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Interleukin-33 (IL-33) is a nuclear factor mainly expressed in barrier epithelium, endothelial

cells, and fibroblast reticular cells. Some inflammatory cells also express IL-33 under

certain conditions. The important role of IL-33 in allergic reactions, helminth infection,

cancer, tissue fibrosis, chronic inflammation, organ transplantation, and rheumatic

immune diseases has been extensively studied in recent years. IL-33 primarily activates

various circulating and tissue-resident immune cells, including mast cell, group 2 innate

lymphoid cell (ILC2), regulatory T cell (Treg), T helper 2 cell (Th2), natural killer cell

(NK cell), and macrophage. Therefore, IL-33 plays an immunomodulatory role and

shows pleiotropic activity in different immune microenvironments. The IL-33/serum

stimulation-2 (ST2) axis has been shown to have a detrimental effect on rheumatoid

arthritis, systemic lupus erythematosus, and other rheumatic diseases. Interestingly, IL-

33 also plays a protective role in the repair of barrier epithelium and the activation of

Tregs. Therefore, the role of IL-33/ST2 depends on the underlying pathological conditions

in rheumatic diseases. This review focuses on the dual role of the IL-33/ST2 axis in

rheumatic diseases.
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INTRODUCTION

Interleukin-33 (IL-33), a member of the IL-1 family, was first discovered in human tissues in 2003
and was originally defined as a nuclear factor of high endothelial venules (NF-HEV) (1). In 2005,
Schmitz et al. reported that the C-terminal (amino acids from 112 to 270) of NF-HEV exhibited
an IL-1-like three-dimensional folding and induced a type 2 immune response through binding
to its receptor serum stimulation-2 (ST2) (2). In 2006, the identity between IL-33 and NF-HEV
and its role as a chromatin-related nuclear factor was further confirmed (3). IL-33 is produced
by various cell types such as endothelial cells, epithelial cells, macrophages, fibroblasts, adipose
progenitor cells, and dendritic cells. Under conditions of cell damage, necrosis, necroptosis, stress,
and virus infection, it is released as a pro-inflammatory factor and activates different types of
immune cells (4–7). The role of IL-33 in type 2 immune diseases has been extensively studied
in allergic reactions, asthma, and parasitic infections (6). However, it is well-known that HEV
is involved in the activation and mobilization of lymphocytes, indicating that IL-33 may also be
involved in chronic inflammation (8, 9). Rheumatic diseases are chronic inflammatory disorders
in which the immune system attacks itself and organs of the body. As an incurable condition
so far, it brings a heavy burden to individuals and society (10). A growing number of studies
have demonstrated a critical role of the IL-33/ST2 axis in rheumatic diseases, including systemic
lupus erythematosus (SLE), rheumatoid arthritis (RA), primary Sjögren’s syndrome (pSS), systemic
sclerosis (SSc), psoriatic arthritis (PsA), gout, IgG4-related diseases, and ankylosing spondylitis
(AS), indicating a promising potential for IL-33/ST2-targeting therapy in rheumatic disease (10).
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BIOLOGY OF IL-33

The Distribution and Function of IL-33
Unlike some cytokines, which have classical secretion patterns,
IL-33 is normally localized in the nucleus (11, 12). Although
the localization of IL-33 in the cytoplasm has been reported
in the literature, the results were not obtained under normal
conditions. This ectopic expression was observed in murine cell
line NIH3T3 that expressed tetracysteine-labeled human IL-33
by genetic engineering. Because the cysteine residues can change
the folding of IL-33 and the fluorescence staining has not been
tested by knockout, the results of cytoplasmic localization need
to be treated with caution (13). The N-terminal domain of IL-
33 shows evolutionary conservation and is closely related to
the nuclear location of IL-33. The N-terminal domain of IL-
33 was initially thought to contain homologous domain-like
structures bound to deoxyribonucleic acid (DNA), but this has
not been confirmed. In fact, IL-33 binds to DNA via protein–
protein interactions. Through the tight hairpin structure of the
chromatin-binding protein, it is combined with the acid pocket
formed by histone 2A (H2A) and histone 2B (H2B) (1, 14).
Although IL-33 is located in the nucleus, it does not appear
to regulate the expression of genes. The nuclear localization
of IL-33 seems to regulate the activity of IL-33 as a cytokine
(15, 16). IL-33 is released outside of the cell and has a variety
of immunological effects. Initially, researchers believed that the
full-length IL-33 should be processed to be biologically active,
and in the next few years, it was considered to be activated
by caspase-1 and inflammasome, similar to IL-1β and IL-18.
However, in 2009, Girard et al. reported that full-length IL-33
could interact with ST2 and activate nuclear factor-kappa B (NF-
κB) activity to induce cytokine production (17, 18). Meanwhile,
further studies also found the inflammatory protease hydrolysis
site of IL-33. An 18- to 21-kilodalton (kDa) mature form can be
produced when IL-33 is cleaved, with its biological activity level
increased by 10–30 times (17, 19, 20). Although inflammatory
proteases are able to convert IL-33 into a more active mature
form, they may also result in the inactivation of IL-33 through
protein degradation. This degradation has been observed in
chymotrypsin. In addition, the endogenous caspase-3 can cleave
at the DGVDG site in the C-terminal IL-1-like domain of IL-33
to inactivate IL-33. This structure is specific to IL-33, indicating
that IL-33 is strictly regulated in the process of apoptosis (21).
There was evidence showing that recombinant caspase-3 and
caspase-7 could cleave IL-33 in vitro. Caspase-1 had no direct
effect on IL-33 but could inactivate IL-33 by activating caspase-7
(22). In addition, when IL-33 was released into the extracellular
microenvironment, it was quickly inactivated by the formation of
two disulfide bonds. The oxidation of cysteine residues resulted
in conformational changes and subsequent reduction in binding
affinity to ST2. This regulation mechanism occurred much faster

than protein degradation (23). Therefore, after a 2-h exposure

to allergens, no biologically active IL-33 could be detected in

the alveolar lavage fluid (23). Furthermore, IL-33 was found to

accumulate in several models within a few hours after release

and was not detectable after 6 h (24–26). These also reflect that

IL-33 is a short-acting protein, and its biological role in vivo is
precisely regulated.

In both physical and pathological inflammatory conditions,
the main cellular sources of IL-33 are not CD45+ hematopoietic
cells. Endothelial cells, epithelial cells, fibroblasts, and
myofibroblasts in humans and mice were demonstrated to be
the main cells expressing IL-33 (27). In addition to the epithelial
barrier tissue and lymphatic organs, IL-33 was abundantly
expressed in the brain and eyes of mice and weakly expressed
in visceral smooth muscle cells of the human gastrointestinal
tract and urogenital tract. Although several studies suggested
that CD45+ hematopoietic cells may be a source of IL-33 even a
major source, stronger evidence is needed (28–34). In an IL-33
luciferin reporter mouse model, no IL-33 was detected in CD45+
hematopoietic cells (including macrophages, dendritic cells, T
cells, B cells, eosinophil, and neutrophil) in the lung of the mice
with allergic pneumonia (35). It cannot be ruled out that certain
leukocyte subsets may produce low levels of functional IL-33,
but more experiments are still needed to verify it.

IL-33 Signaling Pathway
The receptor ST2, also known as DER4, Fit-1, or T1, is
one of the co-receptors of IL-33 and is mainly encoded by
the IL-1RL1 gene. Before the discovery of IL-33, ST2 was
considered as an orphan receptor, and now IL-33 is still the
only ligand of ST2 (36, 37). Three isoforms of ST2 have been
identified in humans, all of which are produced by alternative
splicing: transmembrane receptor type (ST2L), soluble form
(sST2), and variant ST2 (ST2V) (38–40). The soluble form acts
as a decoy receptor to antagonize IL-33. When IL-33 binds
to the transmembrane ST2 receptor, the membrane-anchored
ST2 will recruit IL-1 receptor accessory protein (IL-1RAcP) to
form a dimer, resulting in the dimerization of its intracellular
domain. The adaptor protein myeloid differentiation protein
88 (MyD88) is recruited through the dimerization of Toll/IL-1
receptor (TIR) to activate downstream kinases. IL-1R-associated
kinase 1 (IRAK1) and IL-1R-associated kinase 1 (IRAK4) and
TNF receptor-associated factor 6 (TRAF6) are then activated,
which ultimately leads to the activation of mitogen-activated
protein kinases (MAPKs) and NF-κB transcription factor (41–
44). This signal pathway is very similar to that of IL-1β and
IL-18. Unlike IL-1RAcP, IL-33 stimulation induces a binding of
ST2 with single immunoglobulin domain IL-1R-related molecule
(SIGIRR) to form a complex, which can inhibit the formation
of intracellular dimers and activate the ubiquitin–proteasome
system (45) (Figure 1).

Effects of IL-33 on Tissue Cells and Innate
Immune Cells
Many types of cells express IL-33 receptors, including epithelial
cells, endothelial cells, fibroblasts, and osteoblasts. IL-33 activates
extracellular signal-regulated kinase (ERK) and p38 MAPK
signaling pathways in primary human lung epithelial and
endothelial cells to produce IL-8, which are associated with
chronic airway inflammation (46). In addition, the IL-33
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FIGURE 1 | Physiological function and activity regulation of interleukin-33

(IL-33). IL-33 firstly binds to its transmembrane receptor serum stimulation-2

(ST2) to induce conformational changes; then ST2 interacts with IL-1RAcP

and recruits the downstream adaptor MyD88, IRAK1, IRAK4, and TRAF6 via

Toll/IL-1 receptor domains; and ultimately activates nuclear factor-kappa B

(NF-κB) and mitogen-activated protein kinases (ERK, p38, and JNK). This

signal pathway can also be inhibited by phosphorylation and ubiquitylation of

ST2 and SIGIRR, which disrupt ST2 and IL-1RAcP dimerization. Several

mechanisms are involved to regulate the activity of IL-33. Processing by

inflammatory proteases can greatly increase (up to 30-fold) cytokine activity,

while caspase-3 and caspase-7 lead to cytokine inactivity. Decoy receptor

soluble ST2 (sST2) and rapid oxidation of IL-33 are also crucial mechanisms to

limit the activity of IL-33. SIGIRR, single immunoglobulin domain IL-1

receptor-related molecule; IRAK, IL-1R-associated kinase; TRAF6, TNF

receptor-associated factor 6; ERK, extracellular signal-regulated kinase.

receptor ST2 is expressed on a variety of innate immune cells. IL-
33/ST2 activation in mast cells not only promotes the activation
and maturation of mast cells but also enhances Th17 response
during airway inflammation (47, 48). In macrophages, IL-33/ST2
signaling enhances their activation by upregulating Toll-like
receptor 4 (TLR4), myeloid differentiation protein-2 (MD2),
and MyD88 (49). In the dendritic cells, the administration of
IL-33 not only increases the levels of CD80, CD40, and C-C
motif chemokine receptor 7 (CCR7) but also increases the
production of IL-5, C-C motif chemokine ligand 17 (CCL17),
and tumor necrosis factor alpha (TNF-α) (50). Therefore,
IL-33, as an alarmin and damage-associated molecular pattern
(DAMP) molecule, can activate tissue cells and innate immune
cells; upregulate costimulatory molecules, adhesion molecules,
and chemokines; and initiate and maintain innate immunity
(Figure 2).

IL-33 Indirectly Promotes the Production of
IFN-γ
Interferon-gamma (IFN-γ) plays an important role in the
development of rheumatic immune disease. IFN-γ can activate

FIGURE 2 | Interleukin-33 (IL-33), as alarmin, activates tissue cells and a

variety of innate immune cells. Extracellular IL-33, acting on bronchial epithelial

cells, led to upregulation of IL-8, IL-17F, and GM-CSF. IL-33 also upregulated

IL-6, IL-8, and MCP-1 by stimulating pulmonary endothelial cells. IL-33 not

only stimulated the activation and maturation of mast cells, and upregulation of

TLR4, MD2, and MyD88 in macrophages, but also upregulated CD80, CD40,

CCR7, and CCL17 in dendritic cells. GM-CSF, granulocyte-macrophage

colony stimulating factor; MCP-1, monocyte chemoattractant protein-1;

TLR-4, Toll-like receptor 4; MD2, myeloid differentiation protein-2; MyD88,

myeloid differential protein-88; CCR7, cxc chemokine receptor 7; CCL17,

chemokine (C-C motif) ligand 17.

macrophages or other immune cells to aggravate tissue damage
and can promote the ectopic expression of MHC class II antigens
on tissue cells, which may contribute to the presentation of
autoantigen. Several studies have proven that IL-33, in the
presence of IL-12, can increase the secretion of IFN-γ by NK
cells, natural killer T cells (NKT cells), ILC1 cells, and Th1 cells
(51–54). Therefore, in the progression of rheumatic disease, IL-
33 may increase the production of IFN-γ and may amplify the
immune effects (Figure 3). In addition, IL-33 is also thought to
increase antibody levels in the immune response.

IL-33 Promotes Tissue Repair and Fibrosis
Although IL-33 is an alarmin and is involved in inflammatory
processes, there is evidence that IL-33 plays a role in wound
healing and fibrosis. IL-33/ST2 signal enables M2 macrophages
to promote the closure of damaged epidermis and angiogenesis,
etc. In addition, M2 macrophages are also involved in tissue
remodeling and fibrosis (55). In addition, IL-33 can act on
eosinophils, mast cells, and ILC2 to increase their production
of IL-13 and IL-5, which are closely related to fibrosis (56).
More importantly, IL-33 can increase the number of ST2+
regulatory T cell (Treg), a pivotal type of cells in fibrogenesis
and immunosuppression (57). IL-33 is also believed to affect the
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FIGURE 3 | After activation of innate immune cells, especially myeloid

dendritic cells, large amounts of interleukin-12 (IL-12) were secreted. IL-33

and IL-12 had a synergistic effect in stimulating NK cells, NKT cells, ILC1, and

Th1 to secrete more IFN-γ, which will aggravate tissue damage. NK cells,

natural killer cells; NKT cell, natural killer T cell; ILC, innate lymphoid cell.

activity of matrix metalloproteinases and promote the deposition
of extracellular matrix (56). All these indicate that IL-33 plays an
important role in tissue repair and fibrosis (Figure 4).

IL-33/ST2 AXIS IN RHEUMATIC DISEASES

Rheumatic diseases are immune-mediated chronic inflammatory
syndromes, which are characterized by the hyperactivity of
effector Th1 cells and Th17 cells, dysfunction of Tregs, activation
of autoreactive B cells, and production of autoantibodies (58).
A growing number of studies have found that the level of IL-
33 is associated with the severity of rheumatic disease, indicating
that IL-33 and ST2 may be potential targets for predicting the
development of disease and improving the clinical outcomes
(59, 60). Next, we will discuss the role of the IL-33/ST2 axis in
several common rheumatic diseases (Table 1, Figure 5).

Systemic Lupus Erythematosus
SLE is a chronic connective tissue disease of unknown etiology
with multiple systemic involvements. The male-to-female ratio
is about 1:9, and it is a major cause of death in young women
with chronic inflammatory diseases (97). The prevalence of SLE
is (30.13–70.41)/100,000 in China. The level of serum IL-33 was
reported to be significantly higher in patients with SLE than that
in healthy subjects and was positively correlated with erythrocyte
sedimentation rate (ESR), C-reactive protein (CRP), IgA, and
Sjögren’s syndrome antigen B (SSB) antibody levels (61). On the
other hand, the serum soluble ST2 (sST2) level in patients was
also significantly increased and was positively correlated with
the level of anti-double-stranded DNA (dsDNA) antibodies and
the disease activity index, while it was negatively correlated with

FIGURE 4 | Interleukin-33 (IL-33) could promote tissue repair and fibrosis.

IL-33 could promote the proliferation of Treg to further alleviate inflammation.

IL-33 could also promote extracellular matrix deposition and tissue fibrosis by

acting on mast cells, eosinophil, M2 macrophage, ILC2 cells, and Treg to

increase the secretion of IL-5, IL-13, and other cytokines. ILC, innate lymphoid

cell; Treg, regulatory T cell.

the complement C3 (62). In addition, Guo et al. suggested that
IL-33 and other pro-inflammatory cytokines might be involved
in innate lymphoid cell disorder with a higher frequency of ILC1
in the peripheral blood of SLE patients (63). However, there
were also other studies showing reduced or similar levels of
serum IL-33 in SLE patients compared with healthy controls (62).
This discrepancy is probably due to the detection efficacy of the
enzyme-linked immunosorbent assay (ELISA) kit or the multiple
roles of IL-33 plays in the disease (98). To further explore its
effect, Li et al. found that the administration of neutralizing
antibodies against IL-33 could reduce the mortality, serum anti-
dsDNA level, and immune complex deposition in MRL/lpr lupus
mice. The protective effect was associated with the increase
of regulatory T cells and myeloid-derived suppressor cells and
the reduction of Th17 cells and pro-inflammatory factors (64).
These studies also indirectly supported the finding that two
polymorphisms of the IL-33 gene (rs1929992-G and rs1891385-
C) were associated with increased susceptibility to SLE (99–101).
However, further studies are required to further explore the
corresponding mechanism.

Rheumatoid Arthritis
RA is an autoimmune disease with erosive arthritis as the
main manifestation and synovitis as the pathological basis
(102). The male-to-female ratio is 1:4. In severe cases, patients
with uncontrolled active RA may develop joint deformities
and disabilities. The prevalence of RA in China is 0.28–0.41%.
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TABLE 1 | Expression and mechanisms of IL-33/ST2 in rheumatic diseases.

Disease Role of IL-33/ST2 in disease pathogenesis Referencess

SLE IL-33 and sST2 levels were increased in the serum of SLE patients.

IL-33 neutralization had a protective effect in MRL/lpr mice, which was associated with the increase of regulatory T

cells and myeloid-derived suppressor cells and the reduction of Th17 cells and pro-inflammatory factors.

IL-33 might be involved in innate lymphoid cell disorder in the peripheral blood of SLE patients.

(61–64)

RA IL-33 levels were related to the severity and activity of RA.

IL-33 enhanced TNF-α-dependent effects in synovial fibroblasts.

ST2−/− and ST2 neutralization in the CIA model alleviated arthritis symptoms, while administration of IL-33

exacerbated.

IL-33 stimulates mast cells to produce pro-inflammatory factors.

IL-33 stimulated macrophages and synovial cells to produce chemokines, which recruited neutrophils.

(65–71)

pSS IL-33 and sST2 levels were increased in the serum of pSS patients.

IL-33 promoted the release of IFN-γ in NK and NKT cells when combined with IL-12 and/or IL-23.

(72–74)

SSc IL-33 and sST2 levels were increased in the serum of SSc patients.

IL-33 levels were correlated with skin lesions, degree of sclerosis.

IL-33 polarized M2 macrophages to produce TGF-β1 and IL-13, induced ILC2 proliferation, increased eosinophils and

the level of IL-13, and induced Treg dysfunction.

(75–79)

PsA IL-33 levels were increased in the serum of patients.

IL-33 increased the gene expression of the pro-osteoclastogenic factor associated with bone damage.

(80, 81)

Gout IL-33 levels were increased in joint synovial fluid.

Exogenous administration of IL-33 aggravated the production of ROS and recruitment of neutrophils, while knocking

out ST2 alleviated the oxidative stress and neutrophils recruitment.

IL-33 stimulated macrophages to produce CXCL1, CCL 3, and IL-1β.

IL-33 recruited bone marrow-derived suppressor cells and reduced the production of IL-1β.

(82–84)

IgG4-RD IL-33 levels were increased in the serum of patients.

Prednisolone treatment decreased the serum concentration of IL-33.

IL-33 activated the Th2 immune response and promoted tissue fibrosis.

(85–87)

AS Serum IL-33 levels were elevated in the patients with AS.

IL-33 enhanced the production of TNF-α and IL-6 in peripheral blood mononuclear cells and induced neutrophil

migration.

IL-33 was used as a predictor of the therapeutic effect of infliximab in the treatment of AS.

(88–91)

IIM Serum sST2 levels were elevated and correlated with CRP, CK, and LDH. (92, 93)

AOSD Serum IL-33 and sST2 levels were elevated and correlated with ferritin levels. (94)

BD Serum and skin tissue of IL-33 and sST2 levels were elevated in patients. (95, 96)

SLE, systemic lupus erythematosus; RA, rheumatoid arthritis; CIA, collagen-induced arthritis; pSS, primary Sjögren’s syndrome; NK, natural killer cells; NKT, natural killer T cells; SSc,

systemic sclerosis; PsA, psoriatic arthritis; ROS, reactive oxygen species; IgG4-RD, IgG4-related disease; AS, ankylosing spondylitis; IIM, idiopathic inflammatory myopathies; CRP,

C-reactive protein; CK, creatine kinase; LDH, lactate dehydrogenase; AOSD, adult-onset Still’s disease; BD, Behcet’s disease.

Immunopathology showed that the differentiation of Th1
lymphocytes increased and that the number of Treg decreased
in RA patients (103). Elevated IL-33 levels were found in both
serum and local joint synovial fluid in patients with RA (65, 66,
103). Serum sST2 levels were also elevated (68). Moreover, IL-
33 levels were associated with RA severity parameters, such as
rheumatoid factor (RF), anti-cyclic citrullinated peptide (anti-
CCP) antibodies, IL-6, ESR, lung involvement, and bone erosion
(68, 104–106). IL-33 was also expressed in synovial fibroblasts
(69). Inflammatory factors (such as TNF-α) could stimulate
synovial fibroblasts to produce IL-33; and IL-33 not only
upregulated matrix metalloproteinase-3 (MMP-3), IL-8, and IL-
6 but also upregulated B-cell lymphoma-2 (Bcl-2) to inhibit
apoptosis and promote proliferation (107). Furthermore, the
level of serum IL-33 also had a certain significance for the
prediction of patient’s response to the biological agents. For
example, in patients with poor response to tumor necrosis factor
inhibitor (TNFi), serum and synovial fluid IL-33 levels continued
to rise (70). In the mouse model, IL-33 mRNA levels increased
in the early stages of collagen-induced arthritis (CIA) (65). With
the use of ST2 knockout mice and ST2 neutralizing antibodies in

the CIA model, suppression of ST2 signaling alleviated arthritis
symptoms and reduced levels of IL-17, TNF-α, and IFN-γ (65,
69). In contrast, the administration of IL-33 resulted in the
exacerbation of arthritis (108). Interestingly, this effect was absent
in mice lacking mast cells. Further studies showed that mast
cells expressed high levels of ST2, which responded to IL-33 by
producing various pro-inflammatory factors such as monocyte
chemoattractant protein-1 (MCP-1), IL-6, and IL-1β (69). In
addition, IL-33 could also recruit neutrophils by stimulating
macrophages and synovial cells to release chemokines (such
as CXCL1 and CCL3) (71). Although most studies support
the deleterious effect of the IL-33/ST2 axis in the pathogenesis
of RA, there are still some studies with opposite results. For
example, repeated administration of IL-33 in the early and
late stages of CIA mice models could relieve symptoms of
arthritis. The protective mechanism might involve the regulation
of immunity and the proliferation of Tregs (109). Despite the
controversy, research from the gene polymorphism suggests
that downregulating the expression of IL-33 shows resistance to
disease. Further studies are needed to explore the specific role and
molecular mechanisms of IL-33 in RA.
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FIGURE 5 | Roles of interleukin-33 (IL-33) in rheumatic diseases. sST2, soluble ST2; CXCL1, C-X-C motif chemokine ligand 1; FGF-6, fibroblast growth factor 6;

OPN, osteopontin; MDSC, myeloid-derived suppressor cell; ROS, reactive oxygen species; ILC, innate lymphoid cell; Treg, regulatory T cell; RA, rheumatoid arthritis;

SLE, systemic lupus erythematosus; pSS, primary Sjögren’s syndrome; SSc, systemic sclerosis; PsA, psoriatic arthritis; IgG4-RD, IgG4-related disease; AS,

ankylosing spondylitis.

Primary Sjögren’s Syndrome
pSS is a chronic systemic rheumatic disease mainly involving
salivary and lacrimal glands. The male-to-female ratio is 1:(9–
20) (110). The prevalence of pSS in China is 0.28–0.41%.
Multiple studies have described the pathogenic role of the IL-
33/ST2 axis in patients with pSS (72, 73, 111–113). Compared
with those in the control group, serum IL-33 and sST levels
were elevated in pSS patients. Although serum IL-33 levels and
EULAR Sjögren’s syndrome disease activity index (ESSDAI) or
lymphocyte infiltration were not correlated, serum sST2 levels
were significantly correlated with ESSDAI, disease duration,
and thrombocytopenia (72, 73). Immunohistochemical staining
showed that IL-33 and its receptors (ST2 and IL-1RAcP)
were expressed in the salivary glands. The expression of IL-
33 in patients with pSS showed a dynamic pattern: IL-33 was
significantly increased in salivary glands with Chisholm scores of
2 and 3 but was expressed at a lower level in salivary glands with
Chisholm scores of 1 and 4. Its receptors (ST2 and IL-1RAcP)
were expressed in a similar pattern (73). In addition, a recent
study showed that the levels of IL-33 in the tears of patients with

pSS were also significantly increased. Furthermore, IL-33 levels
were correlated with the degree of ocular involvement and levels
of IL-4 and IL-5 in tears (74). However, IL-33 alone did not lead
to the release of pro-inflammatory factors. But when combined
with IL-12 and/or IL-23, it promoted the release of IFN-γ by up
to 10 times in NK and NKT cells. Moreover, TNF-α, IL-1β, and
IFN-γ in the inflammatory environment could further increase
the activation of IL-33, forming positive feedback (60). Therefore,
the targeting IL-33/ST2 axis may be a promising treatment
option for pSS.

Systemic Sclerosis
SSc is a rheumatic disease with unknown etiology characterized
by the deposition of the extracellular matrix and diffuse skin
thickening (114). The male-to-female ratio is 1:(3–7), and the
lence rate in China is about 0.026%. It was reported that the
serum IL-33 level in patients with early SSc was higher than that
of healthy controls and patients with advanced SSc. This might
be due to the activation of endothelial cells in the early stages
of the disease, and elevated IL-33 level was positively correlated
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with skin lesions, degree of sclerosis, and degree of pulmonary
fibrosis (75, 76). In skin biopsies of healthy subjects, ST2 was
only expressed in fibroblasts and endothelial cells at a low level,
while IL-33 was constitutively expressed in keratinocytes and
endothelial cells (77). However, in the early stage of SSc, ST2
was highly expressed in endothelial cells, macrophages, T cells,
B cells, and myofibroblasts of the affected organs, while the
expression of IL-33 in tissues was not significantly increased
until the late stage of SSc (77). In fact, the IL-33/ST2 axis
could polarize M2 macrophages to promote the production of
TGF-β1 and IL-13 and could also induce the proliferation of
ILC2 to promote the accumulation of eosinophil granulocyte
and expression of IL-13. Moreover, in vitro experiments have
shown that IL-33 could induce the differentiation of Tregs into
Th2-like cells, resulting in the production of IL-4 and IL-13
and local Treg dysfunction (77–79). The study in our laboratory
also found that IL-33 could directly promote the proliferation
of primary human skin fibroblasts and their expression of
collagen. The administration of ST2 neutralizing antibody was
able to effectively alleviate bleomycin-induced skin fibrosis in
mice. Moreover, the polymorphism of IL-33 gene rs7044343 is
associated with SSc-associated dyspnea in the Chinese population
and SSc susceptibility in the Turkish population (115, 116).
However, further research is needed to determine the therapeutic
effect of IL-33/ST2 targeting therapy in human SSc.

Psoriatic Arthritis
PsA is a chronic, inflammatory, musculoskeletal disease affecting
the skin, peripheral joint, spine, nails, and entheses (117). It was
reported that up to 30% of patients with psoriasis might develop
PsA (118). Several studies showed that IL-33 not only played
a role in the development of psoriasis but also participated in
the progress of PsA (119). One study detected elevated serum
IL-33 in patients with PsA, but there was no correlation with
osteoclastogenesis-related cytokines and PSA joint activity index
(PSAJAI) (80). In another study, however, IL-33 was not detected
in serum and synovial fluid from PsA patients but only in
endothelial cells of the synovium and synovial fibroblast (120).
Another study focused on the effects of skin inflammation on
bone damage. IL-33 together with IL-17 increased the gene
expression of the pro-osteoclastogenic factor, such as fibroblast
growth factor (FGF-6), IL-16, and osteopontin (OPN). Moreover,
IL-33, together with OPN, IL-17, and TNF-α, could also induce
the release of bone contributing factor receptor activator of NF-
κB ligand (RANKL) in the skin, thus inducing the differentiation
of osteoclast precursor (OCP) into monocytes (81). IL-33 was
also expressed in the synovium in a mouse model of PsA. But
there was no difference between IL-33−/− and wild-type (WT)
mice in frequencies of Treg, Th1, and Th17 cells in this model
(121). In conclusion, the present studies suggest that IL-33 is
involved in the development of human PsA, while studies in
mouse models are limited. Further studies are needed to obtain
more evidence.

Gout
Gout is an inflammatory disease characterized by the deposition
of uric acid crystals in the joints (122). The male-to-female
ratio is 15:1, and its incidence in China is 1% to 3%. It was

reported that higher levels of IL-33 and neutrophil counts were
detected in joint synovial fluid in patients with gout than those
in osteoarthritis (82). Direct injection of uric acid crystals into
the articular cavity could induce acute attacks of gout in mice.
In this mice model, exogenous administration of IL-33 could
aggravate the production of reactive oxygen species, recruitment
of neutrophils, and hyperalgesia. Correspondingly, knocking
out ST2 could significantly alleviate oxidative stress and reduce
neutrophils’ recruitment into the ankle joint. It was also found
that macrophages in gout could produce IL-33 and increase
CXCL1, CCL 3, and IL-1β through an autocrine pattern. These
results supported the pathogenic role of the IL-33/ST2 axis in
gout (83). Paradoxically, IL-33 was also believed to alleviate the
mouse peritonitis model induced by uric acid crystals and to
reduce neutrophil counts as well as the production of IL-1β and
IL-6 (84). The mechanism was associated with the recruitment of
bone marrow-derived suppressor cells by IL-33, which reduced
the production of IL-1β in the peritoneal cavity (84). These
results also precisely reflect the distinct action patterns of IL-33
in different sites and under different pathological conditions.

IgG4-Related Disease
The IgG4-related disease (IgG4-RD) is an idiopathic,
fibroinflammatory disease characterized by elevated serum
IgG4 levels, tumefaction, and tissue infiltration by IgG4-positive
plasma cells (123). The ratio of male to female is ∼(2–3):1.
The current incidence in China is unknown. However, with the
improvement in disease cognition and detection, the number of
patients is gradually increasing. Furukawa et al. found that IL-33
could act as an inducer of Th2 response in IgG4-RD (85). Further
studies found that in patients with IgG4-related autoimmune
pancreatitis, plasmacytoid dendritic cells could produce IL-33
and interferon alpha (IFN-α), which were closely related to
the fibrosis of the disease. The authors further validated these
results in a mice model and demonstrated that depletion of
plasmacytoid dendritic cells and blockade of signaling pathways
related to type 1 interferon and IL-33 could prevent chronic
fibrosis (124). Treatment with prednisolone was able to improve
the swelling of the pancreas with a significant reduction of
serum IFN-α and IL-33, but the serum IgG, IgG4, and IgE
concentrations only slightly decreased. This suggested that the
IFN-α/IL-33 axis may be a better biomarker reflecting the disease
activity of IgG4-RD compared with serum levels of IgG, IgG4,
and IgE (86, 125, 126). There is no correlation between serum
IL-33 and serum IgG4 or IgG4:IgG ratio (126). Another study
on IgG4-related sialadenitis demonstrated that TLR7-positive
M2 macrophage was able to produce high levels of IL-33 in
vitro, which activated the Th2 immune response and promoted
tissue fibrosis in IgG4-RD (87). In conclusion, IL-33 plays an
important role in the development of IgG4-related diseases as
an important inducer of type 2 immunity and an important
pro-fibrogenic factor. However, the specific mechanism is
still unclear.

Ankylosing Spondylitis
AS is a chronic, inflammatory rheumatic disease affecting the
spine and sacroiliac joints. The main clinical features are
inflammatory back pain, bone erosion, and syndesmophyte
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formation (127). In China, the prevalence of AS is 0.25∼0.5%,
and the ratio of male-to-female is about 4–1. Due to the lack
of suitable animal models, all studies of IL-33 in AS have been
conducted in humans. Serum IL-33 levels were reported to be
elevated in patients with AS, especially in patients with active
AS (88). In addition, IL-33 enhanced the production of TNF-α
and IL-6 in peripheral blood mononuclear cells (PBMCs) and
induced neutrophil migration when the dose of IL-33 exceeded
10 ng/ml (89). Another study explored the relationship between
IL-33 gene polymorphisms and disease susceptibility and found
that AS patients carrying the IL-33 rs16924159 AA genotype
had higher disease activity and a worse response to anti-TNF
therapy (90). But overall, IL-33 could be still used as a predictor
of the therapeutic effect of infliximab in the treatment of AS (91).
These results suggest that IL-33 is involved in the pathogenesis
of AS and is a potential therapeutic target, but more studies are
still needed.

Other Rheumatic Diseases
IL-33 also played a role in other rheumatic diseases such as
idiopathic inflammatory myopathies (IIM), adult-onset Still’s
disease (AOSD), and Behcet’s disease (BD).

IIM is a chronic rheumatic disease, which can lead to skin and
internal organ involvement. IIM includes dermatomyositis (DM)
and polymyositis (PM). It was reported that serum sST2 levels
were significantly elevated in DM and PM patients and decreased
after treatment. In addition, serum sST2 levels were correlated
with CRP, creatine kinase (CK), and lactate dehydrogenase
(LDH) (92). In another study, serum IL-33 could not be detected
in the majority of IIM patients, but serum sST2 levels were
elevated and even much higher in patients with anti-signal
recognition particle (anti-SRP) antibodies (93). Considering the
abnormal expression of sST2 and the short detection time
window of IL-33, it can be speculated that IL-33 may be involved
in the pathogenesis of IIM.

AOSD is a rare systemic inflammatory disorder, which
is characterized by high spiking fever, an evanescent rash,
polyarthralgia, arthritis, and hepatosplenomegaly. It was
reported that serum levels of IL-33 and sST2 were elevated
in patients with active AOSD; and serum IL-33 levels
correlated with systemic score, ESR, ferritin levels, and aspartate
transaminase levels, while serum soluble ST2 levels correlated
only with ferritin levels (94). These results indicated that the
IL-33/ST2 signaling pathway may play a role in the pathogenesis
of AOSD.

BD is a multisystem inflammatory disease, characterized by
recurrent oral ulceration, skin lesions, genital ulcerations, and
uveitis. Serum and skin tissue of IL-33 and sST2 levels were
reported to be elevated in patients with BD, and sST2 is associated
with ESR and CRP (95). Another study reported that in BD
patients of Iran, the expression of IL-33 mRNA in PBMCs
was much higher than in healthy controls, and rs1342326 T/G
polymorphism of the IL-33 gene might contribute to the genetic
susceptibility to BD (96). These results suggest that IL-33 may
play an important role in the pathogenesis of BD.

DISCUSSION

In this review, we summarize the role of the IL-33/ST2 axis
in rheumatic diseases by summarizing the evidence from
clinical patients, mouse models, and in vitro cell culture. IL-
33 is characterized as an alarmin, with ILC2, Th2, and Tregs
as the main target cells in immune system. Because of the
complexity and functional diversity of IL-33, it may play
distinct roles in different stages of disease and different immune
microenvironments. For example, administration of exogenous
IL-33 with different treatment duration, different concentrations,
or different stage of disease may result in different, even
opposite, therapeutic effects. Nevertheless, previous studies
have demonstrated a detrimental role of IL-33/ST2 axis in
RA, scleroderma, SLE, psoriasis, and gout. The potential
mechanisms may involve the immunomodulation, fibrogenesis,
and tissue repair.

IL-33 is able to promote the polarization of macrophages,
activate mast cells ILC2, and induce eosinophil activation.
We and others have shown that some tissue cells including
epithelial cells and fibroblasts also express IL-33 and its
receptor ST2. IL-33 can also participate in the pathogenesis of
rheumatic disease by interacting with ST2-expressing tissue cells,
such as cardiomyocytes, oligodendrocytes, epithelial cells, and
endothelial cells. The activation, dysfunction, and destruction
of these cells are directly involved in the development of many
rheumatic diseases. In general, IL-33/ST2 axis plays a detrimental
role in both early and advanced stages ofmost rheumatic diseases.
In the early stages of the disease, IL-33 can be released from
damaged epithelial cells acting as an alarmin to activate other
local tissue cells and recruit immune cells. In addition, IL-
33 seems to interact with various cytokines such as IL-12 to
produce more IFN-γ in the early inflammation environment.
In contrast, during the advanced repair and fibrosis stages, IL-
33 as an important pro-fibrogenic factor may play a protective
role in maintaining the integrity of the barrier system. These
characteristics determine the pleiotropy and complexity of IL-33.

CONCLUSION

In summary, the sources and targets of IL-33 involve a variety
of cell types. Although great advances have been made in recent
years, more evidence is needed to clarify the exact role of the
IL-33/ST2 axis in rheumatic diseases.
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