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Background: Acute renal failure (ARF) is the most common major complication

following cardiac surgery for acute aortic syndrome (AAS) and worsens the postoperative

prognosis. Our aim was to establish a machine learning prediction model for ARF

occurrence in AAS patients.

Methods: We included AAS patient data from nine medical centers (n = 1,637) and

analyzed the incidence of ARF and the risk factors for postoperative ARF. We used data

from six medical centers to compare the performance of four machine learning models

and performed internal validation to identify AAS patients who developed postoperative

ARF. The area under the curve (AUC) of the receiver operating characteristic (ROC) curve

was used to compare the performance of the predictive models. We compared the

performance of the optimal machine learning prediction model with that of traditional

prediction models. Data from three medical centers were used for external validation.

Results: The eXtreme Gradient Boosting (XGBoost) algorithm performed best in the

internal validation process (AUC = 0.82), which was better than both the logistic

regression (LR) prediction model (AUC = 0.77, p < 0.001) and the traditional scoring

systems. Upon external validation, the XGBoost prediction model (AUC =0.81) also

performed better than both the LR prediction model (AUC = 0.75, p = 0.03) and the

traditional scoring systems. We created an online application based on the XGBoost

prediction model.
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Conclusions: We have developed a machine learning model that has better predictive

performance than traditional LR prediction models as well as other existing risk scoring

systems for postoperative ARF. This model can be utilized to provide early warnings when

high-risk patients are found, enabling clinicians to take prompt measures.

Keywords: machine learning, acute renal failure, acute aortic syndrome, prediction model, eXtreme Gradient

Boosting

INTRODUCTION

Acute aortic syndrome (AAS) is a serious and life-threatening
disease process involving the ascending aorta and aortic arch.
Traditionally, surgical intervention is the best way to treat AAS
(1). Acute renal failure (ARF) is an important complication
affecting the prognosis of AAS patients after surgery. This
complication indicates that the patient has a poor prognosis,
and it can increase postoperative mortality and morbidity (2).
While renal replacement therapy (RRT) is a feasible treatment
modality, it is arguablymore important to identify the risk factors
for postoperative ARF and identify potential patients with a
higher likelihood of developing ARF in the postoperative setting.
Some scoring systems already exist for predicting ARF after
cardiac surgery (3–6), but they are usually employed for coronary
artery bypass graft or heart valve surgery. Whether these scoring
systems can be used in AAS-related surgery is unclear.

In recent years, machine learning has become increasingly
widely used in medicine; it can help us process large amounts
of data and find potential data relationships. Multiple excellent
algorithms have been developed in the field of machine learning
so that we can use them to build predictive models.

The main purpose of this study was to establish a predictive
model for the occurrence of ARF in AAS patients after surgery
through machine learning, thereby helping to identify potential
patients who may develop ARF, and compare it with a traditional
logistic regression (LR) prediction model and other scoring
systems. This study followed the recommendations of the
Transparent Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis statement (7).

MATERIALS AND METHODS

Participants
A total of 1,637 AAS patients undergoing surgery and treatment
at nine medical centers in China from January 1, 2015,
to December 31, 2019 were recruited for this study. The
ethics committee of Beijing Anzhen Hospital approved this
retrospective cohort study (No. 2018015; Date: 2018-10-18).
Patients’ written informed consent was waived due to the
retrospective nature of the study. We collected demographic,
surgical, and clinical data with a potential relationship to the renal
function of patients from admission through discharge. Patients
who had renal failure before surgery, incomplete surgical data, or
surgery involving the abdominal aorta and below were excluded.
All patients were diagnosed with Stanford type-A AAS through
aortic computed tomography angiography (CTA) by experienced

imaging specialists and cardiovascular surgeons. The diagnosis of
ARF was established according to the Kidney Disease: Improving
Global Outcomes guidelines (8). Postoperative ARF was defined
as an increase of >3 times or an increase of >4.0 mg/dL (353.6
µmol/L) in postoperative serum creatinine (Scr) or the initiation
of RRT compared to baseline. The estimated glomerular filtration
rate (eGFR) was calculated using the Chronic Kidney Disease
Epidemiology Collaboration formula (CKD-EPI) (9). Surgery
was performed by the surgical team of the medical center at the
time of the patient’s admission.

Surgical Details
Anesthesia was maintained by either total intravenous
anesthetics (propofol and sufentanil) or an inhalational
agent (sevoflurane) with vecuronium bromide. Tranexamic acid
was used for coagulation support. Cardiopulmonary bypass
(CPB) was routinely instituted at 2.2 to 2.5 L/min/m2. When
the lesion involved the aortic arch, arterial cannulation was
performed in the right axillary and/or femoral artery and/or
ascending aorta; venous cannulations were bicaval. Cold blood
cardioplegia for myocardial protection was perfused through
the left and right coronary arteries. If the distal aorta or aortic
arch needed reconstruction, this process was performed under
deep or moderate hypothermia and circulatory arrest. Once the
distal reconstruction was complete, the aortic graft was clamped
proximally. Selective anterograde perfusion was most often
instituted through the innominate arteries. During core cooling,
accompanying cardiac procedures, including aortic valve repair
or replacement, sinus reconstruction, and root replacement, were
performed if necessary. If the lesion involved only the ascending
aorta, arterial cannulation was performed in the ascending aorta;
venous cannulations were bicaval. Subsequently, reconstruction
of the ascending aorta was performed.

Data Pre-processing
For missing data, we used the k-nearest neighbors approach to
fill in missing values (10). By calculating the Euclidean distance
between each case, themissing value was imputed using themean
value from the five nearest neighbors. When the data were in the
range of 0 to 1, most machine learning algorithms had excellent
performance. To improve the performance of machine learning,
we used the method provided by the MinMaxScaler function to
scale the data during data pre-processing.

Statistical Analysis
The description of the data and basic statistical analysis were
performed using IBM SPSS Statistics for Windows Version 25.0.
Continuous variables are expressed as the median (along with
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the first and third quartile values). Categorical variables are
expressed as frequencies (n) with percentages (%). Statistical
analysis of continuous variables was performed using the Mann–
Whitney U test, while categorical variables were analyzed using
the chi-squared test and Fisher’s exact test. The area under the
curve (AUC) of the receiver operating characteristic (ROC) curve
was compared with the machine learning prediction model.
DeLong’s test (11) was used to calculate the P value. A P <

0.05 was considered statistically significant, and all statistical tests
were two-sided.

Establishment of Prediction Model
We used Python for programming and used the scikit-learn
0.22.1 package to build machine learning classifiers (12). The
concise process of establishing and evaluating the prediction
model is shown in Supplementary Figure 1.

The machine learning prediction model used data from 1,637
patients from nine medical centers in China. Among them,
1,318 patient data points from six medical centers in Beijing,
Zhejiang, Shandong, Liaoning and Henan provinces were used
for machine learning training and internal validation. Training
and validation data were divided by ten-fold cross-validation,
each time 90% of the data was used as training data, and 10% of
the data was used as validation data. And 319 patient data points
from three medical centers in Heilongjiang and Guangdong
provinces and Xinjiang Uygur Autonomous Region were used
for external validation of the prediction model. The division of
internal validation and external validation data was determined
by the geographic location of the medical centers. The six
medical centers used for machine learning training and internal
validation were located in central China, and the three medical
centers used for external validation were located in northern,
southern and western China. This division method was suitable
for evaluating the generalization ability of predictive models.

For the selection of machine learning algorithms, we chose
the support vector machine classifier (SVC) linear kernel and
Nu-SVC with the radial basis function kernel in the SVC
algorithm. These are two classic algorithms that use the classifier
with the largest interval in the feature space for classification,
and can perform data classification after linear-range or high-
dimensional mapping. It is still valid when the feature has a
high-dimensional relationship. Among them, SVC uses a linear
algorithm, while Nu-SVC uses a radial basis function. At the same
time, we chose the AdaBoost algorithm (13) and the eXtreme
Gradient Boosting (XGBoost) algorithm (14) in the ensemble
methods, which are popular algorithms in machine learning
classifiers and can combine the predictions of several base
estimators so that they have excellent performance. AdaBoost
integrates multiple basic decision trees, uses misclassified data
points to identify problems, and improves the model by adjusting
the weights of misclassified data points. XGBoost uses negative
gradients to identify problems, and calculates negative gradients
to improve themodel. In addition, we also tested the combination
of two algorithms. This combination uses two independent
algorithms to build prediction models separately, and uses the
results of the two prediction models as features to retrain the new
prediction model, which is also called a stacking algorithm. We

tested the combination of XGBoost + random forest algorithm
and XGBoost+ decision tree algorithm.

Feature Selection
To make the prediction model more accurate, we selected all
demographic characteristics and preoperative clinical data as
the features for machine learning. At the beginning of model
training, all 134 features were used (Supplementary Table 3),
and Shapley additive explanations (SHAP) was used to judge the
importance of each feature. In the machine learning prediction
model, SHAP can analyse the impact of each feature of each
patient on the prediction result (15). Finally, the features that
were considered important in all prediction models were used as
the final features of the machine learning model.

Ten-Fold Cross-Validation
Ten-fold cross-validation is considered a reliable method for
model evaluation and performance improvement (16), and it
was used for parameter adjustment and algorithm comparison.
Since machine learning algorithms usually cannot use training
data as test data, 10-fold cross-validation is generally used to
evaluate machine learning algorithms. Ten-fold cross-validation
can divide the data into 10 parts. The classifier used nine
of them for training, and the remaining part was used for
testing. Ten repetitions constituted a 10-fold cross-validation
(Supplementary Figure 2). The average of 10 test results was
used to evaluate the predictive ability of machine learning
algorithms and parameters.

Each classifier algorithm had many parameter settings, and
the choice of parameters had a great impact on the results of
the classifier. We used the grid-search algorithm and internal
validation data to determine the best parameters for each
classifier algorithm.

The grid-search algorithm used 10-fold cross-validation to
select the parameters of the machine learning algorithm. We
told the grid search algorithm the potential optimal parameter
range of the classifier, and the grid search algorithm used
10-fold cross validation to calculate the predictive ability
of each set of parameters. After the grid-search algorithm
calculated each set of parameter combinations, it told us the
optimal parameter combination. After constantly changing the
parameter range used by the grid search algorithm, the optimal
parameter combination of this machine learning algorithm was
finally obtained.

Similarly, 10-fold cross-validation was used to compare
classifier algorithms. The ROC curve and AUC were calculated
at each validation, and the mean and standard deviation of each
AUC were compared to obtain the optimal classifier algorithm.

Evaluation of Predictive Models
To compare the machine learning prediction model with the
traditional prediction model, we used multivariable LR analysis
to establish an LR prediction model with ARF as the end point.
In addition, the Cleveland scoring system (3), the simplified
renal index (SRI) scoring system (5) and the Leicester scoring
system (6) were selected as representatives of the traditional
prediction model. The endpoints of these three classic scoring
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systems were renal failure and RRT, and they were also scored
for complex surgery. To evaluate the prediction model, we
compared the machine learning prediction model with the four
traditional prediction models. The ROC curve and AUC of
the prediction model were calculated using internal validation
data. The machine learning prediction model used 10-fold cross-
validation to calculate the mean ROC curve and the AUC. In
the external validation, the machine learning predictive model
was trained using internal validation data. Then, we used the
parametric approach based on Platt’s logistic model to calibrate
the probability of the machine learning model (17) and evaluated
the discrimination and calibration of the model by calculating
the Brier score. The trained machine learning prediction model
was compared with the traditional prediction models using
external validation data to evaluate the generalization ability of
the prediction model.

RESULTS

Patient Characteristics
A total of 1,637 patients were enrolled in the study, with 1,318 of
these cases being used for machine learning training and internal
validation. The main characteristics of patients in the internal
validation group are presented in Table 1. The median age of
the patients was 50.0 (42.0–57.0) years; 301 (22.8%) patients
were female.

Incidence and Prognosis of Postoperative
ARF
The incidence of ARF after aortic surgery was 11.5% (151
in 1,318). The prognostic characteristics of the patients are
presented in Supplementary Table 1. Patients with postoperative
ARF had a poor prognosis and had longer ICU stays (204.0
(104.5–308.2) h vs. 43.0 (20.0–112.5) h, P < 0.001) as well as
longer ventilator use times (114.0 (62.0–179.0) h vs. 20.0 (15.0–
48.0) h, P < 0.001). Postoperative ARF may be related to the
use of more blood products and drug infusions. Furthermore,
patients with postoperative ARF had more postoperative
complications (74.8 vs. 34.5%, P < 0.001). Most importantly,
there were significant differences in mortality between patients
with and without ARF (12.6 vs. 0.8%, respectively, P < 0.001).

Risk Factors for Postoperative ARF
As a comparison with machine learning models, we used
traditional statistical methods to analyse all preoperative and
intraoperative factors that either had significant differences or
were clinically believed to be related to ARF and calculated the
risk factors for postoperative ARF. A multivariable binary LR
with the “Forward: LR” method was conducted to determine
the risk factors for postoperative ARF (Table 2). The results
showed that, among the preoperative factors, older age, a higher
pulse rate, emergency surgery, and an increased absolute value
of leukocytes in the preoperative setting were all risk factors. It
was also noted that an increased estimated glomerular filtration
rate (eGFR) and platelet count were protective factors against
postoperative ARF. In the combined analysis of preoperative
and intraoperative factors, in addition to the aforementioned

preoperative factors, longer cardiopulmonary bypass time, lower
rectal temperature when circulatory arrest, and surgery with
circulatory arrest were risk factors for postoperative ARF. We
used preoperative factors to establish an LR prediction model for
the predictive model to have the ability to predict postoperative
ARF of patients before surgery (Table 2).

Machine Learning Prediction Model
Feature Selection

In the initial stage, we built machine learning models using all the
preoperative features and unoptimized parameters. We analyzed
the feature importance of thesemachine learningmodels through
SHAP (15) and finally selected 15 features for building machine
learning prediction models (Table 3).

Among the 15 features used to establish these models,
we collected complete demographic and renal function data.
However, as AAS patients may require emergency surgery,
occasionally, the blood test results were partially missing. We
used the k-nearest neighbors approach to fill in missing values.
Supplementary Table 2 shows the details of missing values.

Internal Validation

Machine learning models were trained using internal validation
data, and the performance of the machine learning models was
evaluated using 10-fold cross-validation. The results showed the
mean ROC curve and AUC of each machine learning model
after 10-fold cross-validation (Figure 1). We found that among
the prediction models established by a single algorithm, the
XGBoost machine learning model performed best (AUC = 0.82,
95% confidence interval (CI): 0.79–0.85), and the combination
of XGBoost and other algorithms did not improve performance
(Supplementary Figure 3); thus, we chose the XGBoost model
as the final machine learning model to evaluate its performance.
This model had 750 gradient boosted trees, the maximum tree
depth was eight, the learning rate was 0.01, the subsample
ratio of columns when constructing each tree was 0.75, and the
subsample ratio of the training instance was 0.68.

Subsequently, the importance of each feature of the XGBoost
model was analyzed by the SHAP method. Figure 2 shows the
results of the feature importance analysis, with more important
features distributed on the top and relatively unimportant
features on the bottom. Most of the characteristics, either
positively or negatively, correlated with the prediction results;
however, activated partial thromboplastin time (APTT), fasting
blood glucose, body mass index (BMI), international normalized
ratio (INR), and alanine aminotransferase (ALT) that were either
too high or too low increased the risk of ARF. At the same time,
we also analyzed the feature importance based on the fitted trees
of the XGBoost model (Supplementary Figure 4), and the result
is similar to the result of SHAP.

We used internal validation data to calculate the ROC curve
and the AUC of the four traditional prediction models (Figure 3)
and found that the XGBoost model (AUC = 0.82, 95% CI: 0.79–
0.85) performed better than the LR prediction model (AUC =

0.77, 95% CI: 0.73–0.81, P<0.001), the Cleveland scoring system
(AUC = 0.73, 95% CI: 0.69–0.77, P<0.001), the SRI scoring
system (AUC = 0.72, 95% CI: 0.68–0.76, P<0.001), and the
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TABLE 1 | Main characteristics of patients in the internal validation groups.

Overall Without ARF Combined ARF P value

Number of patients (cases) 1,318 1,167 151

Gender, female (cases) 301 (22.8%) 269 (23.1%) 32 (21.2%) 0.61

Age (years) 50.0 (42.0–57.0) 49.0 (41.0–57.0) 53.0 (46.0–60.0) < 0.001

Information on admission

Pulse (beats/min) 80.0 (75.0–85.0) 80.0 (75.0–85.0) 80.0 (77.0–88.0) 0.003

Height (cm) 170.0 (166.0–175.0) 170.0 (166.0–175.0) 170.0 (165.0–175.0) 0.06

Weight (kg) 75.0 (65.0–82.4) 75.0 (65.0–83.0) 73.2 (65.0–80.0) 0.62

Body mass index (kg/m2 ) 25.4 (22.9–27.8) 25.4 (22.9–27.8) 25.4 (23.4–28.0) 0.35

Systolic pressure (mmHg) 130.0 (120.0–142.0) 130.0 (120.0–143.0) 129.0 (110.0–140.0) 0.009

Diastolic pressure (mmHg) 78.0 (70.0–84.1) 78.0 (70.0–85.0) 78.0 (70.0–82.0) 0.10

Medical history

Smoking history (cases) 507 (38.5%) 449 (38.5%) 58 (38.4%) 0.99

History of previous cardiac surgery (cases) 107 (8.1%) 98 (8.4%) 9 (6.0%) 0.30

Peripheral vascular disease history (cases) 9 (0.7%) 9 (0.8%) 0 (0.0%) 0.61

Echocardiographic results

Left ventricular ejection fraction (%) 63.0 (60.0–66.0) 63.0 (60.0–66.0) 62.0 (58.0–65.0) 0.21

Preoperative laboratory examination results

Absolute value of leukocytes (109/L) 9.69 (7.00–13.18) 9.30 (6.80–12.90) 12.33 (10.29–15.33) < 0.001

Platelets (109/L) 185.0 (147.0–228.3) 189.0 (150.0–231.0) 158.0 (126.0–201.0) < 0.001

Hemoglobin (g/L) 137.0 (122.0–148.0) 137.0 (123.0–148.0) 136.0 (121.0–144.0) 0.12

CK–MB (ng/mL) 1.88 (0.90–9.30) 1.70 (0.80–8.20) 7.10 (1.60–15.00) < 0.001

Lactate dehydrogenase (U/L) 221.5 (179.0–288.3) 214.0 (176.0–279.0) 277.0 (225.0–332.2) < 0.001

D–dimer (ng/mL) 1,100.0 (270.8–3,269.3) 940.0 (231.0–2,887.0) 3,328.0 (1,120.0–14,485.0) < 0.001

INR 31.9 (28.9–36.5) 31.9 (28.8–36.3) 32.2 (29.5–37.8) 0.02

APTT (s) 48.8 (39.6–60.1) 48.6 (39.5–60.0) 51.4 (40.5–65.1) 0.03

Blood amylase (U/dL) 21.0 (15.0–34.0) 21.0 (15.0–33.0) 27.0 (16.0–45.0) 0.07

ALT (U/mL) 22.0 (18.0–32.0) 22.0 (17.0–30.0) 29.0 (21.0–46.0) 0.005

AST (U/mL) 39.1 (35.6–42.1) 39.2 (35.6–42.2) 38.9 (35.2–40.7) < 0.001

Albumin (g/mL) 78.3 (64.6–99.6) 76.7 (63.9–95.8) 99.7 (78.0–138.6) 0.08

Creatinine (µmol/L) 6.30 (4.99–8.10) 6.10 (4.90–7.78) 8.20 (6.01–10.30) < 0.001

BUN (mmol/mL) 95.0 (73.1–107.1) 97.1 (77.0–108.4) 69.1 (49.0–93.4) < 0.001

eGFR (ml/min/1.73 m2) 6.49 (5.39–7.77) 6.38 (5.30–7.67) 7.26 (6.28–8.48) < 0.001

Fasting blood glucose (mmol/L) 9.69 (7.00–13.18) 9.30 (6.80–12.90) 12.33 (10.29–15.33) < 0.001

Diagnosis

Coronary artery disease (cases) 35 (2.7%) 33 (2.8%) 2 (1.3%) 0.42

Congestive heart failure (cases) 26 (2.0%) 23 (2.0%) 3 (2.0%) 1.00

Chronic respiratory disease (cases) 31 (2.4%) 28 (2.4%) 3 (2.0%) 1.00

Hypertension (cases) 905 (68.7%) 786 (67.4%) 119 (78.8%) 0.004

Diabetes (cases) 62 (4.7%) 54 (4.6%) 8 (5.3%) 0.71

Surgery

Operative duration (min) 405.0 (340.0–479.0) 396.0 (330.0–465.0) 454.6 (390.0–520.0) < 0.001

Emergency surgery (cases) 650 (49.3%) 536 (45.9%) 114 (75.5%) < 0.001

Cardiopulmonary bypass time (min) 186.0 (144.0–224.0) 181.0 (140.0–218.0) 224.0 (188.0–266.0) < 0.001

Aortic cross–clamp time (min) 104.0 (82.6–131.0) 102.0 (80.0–127.0) 125.0 (103.0–149.0) < 0.001

With circulatory arrest (cases) 997 (75.6%) 855 (73.3%) 142 (94.0%) < 0.001

Circulatory arrest time (min) 21.0 (17.4–27.0) 21.0 (17.6–26.6) 21.0 (17.0–27.0) 0.88

Nasopharyngeal temperature when circulatory arrest (◦C) 24.1 (23.1–24.9) 24.1 (23.2–24.9) 23.5 (22.5–24.5) < 0.001

Rectal temperature when circulatory arrest (◦C) 25.6 (24.8–26.7) 25.8 (24.9–26.8) 25.0 (24.0–26.0) < 0.001

RBC transfusion volume (U) 4.00 (0.00–6.00) 3.50 (0.00–6.00) 5.50 (4.00–8.00) < 0.001

INR, international normalized ratio; APTT, activated partial thromboplastin time; ALT, alanine aminotransferase; AST, aspartate transaminase; BUN, blood urea nitrogen; eGFR, estimated

glomerular filtration rate.
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TABLE 2 | Multivariable binary logistic regression results.

Characteristics B Standard error P value OR value OR 95%CI

Preoperative factors only

Age (years) 0.028 0.010 0.003 1.029 1.010–1.048

Absolute value of leukocyte 0.076 0.022 0.001 1.079 1.033–1.127

Pulse (beats/min) 0.021 0.008 0.006 1.021 1.006–1.037

eGFR (ml/min/1.73m2 ) −0.019 0.004 < 0.001 0.982 0.974–0.989

Platelet (109/L) −0.005 0.002 0.003 0.995 0.992–0.998

Emergency surgery 0.779 0.216 < 0.001 2.179 1.426–3.331

Constant −4.207 1.057 < 0.001 0.015

Preoperative and intraoperative factors

Age (years) 0.032 0.010 0.001 1.032 1.012–1.052

Absolute value of leukocyte 0.062 0.023 0.008 1.064 1.017–1.114

Pulse (beats/min) 0.023 0.008 0.004 1.023 1.007–1.039

eGFR (ml/min/1.73m2 ) −0.017 0.004 < 0.001 0.983 0.976–0.991

Platelet (109/L) −0.004 0.002 0.011 0.996 0.993–0.999

Emergency surgery 0.587 0.222 0.008 1.799 1.164–2.781

Cardiopulmonary bypass time (min) 0.006 0.002 < 0.001 1.006 1.003–1.010

Surgery with circulatory arrest 0.875 0.379 0.021 2.400 1.142–5.042

Rectal temperature when circulatory arrest (◦C) −0.129 0.054 0.017 0.879 0.792–0.977

Constant −3.315 1.842 0.072 0.036

eGFR, Estimated Glomerular Filtration Rate.

TABLE 3 | Features used to build machine learning prediction model.

Information on admission

Age (years)

Pulse (beats/min)

BMI (kg/m2)

Diastolic pressure (mmHg)

Echocardiographic results

Left ventricular ejection fraction (%)

Preoperative laboratory examination results

Absolute value of leukocytes (109/L)

Platelets (109/L)

D-dimer (ng/mL)

INR

APTT (s)

ALT (U/mL)

Albumin (g/mL)

eGFR (ml/min/1.73 m2)

Fasting blood glucose (mmol/L)

Surgery

Emergency surgery

BMI, body mass index; INR, international normalized ratio; APTT, activated partial

thromboplastin time; ALT, alanine aminotransferase; eGFR, estimated glomerular

filtration rate.

Leicester scoring system (AUC = 0.72, 95% CI: 0.68–0.77, P <

0.001) (Table 4).

External Validation

The external validation group included 319 patients. The
comparison of the internal and external validation group

characteristics is presented in Table 5. The median of the average
age of patients in the external validation group was 50.0 (16.0)
years. The incidence of ARF after aortic surgery was similar to
that in the internal validation group (11.0 vs. 11.5%, P = 0.807).

After probability calibration, the Brier score of the machine
learning prediction model using the external validation data
was 0.087, which showed that the prediction model had good
discrimination and calibration. Using external validation data for
evaluation, we found that the XGBoost model after probability
calibration (AUC = 0.81, 95% CI: 0.75–0.88) performed better
than the LR prediction model (AUC = 0.75, 95% CI: 0.67–0.83,
P = 0.03), the Cleveland scoring system (AUC = 0.71, 95% CI:
0.63–0.80, P = 0.04), the SRI scoring system (AUC = 0.70, 95%
CI: 0.61–0.79, P = 0.02), and the Leicester scoring system (AUC
= 0.67, 95% CI: 0.59–0.75, P= 0.002) (Table 4).

Finally, to make the XGBoost prediction model easy to
use, we developed an application (https://ljzyal.github.io/ARF/)
for clinical use. The application used a probability-calibrated
XGBoost prediction model, which had the same performance as
the prediction model in external validation. We set the cut-off
value based on the results of external validation. The prediction
model had a sensitivity of 82.9% and a specificity of 67.6%. The
risk calculated by the application increased with the possibility of
postoperative ARF.

DISCUSSION

Factors Influencing Postoperative ARF and
the Role of a Prediction Model
ARF is the end stage of acute kidney injury, and it is the most
common major complication following cardiac surgery (18).
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FIGURE 1 | Mean ROC curve and AUC of machine learning models. This figure depicts the mean ROC curve and AUC of the linear kernel SVC (A), Nu-SVC (B),

AdaBoost (C) and XGBoost (D) using internal validation data (n = 1,318). The blue line represents the mean of each ROC curve after 10-fold cross-validation. The

shaded area is the 95% confidence interval of the mean ROC curve. The other translucent lines are ROC curves for each cross-validation. (E) Comparison of the

mean ROC curves for each algorithm.
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FIGURE 2 | Feature importance analysis. This figure shows the results of the analysis on the importance of the features in the XGBoost model through the SHAP

method. Each feature value of each patient is marked as a dot on the graph. The color of the dot represents the degree of deviation of the feature value from the

overall value according to the ordinate, and purple represents that the feature of the patient is close to the mean of the feature of the overall patient value. The SHAP

value of the dot indicates the influence of the feature on the prediction result. A negative SHAP value indicates that the patient’s risk of ARF is reduced, while a positive

SHAP value indicates that the patient’s risk of ARF is increased.

ARF can lead to poor patient prognosis and is independently
associated with increased morbidity and mortality after cardiac
surgery (19). In this study, the incidence of postoperative ARF
in AAS patients reached 11.5%, and patients with ARF had a
longer ICU length of stay, longer ventilator use time and a
worse prognosis.

The mechanism of ARF after cardiac surgery remains to be
elucidated, and its pathogenesis is currently thought to be related
to renal hypoperfusion, tissue ischaemia-reperfusion injury and
the inflammatory response (20). Previous studies have shown
that risk factors for ARF include female sex, advanced age,
previous heart surgery, chronic obstructive pulmonary disease,
diabetes, complex heart surgery, prolonged cardiopulmonary
bypass, rapid heart rate, emergency surgery, and intraoperative
infusion of 2 or more packed red blood cell (RBC) units (21–
23). In this study, we found that patients with AAS have more

complex risk factors for postoperative ARF. In addition to the
above factors, we found that postoperative ARF was also related
to preoperative leukocyte and platelet counts, which may be
because the occurrence of ARF is related to the inflammatory
response (20). The higher preoperative leukocyte count may
indicate that the inflammatory response caused by AAS is more
serious. This effect may continue to play a role after surgery,
making postoperative ARF more likely to occur. Furthermore,
abnormal blood coagulation is another potential mechanism of
ARF (24). Lower preoperative platelets may be a manifestation
of a hypercoagulable state and intravascular coagulation, which
makes AAS patients with higher preoperative platelet counts less
prone to postoperative ARF.

Early identification of patients with a higher ARF risk can
help clinicians strengthen patient monitoring and take measures
to prevent ARF. Many studies have used risk factors or novel
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FIGURE 3 | ROC curve and AUC of the traditional prediction models with internal validation data. This figure describes the ROC curve and the AUC of the Cleveland

scoring system, the SRI scoring system, the Leicester scoring system and the LR prediction model with internal validation data (n = 1,318).

biomarkers to build prediction models for ARF (3–6, 25). Novel
biomarker-related prediction methods, however, are usually
cumbersome, and no new biomarker has been widely accepted
(25). Currently, the best-performing large-sample model is poor
at predicting ARF after complex surgery (6). Aortic surgery
usually results in a higher incidence of postoperative ARF;
therefore, postoperative ARF prediction methods for complex
heart and aortic surgeries are necessary.

Clinical Applications and Strategies
According to the results of this study, we recommend the
following measures to reduce the occurrence of ARF. Once the
model is used to predict the postoperative risk of ARF, for those
with a low predicted risk, it is recommended to perform surgery
in a timely fashion once the patient is surgically prepared.

For patients with a higher predicted risk of ARF, it is
recommended to attempt to ameliorate the modifiable risk
factors that are included in the prediction model. This could
be achieved by improving preoperative preparations, such as
administering antimicrobials, considering platelet transfusion,

controlling blood glucose levels, maintaining adequate diastolic
blood pressure, and controlling heart rate. In addition, during
the operation, it is recommended to pay more attention to renal
function and to maintain renal perfusion by taking measures to
maintain circulatory stability. In addition to the aforementioned
modifications, intraoperative innovations in surgical methods
should be adopted, which can help reduce the operative and
CPB time.

Additionally, for patients noted to be at a higher risk of ARF,
it is also recommended to use stricter monitoring and more
favorable preventive and treatment measures in perioperative
management, which could include minimizing the use of
nephrotoxic drugs and administering treatment for renal injury
as soon as possible to prevent patients from progressing to ARF.

Features of Machine Learning Prediction
Models
Risk prediction plays an important role in cardiovascular disease
research. As the most commonly used traditional predictive
model, LR sometimes cannot handle complex clinical data
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TABLE 4 | Performance of machine learning prediction model and scoring system.

Prediction methods AUC 95% CI of AUC P value

Internal validation

Machine learning prediction model (XGBoost) 0.82 0.79–0.85

LR prediction model 0.77 0.73–0.81 < 0.001

Cleveland scoring system 0.73 0.69–0.77 < 0.001

SRI scoring system 0.72 0.68–0.76 < 0.001

Leicester scoring system 0.72 0.68–0.77 < 0.001

External validation

Machine learning prediction model (XGBoost) 0.81 0.75–0.88

LR prediction model 0.75 0.67–0.83 0.03

Cleveland scoring system 0.71 0.63–0.80 0.04

SRI scoring system 0.70 0.61–0.79 0.02

Leicester scoring system 0.67 0.59–0.75 0.002

AUC, area under the receiver operating characteristic (ROC) curve; XGBoost, eXtreme Gradient Boosting; LR, logistic regression; SRI, simplified renal index.

The AUC of the ROC curve was compared with a machine learning prediction model (XGBoost), and DeLong’s test was used to calculate the P value.

and thus cannot obtain an ideal predictive model. Conversely,
machine learning can handle complex clinical data and thus
potentially has more advantages (26). In this study, by selecting
AAS as a disease process for focused research, we found that the
performance of machine learning predictive models is better than
that of traditional predictive models. This suggests that machine
learning algorithms are more suitable for building clinical
prediction models and have a higher performance than LR.

In this study, we found that the XGBoost algorithm has the
best prediction performance and still has excellent performance
in external validation. XGBoost is a machine learning algorithm
that uses classification and regression trees as weak classifiers
(14). Compared with other algorithms, the XGBoost algorithm
allows easy adjustment of parameters and can deal with nonlinear
features. It usually has higher sensitivity and specificity when
overfitting is avoided. In most cases, XGBoost has higher
prediction performance than other algorithms (27, 28).

Machine learning algorithms are also suitable for the
construction of other predictive models, which have excellent
performance and can be continuously trained with new data
to have greater potential. After the prediction model is
established, the newly collected data can be used to continue
training, thereby enhancing the generalization ability of the
prediction model.

Machine learning algorithms have been considered a black
box in the past, which is the main disadvantage compared to LR.
However, the SHAP method can explain the machine learning
prediction model. We used the SHAP method to analyse the
importance of particular features in the prediction model. This
method can analyse the impact of each variable on each patient
so the predictionmodel is interpretable. We found that the SHAP
method is effective in determining the importance of particular
individual features.

To compare with LR, all features included in an LR
are also considered important features in machine learning
prediction models. Concurrently, however, the SHAP method

also judges other features, those that are not considered
statistically significant in the LR, as important features. This
possibly results in LR not including certain relevant features,
whereas the SHAP method does not exclude such features.
According to the results of the feature importance analysis,
we can also judge the impact of each variable on the results
to determine the patient’s treatment direction to prevent
postoperative ARF.

Limitations
First, all data for this study were sourced from China. Due to
ethnic differences, the performance of our predictive model in
other countries may decrease. However, our research method
is innovative, and it is feasible to establish such a model in
other countries through this investigational method. Second,
machine learning algorithms are more complex than LR,
and model representation is also very complicated (29). Our
predictive model cannot be similar to LR, and it does not
provide a scoring system for clinicians. We have therefore
developed an online application for convenience. Third, our
machine learning prediction model needs more extensive data
for verification. Finally, although the performance of our
prediction model was better than that of LR, some data were
not involved in the initial data collection, such as detailed
laboratory test results, detailed medical history and detailed
documentation of the use of nephrotoxic drugs. Supervised
machine learning can improve the model after supplementing
these data, and consequently, our predictive model has the
potential to improve.

In summary, our findings suggest that machine learning
prediction models can provide better prediction performance
than traditional LR prediction models and other existing risk
scoring systems for AAS and complex cardiac and aortic
surgeries. This predictive model is helpful for the early detection
of patients with high ARF risk, thus enabling clinicians to take
early measures to prevent and treat ARF.
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TABLE 5 | Comparison of characteristics in the internal and external validation groups.

Internal validation group External validation group P value

Number of patients (cases) 1,318 319

Incidence of postoperative ARF 151 (11.5%) 35 (11.0%) 0.81

Need CRRT treatment (cases) 137 (90.7%) 30 (85.7%) 0.36

Information on admission

Gender, female (cases) 301 (22.8%) 65 (20.4%) 0.34

Age (years) 50.0 (42.0–57.0) 50.0 (43.0–59.0) 0.10

Pulse (beats/min) 80.0 (75.0–85.0) 80.0 (74.0–85.0) 0.62

Height (cm) 170.0 (166.0–175.0) 170.0 (165.0–175.0) 0.59

Weight (kg) 75.0 (65.0–82.4) 74.0 (65.0–83.0) 0.42

Body mass index (kg/m2 ) 25.4 (22.9–27.8) 25.4 (23.1–27.8) 0.71

Systolic pressure (mmHg) 130.0 (120.0–142.0) 135.0 (120.0–160.0) < 0.001

Diastolic pressure (mmHg) 78.0 (70.0–84.1) 80.0 (70.0–95.0) < 0.001

Medical history

Smoking history (cases) 507 (38.5%) 96 (30.1%) 0.005

History of previous cardiac surgery (cases) 107 (8.1%) 20 (6.3%) 0.27

Peripheral vascular disease history (cases) 9 (0.7%) 3 (0.9%) 0.71

Echocardiographic results

Left ventricular ejection fraction (%) 63.0 (60.0–66.0) 61.0 (57.0–66.0) 0.02

Preoperative laboratory examination results

Absolute value of leukocytes (109/L) 9.69 (7.00–13.18) 11.08 (7.78–14.29) < 0.001

Platelets (109/L) 185.0 (147.0–228.3) 184.0 (143.0–236.0) 0.93

Hemoglobin (g/L) 137.0 (122.0–148.0) 134.0 (122.0–147.0) 0.19

CK-MB (ng/mL) 1.88 (0.90–9.30) 3.30 (1.00–11.60) < 0.001

Lactate dehydrogenase (U/L) 221.5 (179.0–288.3) 224.0 (189.0–277.4) 0.32

D-dimer (ng/mL) 1,100.0 (270.8–3,269.3) 715.9 (18.4–4,230.0) < 0.001

INR 31.9 (28.9–36.5) 34.0 (29.1–39.7) 0.39

APTT (s) 48.8 (39.6–60.1) 50.4 (43.0–58.4) < 0.001

Blood amylase (U/dL) 21.0 (15.0–34.0) 23.0 (15.0–36.0) 0.14

ALT (U/mL) 22.0 (18.0–32.0) 22.0 (18.0–33.0) 0.14

AST (U/mL) 39.1 (35.6–42.1) 38.5 (35.0–42.0) 0.56

Albumin (g/mL) 78.3 (64.6–99.6) 80.4 (66.8–101.6) 0.12

Creatinine (µmol/L) 6.30 (4.99–8.10) 6.40 (5.10–8.70) 0.48

BUN (mmol/mL) 95.0 (73.1–107.1) 92.3 (70.4–107.3) 0.05

eGFR (ml/min/1.73 m2) 6.49 (5.39–7.77) 6.63 (5.40–7.65) 0.22

Fasting blood glucose (mmol/L) 9.69 (7.00–13.18) 11.08 (7.78–14.29) 0.94

Diagnosis

Coronary artery disease (cases) 35 (2.7%) 6 (1.9%) 0.43

Congestive heart failure (cases) 26 (2.0%) 1 (0.3%) 0.04

Chronic respiratory disease (cases) 31 (2.4%) 15 (4.7%) 0.02

Hypertension (cases) 905 (68.7%) 216 (67.7%) 0.74

Diabetes (cases) 62 (4.7%) 13 (4.1%) 0.63

Surgery

Operative duration (min) 405.0 (340.0–479.0) 390.0 (321.2–480.0) 0.21

Emergency surgery (cases) 650 (49.3%) 164 (51.4%) 0.50

Cardiopulmonary bypass time (min) 186.0 (144.0–224.0) 184.0 (135.2–236.0) 0.70

Aortic cross-clamp time (min) 104.0 (82.6–131.0) 108.0 (82.0–140.0) 0.13

With circulatory arrest (cases) 997 (75.6%) 223 (69.9%) 0.04

Circulatory arrest time (min) 21.0 (17.4–27.0) 21.2 (17.0–28.0) 0.63

Nasopharyngeal temperature when circulatory arrest (◦C) 24.1 (23.1–24.9) 24.2 (23.0–25.0) 0.32

Rectal temperature when circulatory arrest (◦C) 25.6 (24.8–26.7) 25.8 (24.5–27.0) 0.84

RBC transfusion volume (U) 4.00 (0.00–6.00) 4.00 (2.00–6.00) 0.006

CRRT, continuous renal replacement therapy; INR, international normalized ratio; APTT, activated partial thromboplastin time; ALT, alanine aminotransferase; AST, aspartate transaminase;

BUN, blood urea nitrogen; eGFR, estimated glomerular filtration rate.
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