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The treatment of sickle cell disease (SCD) is mainly supportive, except for a minority, who

receive bone marrow transplantation (BMT). Serum ferritin (SF) is routinely available but

is notoriously unreliable as a tool for iron-overload assessment since it is an acute-phase

reactant. Although blood transfusion is one of the most effective ways to deal with

specific acute and chronic complications of SCD, this strategy is often associated

with alloimmunization, iron overload, and hemolytic reactions. This study, thus, aims

to evaluate iron overload in patients with SCD on chronic blood transfusions and

specifically, correlate SF with the current standard of care of iron-overload assessment

using MRI-based imaging techniques. Amongst a historic cohort of 58 chronically

transfused patients with SCD, we were able to evaluate 44 patients who are currently

alive and had multiple follow-up testing. Their mean age (±SD) was 35 (9) years

and comprised of 68.2% of women. The studied iron-overload parameters included

cardiac T2∗ MRI, liver iron concentration (LIC) by Liver T2∗ MRI, and serial SF levels.

Additionally, in a smaller cohort, we also studied LIC by FerriScan© R2-MRI. Chronic

blood transfusions were necessary for severe vaso-occlusive crisis (VOC) (38.6%), severe

symptomatic anemia (38.6%), past history of stroke (15.9%), and recurrent acute chest

syndrome (6.9%). About 14 (24%) patients among the original cohort died following

SCD-related complications. Among the patients currently receiving chelation, 26 (96%)

are on Deferasirox (DFX) [Jadenu® (24) or Exjade® (2)], with good compliance and

tolerance. However, one patient is still receiving IV deferoxamine (DFO), in view of the

significantly high systemic iron burden. In this evaluable cohort of 44 patients, the mean

SF (±SD) reduced marginally from 4,311 to 4,230 ng/ml, mean Liver T2∗ MRI dropped

from 12 to 10.3 mg/gm dry weight, while the mean cardiac T2∗MRI improved from

36.8 to 39.5ms. There was a mild to moderate correlation between the baseline and

final values of SF ng/ml, r = 0.33, p = 0.01; Cardiac T2∗ MRI ms, r = 0.3, p = 0.02

and Liver T2∗ MRI mg/kg dry weight, r = 0.6, p< 0.001. Overall, there was a positive
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correlation between SF and Liver T2∗ MRI (Pearson’s r = 0.78, p < 0.001). Cardiac

T2∗MRI increased with the decreasing SF concentration, showing a negative correlation

which was statistically significant (Pearson’s r = −0.6, p < 0.001). Furthermore, there

was an excellent correlation between SF ng/ml and LIC by FerriScan© R2-MRI mg/g or

mmol/kg (Spearmen’s rho = −0.723, p <0.008) in a small subset of patients (n = 14)

who underwent the procedure. In conclusion, our study demonstrated a good correlation

between serial SF and LIC by either Liver MRI T2∗ or by FerriScan© R2-MRI, even though

SF is an acute-phase reactant. It also confirms the cardiac sparing effect in patients with

SCD, even with the significant transfusion-related iron burden. About 14 (24%) patients

of the original cohort died over the past 15 years, indicative of a negative impact of iron

overload on disease morbidity and mortality.

Keywords: sickle cell disease, blood transfusion, iron overload, serum ferritin, cardiac T2∗, FerriScan®, MRI

INTRODUCTION

Sickle cell disease (SCD) refers to a group of inherited conditions,
characterized by sickle-shaped red blood cells that precipitate
recurrent episodes of vaso-occlusive episodes (VOC). TheWHO
published a global prevalence map of SCD and other data (http://
www.who.int/genomics/public/Maphaemoglobin.pdf), revealing
that about 20–25 million individuals of health organizations,
worldwide, have homozygous SCD; about 12–15 million in sub-
Saharan Africa, 5–10 million in India and about 3 million
distributed in other parts of the world. It is estimated that
312,000 people with sickle hemoglobin (Hb) are born each year
throughout the world, with the majority of these births (236,000)
in sub-Saharan Africa (1), whilst, in Oman, the sickle cell gene
has an overall prevalence of 6% (2). A yearly increase as the result
of newborn cases is about 120–150 (3). Thus, SCD is a major
public health problem in the Sultanate of Oman, with a high rate
of morbidity and mortality (4–12).

Blood vessel occlusion is a fundamental pathological process
in SCD (13, 14). During VOC, the vessel lumen is blocked
by cells interrupting the capillary blood flow to various organs
and other parts of the body. This precipitates an inflammatory
process that leads to painful crises and damage to the brain, the
liver, the kidneys, the lungs, the spleen, and other vital organs
(15, 16). Painful crises affect virtually all patients with SCD, often
beginning in late infancy and recurring throughout life (17, 18).

High-risk patients with SCD, particularly children, in
accordance with the local and international guidelines, are
treated with periodic on demand or chronic blood/exchange
transfusions (19, 20). This reduces recurrent (21, 22) and initial
stroke by over 80% (23, 24). Unfortunately, it is also associated
with a high rate of complications; including the transmission
of infective agents, iron overload, alloimmunization, and
transfusion reactions (9, 25–27).

Alloimmunization of SCD remains a serious consequence
of blood transfusions that often leads to life-threatening, acute
and delayed transfusion reactions (28–30). Although allo-
immunization in patients with SCD arises mostly due to RBC
antigenic differences, only a subset of these patients develops
RBC allo- or auto-antibodies, in spite of a similar transfusional

background, indicating an underlying inherent genetic
susceptibility. Genome-wide sequencing studies have shown
single nucleotide polymorphisms (SNPs) on Chromosomes 2
and 5 approaching statistical significance with SNPs in CD81
gene, that encodes signal modulation of B lymphocytes, showing
a strong association with alloimmunization and, thus, could
serve as predictive biomarkers for alloimmunization (31).

Current guidelines recommend blood transfusions for
primary and secondary prophylaxis (i.e., stroke) and therapy
(i.e., acute chest syndrome and stroke) (19, 20), with less
conclusive data, for other complications, such as priapism,
VOCs, leg ulcers, pulmonary hypertension, and during
complicated pregnancies (25, 32). Classically, serum ferritin (SF)
and liver biopsy have been used to monitor patients with iron
overload and assess their response to chelation therapy. SF has
the advantage of being widely available, but is an acute-phase
reactant, and does not always correlate with body iron stores
(33). MRI has now emerged as the standard of care for effective
detection and quantification of iron in the heart and the liver.
T2 and T2∗ are two approaches utilized to assess hepatic iron,
based on T2 spine-echo sequences and gradient-echo sequences,
respectively. Due to the increased tissue iron, the inverse of
T2 and T2∗ relaxation rates (R2 and R2∗) are used for the
quantifications of liver iron, as they are reciprocals of T2 and
T2∗, respectively and increases as iron stores increase (34). R
relaxometry FerriScan R© is now an FDA-approved, clinically
validated, and commercially available technique for this purpose,
with multiple T2 echo readings being utilized to calculate
R2. R2∗ provides a more linear correlation with liver iron
concentrations (LICs). Iron deposition in patients with SCD
occurs predominantly in the liver and less so in the heart and the
endocrine organs (35). Hepatic deposition initially accumulates
preferentially in the sinusoidal spaces; however, it generally
follows the traditional pattern of transfusional iron overload,
with parenchymal hepatocyte deposition also occurring early
and even at low LICs (36). It is worth noting that chelation
preferentially removes iron from the reticuloendotheliam (37).
Nevertheless, iron-overload monitoring not only includes
cardiac T2∗MRI but also Liver T2∗MRI as both can be obtained
at the same time.

Frontiers in Medicine | www.frontiersin.org 2 October 2021 | Volume 8 | Article 731102

http://www.who.int/genomics/public/Maphaemoglobin.pdf
http://www.who.int/genomics/public/Maphaemoglobin.pdf
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Alkindi et al. Iron Overload in SCD

TABLE 1 | Patient characteristics.

Baseline (n = 58) Current (n = 44)

Age, mean (+SD), yrs. 30 (9) 35 (9)

Male 21 (36.2) 14 (31.8)

Female 37 (63.8) 30 (68.2)

Genotype, n (%)

SS 53 (91.4) 40 (91)

Sβ+ Thal 5 (8.6) 4 (9)

Transfusions, n (%)

Simple 43 (74) 31 (70)

Exchange 15 (26) 13 (30)

Indication for Transfusions, n (%)

Severe Crisis 24 (41.4) 17 (38.6)

Symptomatic anemia 19 (32.8) 17 (38.6)

H/o of Stroke 9 (15.5) 7 (15.9)

Recurrent ACS 6 (10.3) 3 (6.9)

Chelation, n (%)

DFO 3 (5.1) 1 (2.3)

DFP 2 (6.9) 0 (0)

DFX 44 (75.8) 26 (59)

No chelation 9 (12.2) 17 (38.6)

Chelation dosing, mg/Kg/day

DFO 40 mg/kg/day IV infusion

DFP 75 mg/kg/day in divided doses

DFX 20–40 mg/kg/day, PO

Jadenu 12–28 mg/kg/day, PO

Iron Assessment in the evaluable current patients (n = 44)

Ferritina, ng/ml, n (%) 44 (100) 44 (100)

Mean (+SD), 4,311 (4,030) 4,230 (3,059)

p-value$ 0.9

LICb, mg/gm Dry wt, n (%) 44 (100) 44 (100)

Mean (+SD), 12 (9) 10.3 (7)

p-value$ 0.1

Cardiac T2*MRIc, msec, n (%) 44 (100) 44 (100)

Mean (+SD), 36.8 (17) 39.5 (6)

p-value$ 0.1

FerriScan R2 MRId, mg/g dry

tissue, n (%)

14 (100)

Median (IQR) 36.5 (6.3–43)

FerriScan R2 MRIe, mmol/kg dry

tissue, n (%)

14 (100)

Median (IQR) 658.5 (113–770)

$Paired student’s t-test.
aSF Ref. Range (10–28).
bLIC T2* MRI Ref. Range (0.17–1.8).
cCardiac T2* MRI Ref. Range (>20 msec).
dFerriScan© R2 MRI mg/g dry tissue Ref. Range (0.17–1.8).
eFerriScan© R2 MRI, mmol/kg dry tissue Ref. Range (3.0–33).

DFX, Deferasirox; DFP, Deferiprone; DFO, Deferoxamine (Desferal); IQR, Interquartile

range; msec, milliseconds.

Our study aims to evaluate iron overload in patients with SCD
on chronic blood transfusions and specifically correlate SF with
cardiac T2∗ MRI (CMRTools), Liver T2∗ MRI, as well as LIC by
R2-MRI (FerriScan R©), with its probable impact on mortality.

MATERIALS AND METHODS

In this retrospective cohort study, transfused patients with
sickle cell disease (SCD) were monitored for their iron-overload
status and chelation. The study was initiated after approval
from the institutional medical ethics and review committee.
The indications for transfusions include acute sickle cell-related
complications, or as a part of a chronic exchange transfusion
program, as per local and international guidelines.

Their demographic, clinical, and laboratory data were
obtained from the electronic medical records of the hospital.
Baseline and current demographic information comprised of
SCD diagnosis and subtype, age and gender, and indications for
chronic red cell transfusion.

Serum ferritin (SF) estimations were obtained every 3
months, whereas, Liver T2∗ MRI and Cardiac T2∗ MRI were
performed yearly, in addition to viral activity parameters (i.e.,
Hepatitis viruses, HIV). Almost all of these patients are currently
on Deferasirox (DFX), although a few had earlier received
Deferiprone (DFP) at 75 mg/kg/day in three divided doses
and IV deferoxamine (DFO), especially during their intra-
hospital admissions.

Assessment of iron-overload monitoring parameters included
serial SF, LIC by T2∗MRI, and Cardiac T2∗ MRI, with data
analyzed by the CMRTools software (Cardiovascular Imaging
Solutions, Ltd., London) (38). The LIC was computed by Liver
T2∗ MRI (38), as well as by spin density projection-assisted
R2-MRI (FerriScan, Resonance Health, Australia) (39) in a
smaller cohort, as per their standardized methodologies. Normal

FerriScan© R2-MRI reference range was 0.17–1.8 mg/g dry
tissue, or 3–33 mmol/kg dry tissue (40).

Statistical Analysis
Descriptive analyses including mean, SD, median, interquartile
range (IQR), and 95% confidence intervals (CIs) were used
to describe patient characteristics. Continuous variables were
compared between groups using t-tests or Mann–Whitney U
tests, as appropriate. The relationship of LIC SF was estimated
by Pearson’s or Spearman’s correlation coefficient, as appropriate.
All statistical analyses were performed with Stata12 software
(Stata Corp, College Station, TX) and a P < 0.05 was considered
statistically significant.

RESULTS

Our original cohort included 58 patients with a mean age (±SD)
of 30 (9) years, 21 (36.2%) men, and 37 (63.8%) women. The
majority, 53 (91.4%), had HbSS genotype, whereas, 5 (8.6%)
had Hb Sβ+ Thal (Table 1). Chronic blood transfusions were
indicated for severe vaso-occlusive crisis (VOC) in 24 (41.4%),
severe symptomatic anemia in 19 (32.8%), history of stroke
in nine (15.5%), and recurrent acute chest syndrome in six
(10.3%) patients. Among these 58 patients, the baseline mean
serum ferritin (SF) (±SD) was 4,092 (3,579) ng/ml, mean cardiac
T2∗MRI (±SD) was 39ms (18), whereas mean liver T2∗ MRI
(±SD) was 12 mg/gm dry (9).
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FIGURE 1 | (A,B) Spearmen’s correlation between SF and LIC R2 by FerriScan© as either (A) mg/kg or (B) mmol/kg dry tissue showing that LIC by R2 MRI

(FerriScan© ) improves with decreasing SF concentrations (Spearmen’s rho = −0.723, p < 0.008). SF, serum ferritin; LIC, liver iron concentration.

TABLE 2 | Effect of chelation: progressive change in iron burden with overall, on demand, and regular transfusion subgroups.

Initial serial SF,

ng/ml mean

(±SD)

Final serial SF,

ng/ml mean

(±SD)

Initial LIC T2*

MRI, mg/kg dry

wt. mean (±SD)

Final LIC T2*

MRI, mg/kg dry

wt. mean (±SD)

Initial Cardiac

T2* MRI, ms

mean (±SD)

Final Cardiac T2*

MRI, ms mean

(±SD)

Overall (n = 44) 4,311 (4,030) 4,230 (3,059) 12 (9) 10.3 (7) 36.8 (17) 39.5 (6)

p-value$ 0.9 0.1 0.1

On Demand (n = 31) 4,436 (4,273) 4,389 (2,168) 11 (8) 9.5 (4) 37.5 (17) 39.4 (4)

p-value$ 0.9 0.4 0.6

Regular (n = 13) 4,030 (2,429) 3,875 (3,183) 16 (9) 12.5 (8) 37 (26–47) 40.1 (7)

p-value$ 0.9 0.2 0.1

$Paired Student’s t-test.

In the current evaluable cohort of 44 patients with sickle cell
disease (SCD) (Table 1), the mean SF (±SD) reduced marginally
from a baseline value of 4,311 (4,030) ng/ml to 4,230 (3,059)
ng/ml. Mean LIC (±SD) by Liver T2∗ MRI dropped marginally
from 12 (9) to 10.3 (7) mg/gm dry wt. Mean Cardiac T2∗ MRI
(±SD) improved marginally from 36.8 (17) to 39.5 (6) ms. The
mean time (±SD yrs) between the first and the last examinations
was 3 (±2) years.

Serial SF data analyzed at the time of performing FerriScan R©

iron study on a subset of these patients (n = 14) revealed
a median SF of 2,926 ng/ml, with an interquartile range
(IQR) between 2,119 and 3,676 and showed an excellent
correlation with LIC mmol/kg as well as mg/kg dry tissue
(Spearmen’s rho = 0.723, p < 0.008; Figures 1A,B). Further,

the median LIC by FerriScan© R2-MRI analysis was 36.5
mg/gm dry tissue weight, with an IQR between 6.3 and
43. Alternatively, in terms of mmol/kg of dry tissue weight,

the median LIC was 658.5 with an IQR between 113
and 770.

44 patients are alive and hadmultiple follow-up investigations,
whereas 14 (24%) among the original cohort, have died owing to
SCD-related complications. The mean age (±SD) of this cohort
is 35 (9) years, with a range between 20 and 64 years, comprising
of 30 (68.2%) women (Table 1). Currently, 27 (61.4%) patients
are receiving iron chelation therapy. Among those on chelation,
26 (96%) are receiving Deferasirox (DFX) [Jadenu R© (24), or
Exjade R© (2)], with good compliance and tolerance. However, one
patient still needs parenteral Deferoxamine (DFP) (Desferal R©)
in view of the very high systemic iron burden. The remaining
17 patients currently are not on any chelation therapy but are
followed and monitored regularly, to check the need for the
introduction of chelation. It is our policy to stop chelation
once the SF levels reach below 500 ng/ml on two consecutive
quarterly follow-ups.

Frontiers in Medicine | www.frontiersin.org 4 October 2021 | Volume 8 | Article 731102

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Alkindi et al. Iron Overload in SCD

Table 2 shows the effect of chelation when analyzing the
progressive change in iron burden characterized, as overall,
on demand and regular transfusion subgroups. There were no
statistically significant differences in the serial SF (ng/ml), Liver
T2∗ MRI (mg/kg dry wt.), and cardiac T2∗ MRI (ms), in the
subgroups receiving on demand blood transfusions (n = 31) or
regular transfusions (n= 13).

Table 3 shows the correlation of LIC with serial SF in
specific subgroups characterized by the initial baseline and
final current values when correlated with the three different
levels of LICs. There was no statistically relevant trend in
the Pearson’s correlations between Liver T2∗ MRI (mg/kg dry
wt.) and SF (mg/ml) subgroups characterized by LIC < 7
with SF < 1,500, LIC between 7 and 15 with SF between
1,500 and 2,500, and LIC > 15 with SF > 2,500 among the
initial and final values. However, the only subset that showed
a good correlation was with the lowest SF and LIC levels,
where Pearson’s correlation improved from r = 0.2 to r = 0.86
(p= 0.002).

Figures 2A–C shows a mild to moderate Pearson’s correlation
between the baseline and final values of (A) SF (ng/ml), r = 0.33,
p = 0.01 (B) Cardiac T2∗ MRI (ms), r = 0.3, p = 0.02 and (C)
Liver T2∗ MRI (mg/kg dry weight), r = 0.6, p < 0.001.

Figure 3A shows the percentage distribution of serum SF
(ng/ml) subgroups<1,500, between 1,500 and 2,500, and>2,500,
with respect to the three Liver T2∗ MRI subgroups (mg/kg dry
wt.) <7, between 7 and 15, and >5, respectively.

Figure 3B shows the percentage distribution of Liver T2∗ MRI
(mg/kg dry wt.) subgroups <7, between 7 and 15, and >15
among the initial and final values.

Figure 4A shows a positive correlation between the serial SF
and Liver T2∗ MRI showing that Liver T2∗MRI reduced with
decreasing SF concentration, and this change was statistically
significant (Pearson’s r = 0.78, p < 0.001).

Figure 4B shows that Cardiac T2∗MRI increased with the
decreasing SF concentration, showing a negative correlation,
which was also statistically significant (Pearson’s r = −0.6,
p < 0.001). Importantly, none of these patients had any

TABLE 3 | Effect of chelation: correlation of liver iron concentration (LIC) with serial serum ferritins in specific subgroups, initial baseline values, and final current values.

Initial baseline Median (95%CI) Pearson’s correlation, r p-value

Serial Serum Ferritin subgroups, <1,500 ng/ml 1,206 (540–1,464) 0.2 0.32

LIC by T2* MRI subgrouping, <7 mg/kg dry wt. 4 (2–6.9)

Serial Serum Ferritin subgroups, 1,500–2,500 ng/ml 1,990 (1,776–2,077) 0.4 0.08

LIC by T2* MRI subgrouping, 7–15 mg/kg dry wt. 11 (8–13)

Serial Serum Ferritin subgroups, >2,500 ng/ml 4,573 (2,878–22,244) 0.5 0.06

LIC by T2* MRI subgrouping, >15 mg/kg dry wt. 22 (16–39)

Current/Final

Serial Serum Ferritin subgroups, <1,500 ng/ml 553 (27–1,445) 0.86 0.002

LIC by T2* MRI subgrouping, <7 mg/kg dry wt. 2.1 (1.5–3.8)

Serial Serum Ferritin subgroups, 1,500–2,500 ng/ml 1,674 (1,637–2,256) 0.1 0.6

LIC by T2* MRI subgrouping, <7–15 mg/kg dry wt. 10 (7.8–14.4)

Serial Serum Ferritin subgroups, >2,500 ng/ml 5,365 (2,691–15,083) 0.3 0.2

LIC by T2* MRI subgrouping, >15 mg/kg dry wt. 19 (15.5–28)

CI, Confidence Interval.

FIGURE 2 | (A–C) Pearson’s correlation between baseline and final values of (A) SF ng/ml, r = 0.33, p = 0.01 (B) Cardiac T2* MRI ms, r = 0.3, p = 0.02 and (C) LIC

T2* MRI mg/kg dry weight, r = 0.6, p < 0.001. X-axis represents the baseline levels of respective parameters vs. y-axis which represents the final/current levels of the

same parameter. SF, serum ferritin; LIC: liver iron concentration.
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FIGURE 3 | (A,B) Percentage distribution of (A) LIC subgroups <7, 7–15, >15, mg/kg dry tissue by SF subgroups <1,500, 1,500–2,500 and >2,500 ng/ml and; (B)

LIC subgroups <7, 7–15, >15, mg/kg dry tissue between the initial and final MRI T2*. SF, serum ferritin; LIC: liver iron concentration.

FIGURE 4 | (A,B) Pearson’s correlation between current (A) SF and Liver T2*MRI (positive) r = 0.78; p < 0.001 as well as (B) SF and Cardiac T2*MRI (negative) r =

−0.6; p < 0.001. X-axis represents final/current LIC levels whereas SF and T2* are represented on Y-axis in (A,B), respectively. SF, serum ferritin; LIC, liver

iron concentration.

evidence of cardiac iron overload with the mean cardiac
T2∗ MRI levels of 36.8ms at the initial examination which
improved to 39.5ms in the final examination. Further,
the range of cardiac T2∗ MRI varied from 21 to 54ms,
which was always above the normal reference range of
>20ms (CMRTools software).

Supplementary Figures 1, 2 illustrate the sample images of

FerriScan© R2-MRI and Cardiac T2∗ MRI of a putative patient
showing liver iron overload, but sparing the heart.

Supplementary Figures 3, 4 show sample images of Liver T2∗

MRI and Cardiac MRI T2∗ of a putative patient showing liver
iron overload, but sparing the heart.

DISCUSSION

In 2006, the WHO recognized hemoglobinopathies, including

sickle cell disease (SCD), as a global public health problem

and Oman has a high prevalence of hemoglobin (Hb)

disorders (3) (http://apps.who.int/iris/bitstream/handle/10665/
20890/A59_9-en.pdf?sequence=1&isAllowed=y).

In SCD, blood transfusions remain a critical therapeutic

intervention as it improves the blood flow by reducing the

proportion of red blood cells capable of sickling (25). Further,
the chronic hemolytic state that is characteristic of SCD, with
the release of free heme that quenches nitrous oxide and
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the activation of inflammatory cascades, ultimately results in
hemolysis and endothelial damage (14, 41). Blood transfusions
will not only limit the amount of hemolysis but also prevent
the endothelial damage that results in the high proportions of
sickle polymer-containing red blood cells. Additionally, blood
transfusions will also increase the blood oxygen-carrying capacity
in severe chronic anemia or with severe vaso-occlusive episodes
(VOC). Therefore, blood transfusions are established not only as
a preventive strategy for stroke, especially in patients with high
intracranial blood flow velocity revealed by transcranial Doppler
studies, but also for their therapeutic benefits in a wide variety of
complications, such as VOC, priapism, pulmonary hypertension,
and during complicated pregnancies (25). However, the major
and unavoidable complication of blood transfusions in SCD
is systemic iron overload. In our setup, on demand blood
transfusions accounted for almost two-thirds (70–74%) of these
patients, whereas, regular transfusions were given in less than a
third of these patients (26–30%). This proportion is significant
since it represents the current real-life situation in patients with
SCD who receive chronic blood transfusions.

Repeated transfusions of packed red blood cells (PRBCs) are
currently the simplest and the primary method employed in
chronic transfusion programs (42). However, although apheresis
of RBC (erythrapheresis) is currently the safest and the most
efficient method, it is costly, complicated, and cannot be
implemented everywhere, nor is it suitable for all patients (42).
Therapeutic phlebotomy is an alternate technique that is safe and
well-tolerated, with net iron removal but is currently used only in
patients with SCD who have iron overload and have undergone
bone marrow transplantation (BMT) for SCD (43). We have
used this method in eight of the 58 patients from the original
cohort who underwent BMT. It has given us good results in terms
of managing iron overload in this setting, but three patients in
this cohort expired due to post-BMT complications, while the
remaining five patients are doing well with regular monitoring
of their iron-overload status. Manual exchange transfusions
combined with one or more manual phlebotomies with a PRBC
transfusion is, thus, what we have been practicing in the majority
of our patients on chronic blood transfusions. However, iron
overload is the principal side effect of this therapy.

The utility of the SF alone, while monitoring iron overload
in the chronically transfused patients with SCD is disputable.
This is so because of the propensity of the inflammatory stimulus
that would invariably, falsely elevate SF. However, using serial
SF estimations, performed during steady-state, will help in the
assessment of the true systemic iron-load status as was seen in
our current practice. Routinely performing SF estimations every
quarter, enabled us to ascertain the average SF levels over the year,
and avoided the spikes seen during acute inflammatory states
like VOCs. It, thus, became a reliable tool in the monitoring of
iron-overload status in this cohort as it showed a fairly good
correlation with Liver T2∗ MRI results (Figure 4A). There was
a progressive fall in the percentage of LIC > 15 with a rise in the
LIC < 7 indicative of the progressive improvement in the iron-
overload status over the follow-up years (Figure 3B). Further, in
this cohort, SF levels below 1,500 ng/ml and LIC levels below <7
mg/kg dry wt. showed a good correlation, but SF levels above

1,500 and >2,500 ng/ml were associated with wide variability
in the Liver T2∗ MRI (Table 3, Figure 3A). These findings are
not only consistent with other prior studies (44–46), but also
point to the progress in patient management that historically
did not receive optimal monitoring iron overload (47). Thus,
with the long-term aim of getting the Liver T2∗ MRI below 7
mg/kg, the utility of annual LIC measurement with T2∗ MRI or

FerriScan© R2-MRI, where available, needs to be emphasized,
especially when the SF levels are above 2,500 ng/ml. A significant
reduction in Liver T2∗ MRI between the first and final liver MRI
studies with a greater proportion of LIC below 7 mg/g dry wt.
supports the putative benefit from Liver T2∗ MRI monitoring
(Figure 3B). Further, a clear positive correlation between SF and
Liver T2∗ MRI consolidates this point (Figure 4A, Pearson’s r
= 0.78; p < 0.001). However, ferritin is a poor indicator and
although ferritin is a convenient measure of iron status, ferritin
trends are unable to predict changes in LIC in individual patients
(48). Ferritin trends need to be interpreted in conjunction with
the direct measurement of LIC.

Tissue iron is paramagnetic and increases the MRI relaxation
rates, R2 and T2∗ in a quantifiable manner (32, 39). These
non-invasive iron estimation techniques by MRI have been

validated at several centers (32, 38, 39, 46). Our liver FerriScan©

R2-MRI study on a small subset of patients gave us a comparative
view of the two currently available liver tissue iron estimation

techniques. Further, since the FerriScan© R2-MRI platform
was not available locally, over the years, we have been relying
consistently on the 1.5 TeslaMRI T2∗ technique, after purchasing
a license for the use of the CMRTools software. This certainly
has positively affected the clinical care in our patient population,
with Liver T2∗ MRI helping us tomake the necessary adjustments
in chelation therapy. The results also served to reinforce the
continuation of the current assessment tools to optimize patient
care and monitor the iron overload to address adherence to
chelation therapy and improve management decisions with
increasing familiarity with this technology. Moreover, we have
discontinued iron chelation therapy in 12 patients, as their
SF levels were consistently lower than 500 ng/ml, and they
are meticulously monitored by serial SF levels and Liver
T2∗MRI results. The other five post-BMT patients who are
not on chelation therapy are on periodic phlebotomies with a
progressive decline in the SF and Liver T2∗ MRI levels with
regular follow-up monitoring.

Patients with transfusion-dependent anemia develop fatal
cardiac and endocrine toxicities from iron overload (32, 49).
Further, although blood transfusion therapy is life-saving for
patients with SCD and thalassemia, iron overload (especially
cardiac) has impacted significantly on survival, especially before
the era and availability of chelation therapy (50). However,
there are intrinsic differences between patients with SCD
and thalassaemia in terms of the sites of parenchymal organ
involvement. This is because it is believed that patients
with thalassemia have increased plasma malondialdehyde and
circulating non-transferrin bound iron (NTBI) relative to
patients with SCD, and lower levels of some cytokines
(interleukin 5 and interleukin 10) and γ-tocopherol (36). Thus,
in contrast to hemolytic anemias like Thalassaemia and SCD,
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in patients with Diamond Blackfan syndrome, there is variable
ineffective erythropoiesis, with little or no RBC production. Thus,
iron-related toxicity in this situation results from unutilized iron
from senescent red cells that are not reused and much of it
becomes labile plasma iron and then labile cellular iron, causing
toxic damage (51).

These significant differences also support the hypothesis
that the biology of SCD predominantly shows an increased
inflammation, with elevated interleukin-6 and increased levels of
protective antioxidants compared to patients with thalassemia, in
whomNTBI-related parenchymal damage results in organ failure
(36, 37). Thus, although iron deposition in patients with SCD
generally follows the traditional pattern of transfusional iron
overload, with parenchymal hepatocyte iron overload, optimal
chelation therapy is desirable to offset the continuous iron
deposition in the liver parenchyma. Our study confirmed the role
of iron chelation and monitoring showing the cardiac sparing
effect in patients with SCD, even with significant transfusion
of burden-related systemic tissue iron overload (Table 1 and
Supplementary Figures 1–4). This is further substantiated with
a clear negative correlation between SF and cardiac T2∗MRI
(Pearson’s r = −0.6; p < 0.001, Figure 4B). However, to further
optimize iron chelation, progressive reduction in SF and LIC are
the desirable goals of therapy to bring down the total body iron
burden. We need to pursue this objective in order to reduce the
risk of long-term complications of liver iron overload, namely
liver cirrhosis and carcinoma, which are known to occur in the
long term. Thus, as in the management of Thalassaemia Major,
our aim is to try to further optimize chelation and to achieve not
only a clear heart but also try to get and maintain the LIC below
3 mg/kg dry wt.

Although deferoxamine (DFO) has been historically themajor
iron-chelating therapy of transfusional iron overload, compliance
is a major hindrance in achieving the optimal therapeutic goal.
Further, the availability of oral iron chelation with Deferiprone
(DFP) since 1987 was useful, but showed poor efficacy, when
used alone as compared to DFO. However, Deferasirox (DFX)
became clinically available in 2006 and has been the preferred
method that was adopted in our hospital for chelation therapy.
DFX is the predominately prescribed chelating agent in our
cohort, with occasional use of DFO during hospital admissions.
Due to the small numbers of subjects receiving DFP and DFO,
a direct comparison of the change in the iron burden on
different chelating agents is not possible. Moreover, currently, no
patient is on DFP therapy. Nevertheless, good adherence with
the oral chelator agent correlated with better SF and Liver T2∗

MRI results. This supports the need for routine assessment of
adherence and barricades to it. The success of chelation therapy
is significantly impacted by patient adherence to the prescribed
treatment, and consequently, adjustment of drug schedules for
increasing the adherence to treatment becomes critical (52). Our
patients were fortunate to have been able to receive oral iron
chelation with DFX, as although this is a relatively expensive
treatment, and the patients do need to continue the same over
long periods or indefinitely, they also continue to receive chronic
blood transfusions. This oral iron chelation therapy is completely
free of cost to Omani patients since the treatment cost is borne by

the government healthcare providers. Thus, almost all the current
patients on oral iron chelator are receiving DFX therapy with
good tolerance and compliance. It has been owing to the good
compliance that we were able to take 12 patients off chelation
therapy and they are currently being monitored with periodic SF
levels and T2∗ MRI imaging results.

Limitations of this study include the retrospective data
analysis in this study cohort, who received chronic blood

transfusions for various indications. LIC by FerriScan© R2-MRI
is not widely available, which limits its use as an assessment
platform, and since we did not have it locally, we had to develop
Liver and Cardiac T2∗ MRI technique and get the license for
the use of the CMR tools software to compute LIC T2∗ MRI
and Cardiac T2∗ MRI. The effectiveness of erythrocytapheresis
in preventing or reducing systemic iron loading in patients with
SCD could not be assessed as it was not routinely available at our
center, but it is a technique that can be effectively used in patients
who are on chronic blood transfusion therapy. Phlebotomy has
been useful in the eight patients with SCDwhowere transplanted,
but its use was restricted only to this category of patients. Finally,
mortality was seen in 14 patients (24%) being multifactorial,
could not be assessed to see a direct cause and effect relationship
to the iron overload. Three patients died due to post-BMT
complications while two died with chronic renal failure. The
remaining nine patients died due to multiorgan failure following
sepsis. Certainly, there was a significant background for iron
overload in these patients at the time of death which could have
precipitated the complications that ultimately culminated in the
death of these patients.

In summary, the availability of oral chelation paralleled with
the assessment of iron overload by MRI imaging has improved
the management of iron overload in our population with SCD.
Further, although SF has significant limitations in the assessment
of iron burden when performed repeatedly and in steady-state, it
showed a good statistically significant correlation with LIC and
cardiac iron in patients with SCD. Moreover, it further needs to
be emphasized that these assessment tools are essential for the
optimal management of iron overload. Additionally, judicious
limitation of unnecessary simple transfusion therapy, wherever
possible, and encouraging adherence to chelation therapy are also
important strategies to control iron overload and its associated
clinical consequences.
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