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Purpose: Tear film lipid layer (TFLL) plays a vital role in maintaining the tear film stability

and, thus, the lipid composition of the tears could greatly affect the physiological function

and biophysical integrity of the tear film. The objective of this study is to assess the

tear lipid composition of the patients receiving laser-assisted in situ keratomileusis

(LASIK), femtosecond LASIK (FS-LASIK), or sub-Bowman’s keratomileusis (SBK) surgery

preoperatively and postoperatively.

Methods: Tear samples were collected from the left eye of the patient who receiving

LASIK (n = 10), FS-LASIK (n = 10), or SBK (n = 10) surgery in week 0, week 1,

week 4, and week 52. A rapid direct injection shotgun lipidomics workflow, MS/MSALL

(<2 min/sample), was applied to examine the tear lipidome.

Results: In week 52, the SBK group demonstrated a similar lipidome profile compared

to week 0, while the FS-LASIK and LASIK groups shifted away from week 0. Two lipids,

ganglioside (GD3) 27:4 and triacylglycerol (TAG) 59:3, were found to be associated with

the lipidome changes preoperatively and postoperatively. No statistical significance was

found in the overall lipid classes from the FS-LASIK group. The LASIK group showed

significant alteration in the phospholipid and sphingolipid over time, while the SBK

group demonstrated a significant difference in the (O-acyl)-ω-hydroxy fatty acid (OAHFA)

and phospholipid.

Conclusion: LASIK showed the greatest impact on the tear lipidome changes over time,

while SBK demonstrated minimal impact among the three types of refractive surgeries

after 1 year.

Keywords: lipidomics, refractive surgery, LASIK, FS-LASIK, SBK, PLS-DA

INTRODUCTION

The thin layer of the tear film covers the anterior surface of the cornea and serves the
critical functions in maintaining the proper ocular function and health. Its main roles
include moistening the mucous membrane, nourishing the avascular corneal, flushing out
the contaminants and irritants, and providing a smooth surface for the visual acuity (1, 2).
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It has been proposed that the tear film is composed of three
layers: an inner mucin layer, a middle aqueous layer, and an
outer tear film lipid layer (TFLL). Lam et al. further divided
the lipid layer into two sublayers: the superficial sublayer mainly
consisting of the non-polar lipids and an inner amphiphilic
sublayer facilitating the interaction between the polar and non-
polar components of the tears (3). TFLL is vital for a stable
tear film by preventing the tear film from evaporation (4).
Therefore, the physiological function and biophysical integrity of
the tear film would be greatly affected by the lipid composition.
It was a challenging task to fully evaluate the lipid profile of
the tear samples considering the small amount of the materials
obtained from the humans, the diversity of the lipid species, and
the complexities of the qualitative and quantitative lipidomics
analysis (5). Nevertheless, the lipid composition of the tear
film has been extensively studied (6–8). The high sensitivity
of the mass spectrometry (MS) in analyzing the low sample
volumesmakes it a preferred approach in the biomedical research
to decipher the fine changes of the lipid metabolism in the
ocular and nonocular disorders, for example, Meibomian gland
dysfunction, dry eye syndrome (9), and multiple sclerosis (10).

There are two techniques used for the excimer laser
refractive correction procedures: surface or stromal ablation. The
shallow cornea disruption in the surface ablation procedures
such as photorefractive keratectomy (PRK), laser epithelial
keratomileusis (LASEK), and epithelial laser-assisted in situ
keratomileusis (Epi-LASIK) results in a lower incidence of the
surgery-induced dry eye and provides more stability for the
thinner cornea, implicating the better biomechanical outcomes.
However, greater discomfort caused by the wound response
and delayed vision recovery would still be the major problems
for the surface ablation technique (11, 12). In contrast, the
stromal ablation surgeries such as LASIK, femtosecond LASIK
(FS-LASIK), and sub-Bowman’s keratomileusis (SBK) have the
advantages of essentially immediate vision correction, quick
recovery, and very little to no discomfort (13). These three
types of the refractive surgery use the corneal flap creation
procedure to maintain the integrity of the corneal structures
such as the Bowman’s layer and the epithelium (14). However,
the risk of post-LASIK keratectasia was elevated for the patients
with moderate to high myopia due to the thicker flap (110–
160µm) (15, 16). SBK was developed from LASIK by using
a mechanical microkeratome to create a thinner corneal flap
(90–110µm) and more planar in shape compared with the
conventional LASIK approach (17). This approach is an evolutive
procedure that increased the biomechanical stability of LASIK
and reduced the pain experience of PRK (18, 19). The variation
of the flap thicknesses and flap diameters by using a mechanical
microkeratome in LASIK and SBK approaches was still a
problem, despite their safeness and effectiveness. Corneal flap
creation has become a more predictable and safe procedure with
the introduction of FS-LASIK (20, 21).

Dry eye is a common symptom after LASIK surgery. It is
believed that postsurgical development of the dry eye is closely
related to the surgical cut of the corneal nerve fibers during the
flap creation (22) and associated with the degree of preoperative
myopia and the depth of laser treatment (23). The loss of

the corneal innervation could affect the lacrimal function unit
(LFU) (24), corneal blinking, and blinking of the Meibomian
gland reflexes, resulting in the decreased aqueous and lipid tear
secretion and mucin expression (25). Patel et al. showed that
the tear lipid layer became thinner after LASIK (26). In general,
patients receiving FS-LASIK surgery demonstrated the stable
tear film compared with the mechanical microkeratome group
(27, 28).

Although the tear lipids have been widely studied, a
comprehensive lipidomics study examining the tear lipid profiles
before and after the refractive surgery is still lacking. In this
study, a technique specifically designed for the global lipidomics,
MS/MSALL, was used to assess the tear lipidome prior to and
after the refractive surgery (29–31). This technique collects all the
precursor ions in the Q1 quadrupole and the collision-induced
dissociation is carried out in Q2 quadrupole while collecting
all the high-resolution MS/MS spectra at a high speed (29, 30).
MS/MSALL is highly reproducible, bias free, and requires no
method development (32). Given the important role of TFLL in
maintaining the proper ocular function and easy accessibility of
the tear samples, the tear lipid compositions of the patients taken
FS-LASIK, LASIK, or SBK surgery preoperatively (week 0) and
postoperatively (week 1, week 4, and week 52) were investigated
by using MS/MSALL in this study.

METHODS AND MATERIALS

Sample Collection
The study was approved by the Tianjin Medical University
Institutional Review Board and was conducted according to the
Declaration of Helsinki. The signed consent forms were obtained
from the participating volunteers. The criteria for this study
include: (1) the age of the participants should be over 18 years
old; (2) a stable refractive error in the last 1 year; (3) soft
contact lenses had not been worn for more than 1 week; (4)
rigid contact lenses had not been worn for more than 2 weeks;
(5) no history of eye disease or eye surgery; (6) no systemic
connective tissue disease or autoimmune disease; (7) no other
systemic diseases (such as diabetes, seborrheic dermatitis, or
hyperlipidemia); (8) postoperative corneal stromal bed thickness
was >250µm; and (9) no breastfeeding or pregnancy. All the
patients were explained about the advantages, disadvantages, and
the risk of the three types of surgeries. The type of surgery to
be carried out in each patient was based on the preference of
the patient. Clinical examinations for the patients receiving FS-
LASIK (n = 10), LASIK (n = 10), or SBK (n = 10) surgery
included Schirmer test (without anesthesia), tear breakup time
(TBUT), and corneal fluorescein staining. Corneal staining was
graded from 0 to 5 according to the Oxford schema (33). Tear
samples were collected by using the Schirmer strips from both
the eyes of the patients and the strips were stored at −80◦C
until further analysis. Postregime for all the patients is the same.
Topical medications after surgery consisted of fluorometholone
eye drops four times daily for 1 week and tapered over 4 weeks,
levofloxacin eye drops three times per day for 3 days, and artificial
tears four times daily for 1–3 months depending on the severity
of the postsurgical dry eye symptoms.
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A metal spatula was used to collect the expressed meibum,
which was generated by gentle squeezing the eyelids of the
volunteers. Meibum lipids were eluted by washing the spatula
thoroughly with chloroform and the lipid extracts were subjected
to dry by using a miVac sample concentrator (Genevac,
Ipswich, UK). The dried samples were stored at −80◦C until
further analysis.

Lipid Extraction
The protocol for the lipid extraction was adopted from the
previous work with some modifications (34). The first 15mm
of Schirmer strips were cut into the fine pieces (∼2mm) in
the glass tubes. About 200 µL of methanol containing 50µg/ml
butylated hydroxytoluene (BHT) and 25 ng/ml myristic-d27 acid
were added to the glass tube followed by 600 µL methyl tert-
butyl ester (MTBE). The mixture was then incubated at 20◦C for
30min with a mixing speed of 900 rpm. About 180 µL of water
was added for the phase separation. After thoroughly mixing the
sample, the suspension is centrifuged for 10min at 10◦C with
a speed of 2,000 g. The upper phase containing lipid was then
transferred into a collection vial and dried down.

Direct Injection MS/MSALL Data Acquisition
Lipid extract was reconstituted in 100 µL methanol/chloroform
(2:1, v/v) with 5mM ammonium acetate and the sample was
automatically loaded and directly delivered to the electrospray
ionization (ESI) source by using the ACQUITY UPLC I-Class
System (Waters Corporation, Milford, Massachusetts, USA). The
running buffer was methanol/isopropanol (3:1, v/v) with 5mM
ammonium acetate and the flow rate was 30 µL/min. The
MS/MSALL acquisition experiment was carried out on the SCIEX
TripleTOF 5600 System (SCIEX, Framingham, Massachusetts,
USA) in both the positive and negative polarities for the complete
lipidome coverage. The parameter settings for ESI source
included nebulizing gases (GS1) at 25, heating gases (GS2) at 10,
curtain gas (CUR) at 20, temperature at 250◦C, and ion spray
voltage floating at 5,500V for positive ionization and −4,500V
for negative ionization, respectively. The atmospheric pressure
chemical ionization (APCI) probe and inlet were connected to
an external calibrant delivery system (CDS) delivering the mass
calibration solution for MS and MS/MS. The Analyst R© TF 1.7
software (SCIEX, Framingham, Massachusetts, USA) was used
to acquire the data from MS/MSALL. The mass range for time-
of-flight MS (TOFMS) was from 200 to 1,200 m/z and the
accumulation time was 300ms, followed by 1,000MS/MS spectra
from 200.050 to 1,200.049 m/z in 1 Da steps. The accumulation
time for the product ion scan was 100ms and the collision energy
was set to 50 ± 30 eV for positive polarity and −45 ± 30 eV
for negative polarity, respectively. The total run time for one
MS/MSALL acquisition was <2 min.

Raw Data Processing
The lipid identification and quantitation were performed by
using the LipidViewTM software 1.2 (SCIEX, Framingham,
Massachusetts, USA) with a built-in library containing
glycerolipids, phospholipids, sphingolipids, sterol lipids,
and fatty acyls. A targeted search list for the wax esters was also

TABLE 1 | Characteristics of the patients receiving FS-LASIK, LASIK, or SBK

surgery.

FS-LASIK LASIK SBK p-value

Patients, n 10 10 10 -

Age, years, mean ± SD 21 ± 3 25 ± 5 23 ± 5 0.311

Sex, male, n (%) 5 (50%) 5 (50%) 5 (50%) 1.00

Refractive status

Spherical (mean ± SD) −4.58 ± 1.65 −4.43 ± 1.39 −3.53 ± 1.80 0.311

Cylindrical (mean ± SD) −0.80 ± 0.40 −1.25 ± 0.53 −1.03 ± 1.39 0.142

Clinical examinations

TBUT (s)a 11.30 ± 5.44 10.70 ± 4.11 7.90 ± 2.96 0.186

Schirmer I (mm) 20.60 ± 11.06 15.50 ± 9.82 19.40 ± 10.65 0.534

Corneal staining 0.0 (0.0) 0.0 (0.25) 0.0 (0.25) 0.328

aFS-LASIK, femtosecond laser-assisted in situ keratomileusis; SBK, sub-Bowman’s

keratomileusis; TBUT, tear breakup time.

included. A background subtraction by using the Schirmer strip
and solvent was applied to the sample.

Statistical Analysis
The results are expressed as mean ± SD. Clinical characteristics
were compared among LASIK, FS-LASIK, and SBK participants
by the chi-squared test, a one-way ANOVA, or the Kruskal–
Wallis one-way ANOVA as appropriate. The analysis of the lipids
over the course of time was conducted by using the ANOVA by
R programming (35). The principal component analysis (PCA)
and partial least squares-discriminant analysis (PLS-DA) were
carried out by the MetaboAnalyst 4.0 (Xia Lab@McGill, Quebec,
Canada) (36) and the SIMCA 13.0.3 (Umetrics, Sweden, UK).

RESULTS

Clinical Characteristics of the Patients
Table 1 shows the characteristics of the recruited patients in
this study. There is no significant difference in age, gender,
spherical, cylindrical, TBUT, Schirmer test, or corneal staining
results among LASIK, FS-LASIK and SBK group prior to the
refractive surgery. The assessment of TBUT, Schirmer test, and
corneal staining for the patients receiving FS-LASIK, LASIK,
or SBK surgery in week 0, week 1, week 4, and week 52 was
shown in Figure 1. A significant difference in the corneal staining
was noted in the FS-LASIK group over time. There was also a
significant difference in the Schirmer test for the SBK group.

Lipid Detection by Using MS/MSALL

To demonstrate the reasonable coverage of the lipid species
detected by this ultra-fast MS/MSALL method, several normal
human tears and the meibum samples were evaluated. In
this study, a list of the lipid species detected in the tears or
meibum by using MS/MSALL technique was compared with the
previous publications (3, 5, 37–41) and the result was shown
in Table 2 indicating that this technique is capable of detecting
the major lipid classes. We also found 76 new lipid species
by using MS/MSALL method including (O-acyl)-ω-hydroxy
fatty acids (OAHFAs), wax ester (WE), triacylglycerol (TAG),
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FIGURE 1 | Clinical examination of the patients receiving femtosecond laser-assisted in situ keratomileusis (FS-LASIK), LASIK, and sub-Bowman’s keratomileusis

(SBK) surgery in week 0, week 1, week 4, and week 52, respectively. *p < 0.05, **p < 0.01, ***p < 0.005.

TABLE 2 | Summary of the lipids detected in the tears or meibum by using

MS/MSALL.

Lipid group Lipid classa Ionization

polarity

Number of species

Reported

in tears/

meibumb

Tears Meibum

Fatty acyls OAHFA Negative 74 10 33

WE Positive 65 44 67

Glycerolipids TAG Positive 44 17 0

Glycerophospholipids PE Negative 45 0 1

PI Negative 18 0 1

PC Positive 51 5 0

LPC Positive 13 10 0

Sphingolipids SM Positive 23 9 0

Sterol lipids CE Positive 56 30 40

aOAHFA, (O-acyl)-ω-hydroxy fatty acid; WE, wax ester; TAG, triacylglycerol; PE,

phosphatidylethanolamine; PI, phosphatidylinositol; PC, phosphatidylcholine;

LPC, lysophosphatidylcholine; SM, sphingomyelin; CE, cholesteryl ester; MS,

mass spectrometry.
bBased on work by Butovich (5), Butovich et al. (37), Hancock et al. (39), Chen et al.

(38, 40), Rantamäki et al. (41), and Lam et al. (3) groups.

diacylglycerol (DAG), phosphatidylcholine (PC), phosphatidic
acid (PA), phosphatidylserine (PS), phosphatidylglycerol
(PG), lysophosphatidylcholine (LPC), sphingomyelin (SM),
monosialodihexosylganglioside (GM3), and cholesteryl ester
(CE) (Table 3). In total, around 300 lipid species that are present
in ≥75% of the samples were detected in this study.

Multivariate Analysis of the Lipidomic
Profile
Multivariate analysis including PCA and PLS-DA was applied
in this study to examine the pattern of the lipidomic profiles
over time (week 0, week 1, week 4, and week 52). The tight
cluster of the quality control (QC) samples in PCA score plot
indicated the robustness of our direct injection MS/MSALL data
acquisition platform (Supplementary Figure 1). An overview of
the lipidomic profiles preoperatively and postoperatively from

TABLE 3 | New lipid species detected by using MS/MSALL workflow.

Lipid group Lipid classa Ionization

polarity

Number of

species newly

detected in

tears/meibum

(# = 76)

Fatty acyls OAHFA Negative 13

WE Positive 14

Glycerolipids TAG Positive 9

DAG Positive 1

Glycerophospholipids PE Negative 0

PI Negative 0

PC Positive/Negative 3

PA Negative 11

PS Negative 5

PG Negative 4

LPC Positive 7

Sphingolipids SM Positive 1

GM3 Positive 5

Sterol lipids CE Positive 3

aOAHFA, (O-acyl)-ω-hydroxy fatty acid; WE, wax ester; TAG, triacylglycerol;

DAG, diacylglycerol; PE, phosphatidylethanolamine; PI, phosphatidylinositol;

PC, phosphatidylcholine; PA, phosphatidic acid; PS, phosphatidylserine; PG,

phosphatidylglycerol; LPC, lysophosphatidylcholine; SM, sphingomyelin; GM3,

monosialodihexosylganglioside; CE, cholesteryl ester.

the FS-LASIK, LASIK, and SBK groups was shown in Figure 2 by
using the PLS-DA score plots. There was ample overlap among
week 0, week 1, and week 4 in the FS-LASIK group, implicating
there was no clear difference among these three time points. In
contrast, the lipidomic profiles of the LASIK and SBK groups
in week 1 and 4 were distinctly separated compared to week 0.
Interestingly, an overlap between week 0 and 52 was observed in
the SBK group. On the other hand, the LASIK group showed a
larger difference compared to the FS-LASIK group between week
0 and 52. In addition, the first two components of the PLS-DA
model for the three types of surgeries can only explain ∼20% of
covariance among the different time points. Individual variations
and small sample size might be one reason for this covariance.
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FIGURE 2 | The partial least squares-discriminant analysis (PLS-DA) score plots showing the lipid profiles in week 0, week 1, week 4, and week 52 from the FS-LASIK,

LASIK, and SBK groups, respectively. (A) FS-LASIK; (B) LASIK; (C) SBK. Red circle: week 0; Green circle: week 1; Purple circle: week 4; and Blue circle: week 52.

The above findings revealed that in week 52, the SBK group
demonstrated a similar lipidome profile compared to week 0,
while the FS-LASIK and LASIK groups shifted away fromweek 0.

The loading plot of the PLS-DA model is complementary to
the score plot and summarizes how the lipids relate to each
subgroup. By examining the corresponding loading plot of the
PLS-DA model (Supplementary Figure 2), TAG 59:3 is closely
associated with the FS-LASIK and LASIK groups in week 52. In
addition, GD3 27:4, a disialoganglioside with the three glycosyl
groups, is closely associated with the FS-LASIK and SBK groups
in week 1. Interestingly, this lipid is associated with the lipidomics
profile of the LASIK group in week 4. The levels of these two
lipids in the FS-LASIK, LASIK, and SBK groups preoperatively
and postoperatively were shown in Figure 3.

Comparison of the Lipid Classes and Lipid
Species Among the Refractive Surgeries
The levels of the major lipid classes found in the FS-LASIK,
LASIK, and SBK groups in week 0, week 1, week 4, and week
52 were shown in Figure 4. In this study, the major lipid classes
include OAHFAs, non-polar lipid, phospholipid, sphingolipid,
and lysophospholipid. No statistical significance was found in
the overall lipid classes from the FS-LASIK group. The LASIK
group showed significant alteration in the phospholipid and
sphingolipid over time, while the SBK group demonstrated a
significant difference in the OAHFA and phospholipid.

Individual lipid species belonging to non-polar lipid,
phospholipid, and lysophospholipid in week 0, week 1, week
4, and week 52 were also examined in this study and the
quantitative comparison from the FS-LASIK, LASIK, and
SBK groups was shown in Figure 5. The levels of DAG in
the FS-LASIK and WE in the SBK groups were significantly
changed over time (Figures 5A,C). Most of the difference in the
phospholipids was observed in PC from the LASIK and SBK
groups with statistical significance. No significant change was
detected in lysophospholipid.

DISCUSSION

Tear samples have gained popularity in the investigation of
disease pathogenesis (1), progression (7), and treatment response
(42) due to its quick and non-invasive collection. The content
of tear is a dynamic reflection of the ocular surface and,
therefore, the lipidomic profiling analysis of the tear could
provide information of the physiological, nutritional, and health
status of an individual. A high-resolution MS/MSALL shotgun
lipidomics analysis was applied here to investigate the tear
samples from the patients receiving LASIK, FS-LASIK, or SBK
surgery preoperatively and postoperatively.

In this study, direct injection-based MS shotgun lipidomics
combined with liquid pump and autosampler from liquid
chromatography (LC) with MS to perform the rapid lipidomic
profiling. Comprehensive profiling and quantitation of lipid
species could be achieved by this approach without the front-
end chromatography separation (43). It captured every precursor
ion by high-resolution MS/MS without missing any information.
Therefore, MS/MSALL could obtain quantification information
with no method development required for all the species
in a single analysis. The use of a fully automated sampler
and short run time (around 2min for each sample) makes
high-throughput sample analysis applicable for future clinical
applications. Lastly, this approach allows for the detection of
most lipid species reported in the literature and some new lipid
species, implicating the feasibility of the direct injection based-
MS shotgun lipidomics.

Dry eye after the stromal ablation surgeries is closely related
to the corneal denervation. The stromal and sub-basal nerves are
both severed during the flap creation, except those located at the
flap hinge. As a consequence of the severed nerves, a reduction in
the tear film stability and dry eye symptoms may occur (44). In
this study, we only detected the significant changes in the corneal
staining that results in the FS-LASIK group and the Schirmer test
in the SBK group. Dry eye after the laser corneal refractive surgery
is considered the most common complication with clinical signs
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FIGURE 3 | Box and whisker plots showing the intensity changes over time for GD3 27:4 and triacylglycerol (TAG) 59:3.

such as positive vital staining of the ocular surface, decreased
TBUT and Schirmer test value, reduced corneal sensitivity,
and decreased functional visual acuity (45). However, previous
literature is inconsistent with respect to the tear film stability
after the refractive surgery. Some have reported that TBUT and
Schirmer test value were diminished in both the microkeratome
and femtosecond laser-created flaps (46–49), while others found
no significant changes in TBUT and Schirmer test or noted a
slight but insignificant increase in TBUT (50–53). There is also a
discrepancy in the corneal staining that results after the refractive
surgery. Some research groups observed the elevated corneal
staining after 1 week of the refractive surgery and it recovered
to the baseline levels after 1 month (54, 55). In contrast, Bower

et al. reported significantly higher cornea staining for up to 12
months (56). In this study, corneal staining was elevated in week
1 and almost returned to the preoperative levels in week 52
among all the three types of refractive surgery. The sub-basal
nerves left in the flap will undergo a degenerative process other
than a sudden vanishing after surgery (57, 58). Furthermore,
Wilson suggested that the punctate epithelial erosions after
surgery may be attributed to the neurotrophic epitheliopathy
(50). The creation of the flap by using the microkeratome was
irregular and thick compared with the femtosecond laser (59)
and, thus, more sub-basal nerves were disrupted and undergoing
regeneration after the microkeratome application. The total
number of the sub-basal nerve was reported to be negatively
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FIGURE 4 | Overall tear lipid classes at week 0, week 1, week 4, and week 52 from the FS-LASIK, LASIK, and SBK groups. *p < 0.05, **p < 0.01, ***p < 0.005.

FIGURE 5 | Individual lipid classes found in the FS-LASIK, LASIK, and SBK groups at week 0, week 1, week 4, and week 52, respectively. (A–C) Non-polar lipid;

(D–F) phospholipid; (G–I) lysophospholipid. *p < 0.05, **p < 0.01, ***p < 0.005.
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correlated with corneal staining (60). It could be a possible reason
for the significant changes of the corneal staining overtime in
the FS-LASIK group. Another factor to be considered for this
observation is the difference in suction time. A femtosecond laser
had a longer suction time (∼56 s) compared to laser (∼40 s) and
microkeratome (∼20 s) (61). Therefore, the cells of the ocular
surface including conjunctival goblet cells may have an increased
risk of damage in the FS-LASIK group. In addition, the energy
attenuation property of the femtosecond laser during the flap
creation process may result in the incomplete dissociation of
the corneal flap margin. Lastly, small sample size and individual
variation may also affect the clinical observations in this study.

The SBK group showed higher TBUT and Schirmer test value
in week 52 compared with preoperation, while the FS-LASIK
and LASIK groups had lower TBUT in week 52, implicating the
recovery of the SBK group in week 52. This finding is consistent
with the PLS-DA score plot results, which demonstrated a similar
lipidome profile in week 52 and 0 for the SBK group. The
accordance between the clinical examination and lipidomics
results indicated that the occurrence and development of dry eye
after the refractive surgery are closely related to the lipidome
alteration. The creation of the corneal flap is the most critical
element in LASIK surgery. FS-LASIK performed the corneal flap
creation by using the femtosecond laser, while LASIK and SBK
used a mechanical microkeratome. SBK can create a thinner
corneal flap compared to LASIK and, hence, increase the available
residual stromal bed, preserve corneal tissue, and reduce stromal
nerve damage (62, 63). It has been reported that the femtosecond
laser could directly trigger the apoptosis of the keratocytes and
the corneal flap must be separated bluntly after the application
of the femtosecond laser (64). This additional mechanical flap
dissection might induce an extra injury for the corneal nerve
or tissue cell and, thus, affect the recovery rate. The different
patterns of lipidome among the three types of surgeries might
also be due to the various tissue reactions caused by the laser or
microkeratome application. Zhang et al. found that the corneal
sub-basal nerve fibers repairing in the SBK group were faster
compared to the FS-LASIK group (17). In addition, the anatomy
results of the corneal nerve showed that SBK surgery could
conserve more nerve branches compared to FS-LASIK surgery.
This study indicates that the thinner corneal flap creation might
accelerate the recovery of the lipidomic profile to preoperation
after 1 year compared to the lipidome of the SBK group to the
FS-LASIK and LASIK groups in week 0 and 52, respectively
(Figure 2).

In this study, GD3 27:4 was highly expressed in week 1
compared to week 0 in the LASIK and SBK groups, while the
difference between week 0 and 1 in the FS-LASIK group was not
obvious. This finding was in accordance with the PLS-DA score
plot results that showing the different patterns between week 0
and 1 in the FS-LASIK, LASIK, and SBK groups, respectively.
Gangliosides are a family of acidic glycosphingolipids and GD3
is a minor ganglioside in most normal tissue. Gangliosides
might play a role in the biological processes related to the
retinal physiology and vision disorders involving the loss
of photoreceptors or pathological retinal neovascularization
(65). The expression of GD3 ganglioside increases during the

development and in pathological conditions (66). The 3G5
antigen, a ganglioside, is reported to be a useful marker for the
identification of the corneal keratocytes and for documenting
their response to stress associated with the wound healing (67).
A previous study reported that FS-LASIK and SBK showed a
little more severe keratocyte reaction compared to LASIK after
1–3 months of surgery due to the thinner corneal flap creation
(17). The above observations indicate that the changes of GD3
27:4 levels might be associated with the wound healing after the
refractive surgery.

An increased level of TAG 59:3 in week 52 was observed in the
FS-LASIK and LASIK group compared to week 0, while there was
no obvious change in the SBK group. Similarly, a clear separation
between week 0 and 52 in the FS-LASIK and LASIK groups
was observed, while the lipidomic profile of the SBK group in
week 0 and 52 overlapped as shown in the PLS-DA score plot.
No association was found between TAG 59:3 and the lipidomic
profile of the SBK group in week 52. Chen et al. reported
the upregulated TAGs in the meibum of the patients with dry
eyes (68). Higher TAG has been demonstrated to be related to
the corneal nerve damage in the patients with idiopathic small
fiber neuropathy (69). In addition, it has been reported that the
recovery rate of the corneal sub-basal nerve fibers in the SBK
group was faster compared to the FS-LASIK and LASIK groups
(17). The higher levels of TAG 59:3 observed at week 52 in the
FS-LASIK and LASIK groups suggest that TAG 59:3 might play a
negative role in the corneal sub-basal nerve fiber repairing.

(O-acyl)-ω-hydroxy fatty acid, an amphiphilic component in
tears, plays a role in orienting the molecules at the lipid/water
interface and facilitating the interaction between the polar and
non-polar components of the tears to maintain the tear film
stability (70). Lam et al. reported that the level of OAHFA
was positively correlated with TBUT, reductions in ocular
evaporation rate, and degree of ocular discomfort in the patients
with dry eyes (3, 42). In this study, an obvious decrease of
OAHFA intensity in week 52 was observed, while the intensity at
week 0, week 1, and week 4 did not change much (Figure 4C).
However, an increase of TBUT in week 52 in the SBK groups
was detected (Table 2) showing a discrepancy with the previous
studies (3, 42). The inconsistency between this study and Lam
study might be due to the different cohorts of the patients. Their
findings were based on a cohort of the patients with Meibomian
gland dysfunction, while this study recruited only the patients
with myopia.

The non-polar lipids, including CE, DAG, TAG, and WE,
reside on the surface of an aqueous film and, thus, prevent
the excessive evaporation of the aqueous component in the
tear film. The deficiencies of the non-polar lipids may play
a critical role in the evaporative dry eye (71). We did not
detect any significant changes of the overall non-polar lipids
preoperatively and postoperatively in the three types of refractive
surgery (Figure 4). Only a significant alteration of DAG in
the FS-LASIK group (Figure 5A) and WE in the SBK group
(Figure 5C) was observed when examining the lipid species of
an individual within the non-polar lipids. WEs are a major
component of TFLL and recent studies have shown that WE
film can effectively retard the evaporation of water (72, 73). Lam
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et al. reported a positive correlation between highmolecular mass
of the WEs with unsaturated FA chains and corneal staining,
implying that the alteration of WEs level in the patients with
dry eye syndrome was dependent on their molecular masses and
fatty acyl chain saturation (9). However, different patterns were
observed between the expression levels of WE and TBUT and
Schirmer test in the SBK group. The assessment of overall levels
of WE despite the fatty acyl saturations and molecular mass
in this study might be a possible reason for this observation.
Therefore, further evidence is required to determine the role of
WE prior to and after the refractive surgery.

Phospholipids, accounting for 5–20 mol% of all the lipids in
tears (74), play an essential role in the surface-active behavior
of the meibum-like lipid compositions (75) and, thus, maintain
the function of TFLL. This class of lipid could act as an interface
between the Meibomian oil and the aqueous layer, since it lies
anterior to the aqueous components. The presence of this polar
phospholipid interface is critical to the spreading of the non-
polar lipid film over the aqueous layer (76). Lysophospholipids
were released by the hydrolysis of the phospholipid and this
process was catalyzed by phospholipase A2. We have detected
the significant changes in the phospholipids in the LASIK and
SBK groups. Peters et al. found that TBUT was improved by the
presence of the phospholipids by using a model eye (77). The
trends of TBUT in the LASIK and SBK groups over time are
similar compared to the PCs, which is a major component of
the phospholipid. Those facts implicated that PC is responsible
for the alterations of the overall phospholipids in the LASIK and
SBK groups.

Our study findings must be considered in light of their
limitations. First, a relatively small sample size was assessed
in this study. Most clinical examination characteristics
preoperatively and postoperatively did not achieve the
statistical significance, most likely due to the small sample
size. Furthermore, the inclusion of several time points between
week 4 and 52 would provide more information for the lipidomic
profile changes over time.

In this study, a rapid direct injection shotgun lipidomics
workflow (<2min/sample) was developed to examine the human
tear lipidome from the patients receiving LASIK, FS-LASIK, or
SBK surgery preoperatively and postoperatively (week 0, week
1, week 4, and week 52). The PLS-DA score plots revealed that
the lipidome of the SBK group in week 52 was similar compared
to week 0, while the FS-LASIK and LASIK groups showed
distinct separation between week 0 and 52. Two lipids, TAG
59:3 and GD3 27:4, were found to be associated with the pattern
changes among the FS-LASIK, LASIK, and SBK groups. LASIK
showed the greatest impact on the lipidome changes over time.

SBK demonstrated minimal impact among the three types of the
refractive surgery after 1 year of surgery. Those findings in this
longitudinal study could potentially aid in the understanding of
the impact of the refractive surgery on the stability of the tear film
by examining the human tear lipidome.
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