSV, which was associated with
reduced levels of pro-inflammatory cytokines released mostly by
macrophages during the initial innate immune response (267).
This suggests that SOCS4 negatively regulates the innate immune
response to viral infection to limit the resultant inflammation,
although the mechanism of action remains unclear.

SOCS5 has been shown to be constitutively expressed in
both B and T lymphocytes and demonstrated to regulate
IL-4 signaling in vitro (268). However, SOCS5−/− mice do
not display any significant abnormalities in their lymphoid
compartments including their CD4+/CD8+ ratio (269). Despite
this, SOCS5−/− mice showed heightened susceptibility to
influenza virus infection, with increased viral titres and
heightened pro-inflammatory cytokines particularly IL-6 and G-
CSF, resulting in increased neutrophils and enhanced weight
loss (270). This was mediated predominantly through non-
hematopoietic tissue, with SOCS5 expression in airway epithelial
cells increased following influenza infection. SOCS5−/− mice
showed hallmarks of enhanced EGF signaling, with SOCS5
shown to be able to target both EGF receptor and the
downstream PI3-K subunits, leading to enhanced Akt and

STAT3 activation (270). SOCS5 levels have been found
be decreased in patients suffering from chronic obstructive
pulmonary disorder (COPD) (270), associated with enhanced
levels of pro-inflammatory signaling through cytokines such
as IL-1β and TNF-α (271). Finally, in a mouse model
of allergic conjunctivitis constitutive expression of SOCS5
reduced eosinophil infiltration, possibly due to enhanced IL-4
signaling (268).

There is no evidence of SOCS6 being involved in immune
cell regulation, with SOCS6−/− mice not showing any significant
abnormalities within their immune system (272). However,
there is some evidence that SOCS7 might contribute to
immune cell control, since SOCS7−/− mice displayed different
immune-related phenotypes dependent on their background.
On a C57BL/6 background, SOCS7−/− mice showed a minor
increase in neutrophils with around half succumbing to
hydrocephalus of unknown etiology (273). In contrast, around
half of SOCS7−/− mice on a 129/Sv background developed
a severe cutaneous disease characterized by increased mast
cell activation, upregulation of IgE and IgG, and mast cells
showing increased sensitivity to IgE-induced pro-inflammatory
cytokines (274). The signaling pathways involved remained to
be identified.

THERAPEUTIC APPLICATIONS

Since SOCS proteins play significant roles in the coordination of
the immune system, with functions identified in inflammation
and immune-related malignancies, their modulation has clear
potential for therapeutic intervention. As such, SOCS proteins
in various conformations have been developed with some
showing promise in pure clinical models. For example a mimetic
peptide of the SOCS1 KIR, Tkip has produced efficacious
results in the murine EAE model, with inflammatory phenotypes
reduced upon administration (275). Similar to the naturally
occurring SOCS1, Tkip was found to inhibit IFN-γ signaling
and thereby suppress the effector functions of T-cells, ultimately
compensating for the low levels of SOCS1 and SOCS3 associated
with EAE in mice (275). A different mimetic peptide of SOCS1,
R9-SOCS1-KIR was also able to suppress the development of
experimental autoimmune uveitis (EAU) in mice with topical
administration suppressing the inflammatory activities of IFN-
γ, TNF-α, and IL-17, thereby protecting the mice from ocular
pathologies (276). Other SOCS1 mimetic peptides have also
shown anti-inflammatory effects in mouse models of chronic
intraocular inflammatory disease by suppressing the effects of
pro-inflammatory cytokines toward retinal cells (277). A cell
penetrating SOCS1 (CP-SOCS1) has been found to suppress
the induction of pro-inflammatory cytokines by blocking IFN-
γ signaling (278). Similar to the endogenous SOCS1, CP-SOCS1
inhibited IFN-γ mediated STAT1 phosphorylation by interacting
with IFN-γ pathway components such as JAK2, with the extent
of inhibition being dose dependent (278) A cell penetrating
SOCS3 (CP-SOCS3) was also developed in order to treat acute
liver injury in mice caused by excessive signaling through TNF-
α and IFN-γ and found to suppress inflammation driven by
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inducers such as LPS, limiting the necrosis and apoptosis in
the liver (279). CP-SOCS3 was also found to act in a similar
manner to its endogenous proteins in vitro, although it retained
its inhibitory effects for a much longer period of time compared
to endogenous SOCS3 (280). Furthermore, deletion of the SOCS
box domain in both CP-SOCS1 and CP-SOCS3 further extended
their activities and half-life, providing a much more robust anti-
inflammatory affect compared to their endogenous counterparts
(278, 280).

SOCS proteins have also been shown to impact on immune
responses relevant to inflammatory diseases and cancer, which
has seen applications to immunotherapy approaches. For
example, adoptive transfer of SOCS3-deficient DCs reduced
the severity EAE (200), while in mice models of asthma
this only slightly alleviated the development of immunogenic
tolerance (281). Alternatively, adoptive transfer of SOCS3
deficient macrophages was found to exacerbate the development
of acute lung injury in mice, emphasizing the multifaceted
roles of SOCS3 (220). Lastly, modulation of CISH was
found to be effective in protecting against tumor subtypes
under the control of NK cells (282). SOCS1 ablation in
human DCs was shown to be required to break self-
tolerance in order to induce anti-tumor responses (283),
resulting in enhanced activation of DCs, increased IFN-γ
and enhanced killing by cytotoxic T cells (284, 285). In
addition, treatment with tumor cell-conditioned media was
shown to upregulate SOCS1 to suppress DC maturation
(286). Furthermore, SOCS1 silencing in macrophages also
suppressed tumor development due to enhanced anti-tumor
inflammation (287). In contrast, adenovirus delivery of SOCS1
was shown to enhance T cell-mediated anti-tumor immunity
(288). Combination therapies involving CISH inhibition, and
BRAF as well asMEK inhibitors can extend the anti-tumor effects
to additional subtypes, providing additionally opportunities for
CISH modulation (282).

CONCLUSION

It is evident that SOCS proteins represent an important intrinsic
mechanism for maintaining homeostasis especially within the
immune system. As such it is unavoidable that their dysregulation
significantly affects the delicate and complex processes that
govern immunity leading to a variety of diseases particular
inflammation, autoimmunity and cancer. Hence, it is vital
that the various pathways regulated by SOCS proteins be
identified to better understand the conditions caused due to their
dysregulation. While linear pathways involving one cytokine and
SOCS protein are now well-understood, the complex interplay
between multiple pathways which ultimately controls cellular
responses awaits considerable further attention. Moreover, it is
important to look beyond the initial notions that the influence of
SOCS proteins is merely inhibitory as recent evidence suggests
that SOCS proteins can also have a stimulatory effect on some
pathways. Moreover, the vast majority of studies regarding SOCS
proteins have focused on CISH and SOCS1–3, while SOCS4–
7 have only been studied in a handful of papers. While CISH
and SOCS1–3 are clearly more important with regard to the
immune system, recent studies have shown that SOCS4–7 likely
also contribute, warranting additional studies on these proteins.
Lastly, the targeting of SOCS proteins for therapeutic purposes
continues to show promise. Therefore, there remains much work
to do to fully understand the SOCS proteins and harness them to
fight disease.
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