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Acute and chronic kidney disease are responsible for large healthcare costs worldwide.

During injury, kidney metabolism undergoes profound modifications in order to adapt

to oxygen and nutrient shortage. Several studies highlighted recently the importance of

these metabolic adaptations in acute as well as in chronic phases of renal disease, with

a potential deleterious effect on fibrosis progression. Until recently, glucose metabolism

in the kidney has been poorly studied, even though the kidney has the capacity to use

and produce glucose, depending on the segment of the nephron. During physiology,

renal proximal tubular cells use the beta-oxidation of fatty acid to generate large

amounts of energy, and can also produce glucose through gluconeogenesis. In acute

kidney injury, proximal tubular cells metabolism undergo a metabolic shift, shifting away

from beta-oxidation of fatty acids and gluconeogenesis toward glycolysis. In chronic

kidney disease, the loss of fatty acid oxidation is also well-described, and data about

glucose metabolism are emerging. We here review the modifications of proximal tubular

cells glucose metabolism during acute and chronic kidney disease and their potential

consequences, as well as the potential therapeutic implications.
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INTRODUCTION

Renal disease encompasses acute and chronic lesions altering renal physiological function. Chronic
kidney disease (CKD) is characterized by an alteration of kidney structure and/or function lasting
for more than 3 months (1). Acute kidney injury (AKI) is defined by a sudden increase in
serum creatinine or decrease in urine output (2, 3). AKI is recognized as one of the main factors
contributing to CKD progression (4, 5) and is associated with significant mortality (6). Although
they represent two different diseases by definition, AKI and CKD share many common traits and
are very much interrelated (5). Understanding the pathophysiology of both acute and chronic renal
injury is mandatory to address the unmet medical need. Tubular cells are important players in AKI
and in the progression of CKD. Metabolic modifications and mitochondrial dysfunctions of these
cells are key to fibrosis development (7).

The kidney displays the second highest metabolic rate (>400 kcal/kg tissue/day) (8) after the
heart. It uses ∼7% of the total body daily energy despite its relatively low weight (9). The high
energetic needs of the kidney are due on one hand to the transport and active reabsorption of
nutrients and electrolytes in the tubules and on the other hand to the active secretion of unneeded
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compounds (10). Depending on the segment of the nephron,
tubular cells use different substrates such as glucose, amino acids,
fatty acids, or ketone bodies to produce energy through fatty
acid oxidation (FAO) and glycolysis (11, 12). Glycolysis is the
process that converts glucose into pyruvate through 10 enzymatic
reactions; pyruvate is subsequently converted into acetyl-CoA.
FAO is the breakdown of fatty acids at the mitochondrial level
that also generates acetyl-CoA. Acetyl-CoA is then used as
substrate for the tricarboxylic acid cycle (TCA) and the electron
transport chain to produce adenosine triphosphate (ATP). The
kidney is also able to perform gluconeogenesis (similarly to the
liver), a metabolic pathway that produces glucose from non-
hexose precursors. The kidney is therefore both an important
consumer of energy and a producer of glucose and participates
in systemic glucose metabolism (13).

Proximal tubular cells (PTCs) are the cells that produce
and consume most of the energy in the kidney (14). Under
physiological condition, their ability to generate ATP relies
mostly on the oxidative phosphorylation of acetyl-CoA from
FAO (12). Oxidative phosphorylation allows the production of
energy through the transfer of electrons from nicotinamide
adenine dinucleotide (NADH) and flavin adenine dinucleotide

FIGURE 1 | Metabolism of nephron segments. (A) Overview of metabolic capacities of tubular cells. Proximal tubular cells do not display glycolytic capacity, except

for the S3 segment. They rely on oxidative phosphorylation for their metabolism. They are also able to produce glucose through gluconeogenesis. (B) Proximal tubule

cells in health and disease. In healthy proximal tubular cells, glycolysis is almost absent although the cells reabsorb glucose. Glucose is produced through

gluconeogenesis from pyruvate and released into the circulation. In diseased cells, fatty acid oxidation (FAO) decreases and cells start to use glucose as a substrate.

Gluconeogenic abilities are also diminished in injured proximal tubular cells.

(FADH) to oxygen, finally leading to ATP production. Besides,
PTCs possess the ability to produce energy from a wide
range of other substrates, including glutamine, lactate, pyruvate,
acetate, citrate, or ketone bodies. PTCs are able to regulate
glucose homeostasis by the de novo glucose production through
gluconeogenesis but also by the reabsorption of large amounts
of glucose, mostly via SGLT2 on the apical membrane of
S1-2 segments and in a lesser extent via SGLT1 in the S3
segment. After reabsorption, glucose is released in the blood by
glucose transporters (GLUT) (15). However, PTCs are almost
unable to use glucose as an energetic substrate, except for
the S3 segment (12). This specificity is due to the close
localization of the S3 segments to the outer medulla and
hence to its strong exposure to changes in O2 levels. The
complete breakdown of fatty acids is depends on the presence
of oxygen and S3 cells therefore have to rely on other energy
sources than FAO in case of low oxygen supply (16). On
the contrary, the cells in the more distal segments of the
nephron display enhanced glycolytic capacity and progressively
lose their capacity to perform gluconeogenesis and oxidative
phosphorylation. Besides, they can use less varied substrates
than the PTCs (10) (Figure 1). Finally, because of their passive
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blood filtration process glomerular, endothelial and mesangial
cells display low rates of oxidative phosphorylation (17). They
have a basic glycolytic metabolism, with the ability to perform
either aerobic or anaerobic glycolysis, thus producing less energy
but with greater efficiency when O2 supply is low (18, 19).
As a result, they are less sensitive to changes in O2 levels
than PTCs.

In this review, we will primarily focus on the altered
metabolism of PTCs during renal disease. Although several
metabolic pathways are interrelated, we here mainly discuss
glucose metabolism modifications during kidney disease and its
potential local and systemic consequences.

GLUCOSE METABOLISM DURING KIDNEY
DISEASE

PTCs are the largest group of tubular cells and are at highest
risk of being exposed to hypoxia and other types of injury
(20). The importance of these cells in the pathophysiological
process of AKI and CKD is now well-established and the
specific influence of PTCmetabolic alterations in the pathological
processes of renal disease has received increasing attention.
Among metabolic alterations, mitochondrial dysfunction (21–
27) and FAO downregulation (21, 28–30) have been described
and already been reviewed (31–36). We here describe in more
details the modifications of glucose metabolism in PTCs that
occurs during acute and chronic injuries.

Glycolysis is a 10 steps pathway that leads to the production
of pyruvate (Figure 2). The first step is catalyzed by hexokinases,
which phosphorylates glucose into glucose-6-phosphate
(G6P). Glucose phosphate isomerase rearranges G6P into
fructose 6-phosphate. Fructose can also be phosphorylated
and enter the pathway at this stage (37). Fructose 6-
phosphate is then transformed in fructose 1,6-bisphosphate
by phosphofructokinase 1, an ATP-dependent reaction and
a key regulatory point of the pathway (38, 39). After several
steps leading to phosphoenolpyruvate, the pyruvate kinase
catalyzes the last reaction, which is also a regulatory point (40).
Depending on O2 availability, pyruvate is transported into
the mitochondria to enter the TCA cycle or in the absence of
oxygen, pyruvate is converted into lactate (41). The regulating
enzymes of glycolysis are hexokinases, phosphofructokinases,
and pyruvate kinases. These three enzymes are activated by
the AMP/ADP ratio. Phosphofructokinase is additionally
activated by fructose-2,6-bisphosphate and pyruvate kinase by
fructose-1,6-bisphosphate. Hexokinase is inhibited by glucose-
6-phosphate, phosphofructokinase, ATP, and citrate. Likewise,
pyruvate kinase is inhibited by ATP, acetyl-CoA, and alanine
(42). Insulin, stimulation of glucose uptake and epinephrine
enhance glycolysis (43, 44). Among negative regulators of the
pathway are glucagon, cortisol and growth hormone (42, 45, 46).

Physiologically, in conditions of high oxygen supply, fatty
acids are mainly taken up by PTCs and used for oxidative
phosphorylation to generate ATP. However, AKI is usually
associated with a decrease in oxygen supply or relative oxygen
deficiency in PTCs. PTCs are hence forced to use glycolysis
instead of FAO. This is well-described in different models of AKI,

FIGURE 2 | Overview of glycolysis and gluconeogenesis pathways. Glycolysis

(purple) consists of 10 reactions, leading to the production of pyruvate. Three

steps are considered as rate-limiting, catalyzed by hexokinases or

glucokinases, phosphofructokinase 1, and pyruvate kinase. Gluconeogenesis

(blue) is the reversed steps of glycolysis, with four specific reactions catalyzed

by glucose-6-phosphatase, fructose 1,6-bisphosphatase,

phosphoenolpyruvate carboxykinase 1, and pyruvate carboxylase.

which have shown pyruvate depletion, glycolysis intermediates
accumulation and glycolytic enzymes upregulation during this
condition (27, 47–51) even at late stages post-reperfusion (27). In
chronic disease, analysis of metabolomics and RNA sequencing
data from human databases have demonstrated an upregulation
of glycolysis, showing a specific metabolic pattern of CKD
patients (52, 53). A similar shift toward glycolysis has been
observed in obstructive mouse models, with an increased lactate
to pyruvate ratio (54).

Gluconeogenesis is a major kidney metabolic pathway,
specifically present in healthy PTCs that produces glucose from
non-hexose substrates such as lactate, pyruvate, glycerol, or
amino acids (55) (Figure 2). In the kidney, lactate is the main
substrate of gluconeogenesis and accounts for around 50% of
glucose production. It is followed by glutamine (20%) and
glycerol (10%) (56, 57). The conversion of pyruvate into glucose
is the central pathway of gluconeogenesis. For this, 10 enzymatic
reactions are necessary, seven of which are reversible and
three that are irreversible. Phosphoenolpyruvate carboxykinase
1 (PCK1) catalyzes the formation of phosphoenolpyruvate from
oxaloacetate, fructose-1,6-bisphosphatase 1 (FBP1) catalyzes the
hydrolysis of fructose 1,6-biphosphate to fructose 6-phosphate
and Glucose 6-phosphatase catalyzes glucose 6-phosphate to
D-glucose. Gluconeogenesis plays a crucial role in glycemic
homeostasis (58). Indeed, during fasting, once glycogen stores
becomes depleted, the body will increasingly rely on endogenous
glucose production. Although the liver has for a long time
been considered as the sole source of glucose production, the
kidneys are responsible for 40% of de novo glucose production
during the fasted state (13, 59, 60). Renal gluconeogenesis is

Frontiers in Medicine | www.frontiersin.org 3 October 2021 | Volume 8 | Article 742072

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Faivre et al. Glucose Metabolism in Kidney Disease

positively regulated by stress hormones such as hydrocortisone,
epinephrine, and norepinephrine (56, 57, 61, 62), which could
be linked to a regulation of PCK/Pyruvate Carboxylase (PC)
activity (63–65). Insulin on the other hand downregulates
renal gluconeogenesis (66), which could be due to PCK1/G6Pc
regulation through phosphorylation (66, 67) but also to the
reduction of substrates availability (glycerol and glutamine) (68,
69) or their redirection to the oxidative pathways (13, 68).
Gluconeogenesis is regulated by factors implicated in global
metabolic regulation, such as peroxisome proliferator-activated
receptor alpha (PPARα) (70), Forkhead Box O1(FOXO1) (71)
and hepatocyte nuclear factor 4 alpha (HNF4α) but also by
glucose levels, through the modification of the NAD+/NADH
ratio which causes an indirect downregulation of PCK1 at mRNA
level (66). Acidosis also seems to play a role, with the induction
of PCK1 at the mRNA and enzymatic activity level (72, 73) and
hence increased renal glucose production.

The regulation of gluconeogenesis during renal pathology
was not well-studied until recently. In AKI, a downregulation
of gluconeogenesis enzymes was shown in single-cell analysis
of mouse AKI as well as in RNA sequencing data from post-
transplant AKI patients (74). Alterations of lactate clearance
and glucose production were observed using renal catheterism
data and rodent experimental models. In a cohort of intensive
care unit patients, alterations of metabolism were associated
with mortality, underlying the importance of renal glucose
metabolism at a systemic level. Overall, gluconeogenesis
decreases during AKI and leads to systemic metabolic alterations.
In CKD, our preliminary results show similar alterations of
gluconeogenesis are observed in a stage specific manner.

Altogether, a metabolic switch from FAO and gluconeogenesis
to glycolysis occurs in PTCs during AKI and CKD. To date, the
exact cause of this metabolic switch remains unknown. Initially,
the switch constitutes a protective mechanism allowing PTCs to
maintain energy production in case of low oxygen supply: HIF
activation indeed enhances glycolysis through the stimulation of
several enzymes of the pathway (hexokinases, glyceraldehyde-3-
phosphate dehydrogenase, enolases, phosphofructokinases) and
through the activation of glucose transporters (GLUT1-3) (75–
77). In later stages of renal disease, inflammation and TGFβ
activation could also play an important role in the persistence
of the metabolic switch (78, 79); the induction of glycolysis was
reproduced by IL-β and c-myc signaling activation (32, 52). In
addition, the expression of co-regulators of FAO and glycolysis
such as HNF4α or estrogen-related receptor alpha (ESRRA) are
modified during AKI (74). Although it is initially cytoprotective,
the persistence of the switchmay bemaladaptive and is associated
with a worse kidney prognosis (21, 80, 81). In the second part
of this review, we will detail the potential consequences of such
metabolic modifications.

LOCAL EFFECTS OF GLUCOSE
METABOLISM ALTERATIONS IN THE
KIDNEY

The transition from gluconeogenesis and FAO to glycolysis
can have positive or detrimental consequences. Impaired

glucose metabolism has been closely linked with mitochondrial
dysfunction and a global decrease in energy production (27).
The metabolic shift could also directly impact epithelial-
mesenchymal transition (EMT) and fibrogenesis and therefore
enhance CKD progression. Finally, the accumulation of
metabolic precursors may influence renal disease (Figure 3).

Energy Production
As described earlier, when oxygen supply decreases, PTCs start
using mostly anaerobic glycolysis to meet their energy demand.
This change results in a decrease in ATP production and thus
a diminished energy availability. Indeed, compared with the
complete metabolism of fatty acids, which generates 106 ATP,
aerobic glycolysis produces 36 or 38ATP and anaerobic only
only 2 ATP (14, 82). Enhanced glycolysis may in addition
have a detrimental effect on mitochondrial function (83).
Phosphokinase mutase 2 (PKM2), one of the glycolytic enzymes,
may for example promote mitochondrial fusion (84). Inhibition
of gluconeogenesis also influences the TCA cycle. Indeed,
gluconeogenesis plays a role in cataplerosis, a crucial pathway for
mitochondrial function. Cataplerosis consists of the removal of
TCA cycle intermediates and is necessary to maintain the cycle’s
function (85). The gluconeogenic enzyme PCK1/2 catalyzes
the reaction of oxaloacetate to phosphoenolpyruvate, a major
reaction of the cataplerotic pathway (86). Downregulation of
gluconeogenesis enzymes could for this reason lead to impaired
cataplerosis and hence impact the TCA cycle (86), as has been
shown in other organs (87).

Thus, although enhancing glycolysis and decreasing
gluconeogenesis may initially spare oxygen and maintain
ATP production, on the longer term these regulations may
lead to further blockade of the TCA cycle and mitochondrial
dysfunction, which will affect global energy production and
therefore PTC function.

Fibrogenesis and CKD Progression
Modifications of tubular metabolism is associated with CKD
progression and fibrosis. For instance, the decreased ability to
perform FAO is associated with kidney fibrosis progression
and reversing this loss by different approaches appears
nephroprotective (21, 24, 29, 88). Regarding glucose metabolic
enzymes, PKM, hexokinases, phosphofructokinase 1, and enolase
are able to promote EMT via different mechanisms, as
reviewed elsewhere (89). In cancer research, FBP1 expression,
a key gluconeogenetic enzyme, was inversely linked with
Snail activation, a major activator of EMT, whereas FBP1
overexpression protected from EMT (90).

In Acute Kidney Injury
Enhancing glycolytic capacity induces a reprogramming of the
somatic cells that promotes tubular regeneration (91, 92) and
spares more valuable substrates such as fatty acids or amino acids
which could then be used for cell regeneration (93). Increased
glycolysis also generates more NADPH and glutathione, thus
decreasing oxidative stress (48, 94). Similarly, decreasing
gluconeogenesis may spare kidney energy in conditions of stress,
hence promoting cell survival. Altogether, glycolysis improves
PTC survival initially. Nevertheless, the persistence of glycolysis
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FIGURE 3 | Effects of glucose metabolism alterations during kidney injury. (A) Schematic representation of the loss of fatty acid oxidation (FAO) and gluconeogenesis

with upregulation of glycolysis occurring in injured proximal tubular cells (PTCs). (B) Systemic and renal potential consequences of glucose metabolism modifications

during kidney injury. G3P, glycerol-3-phosphate; FGF-23, fibrobastic growth factor 23; EMT, epithelial mesenchymal transition; CKD, chronic kidney disease.

after the acute phase could be detrimental for kidney function.
Given this dual impact of glycolysis on PTCs, interventional
studies with glycolysis modulation yielded mitigated results.
In PTCs, an activation of glycolysis through the inhibition of
TP53-inducible glycolysis and apoptosis regulator (TIGAR) is
protective in ischemic AKI (93). On the contrary, decreasing
glycolysis through the knockout of Nod-like receptor (NLR)
family member X1 (NLRX1) was shown to be detrimental (95).
Inhibition of PKM through the S-nitroso-CoA Reductase system
or fructokinase blockade were also protective during AKI (96,
97). SGLT2 inhibitors have shown the ability to suppress aberrant
glycolysis in proximal tubules (98) and stimulate gluconeogenesis
(99). Even though some associations between SLGT2 inhibitors
and AKI were reported in the US Food and Drug Administration
Adverse Event Report System (100), subsequent meta-analysis of
large clinical studies indicate a favorable safety profile (101) or
even a reduction of the AKI risk (102–104). In preclinical models,
some data indicate a protective role (105, 106). Finally, despite
many confounding factors, stabilization of HIF, a key glycolysis
promoter, is protective in AKI (91, 92, 107).

In Chronic Kidney Disease
In diabetic kidney disease, the switch to anaerobic glycolysis
is well-described (108) and associated with CKD progression
(109). In other CKD models, a reduction of glycolysis
appears in contrast to be rather protective overall. PKM
activation was shown to be favorable in a diabetic kidney
disease model (109) but induced interstitial fibrosis in other
models (110). Fructokinase blockade was also protective in
diabetic nephropathy (111, 112). Glycolysis inhibitors (shikonin

and 2-deoxyglucose) demonstrated attenuated fibrosis in an
obstructive CKD model (113). In the same model, deletion of
Tuberous sclerosis complex 1, a key regulator of glycolysis,
induced glycolysis and enhanced fibrosis (114). In diabetic
mice models, the suppression of SIRT3, a major mitochondrial
enzyme involved in central metabolism activating many
oxidative pathway, was stimulated the fibrogenic kidney pathway
(80). Glycolysis inhibition with 2-deoxyglucose alleviated the
phenotype (80, 115). As described before, SGLT2 inhibitors seem
to decrease glycolysis and enhance gluconeogenesis (98, 99); their
major protective effect in CKD is well-established and could
partially rely on the modulation of the metabolic switch. In
the polycystic model of CKD, characterized by marked cellular
proliferation, numerous studies observed that glycolysis blockade
is nephroprotecive (115–117).

In sum, the timing of glycolysis induction may be the reason
of these contradictory results (27). Glycolysis enhancement and
gluconeogenesis loss in PTCs during AKI may promote cell
survival and proliferation in an initial phase but their persistence
could favor fibrosis progression in the kidney in a more chronic
phase. The type of kidney injury could also explain the difference
in experimental results.

Precursors Accumulation
Metabolic pathway blockade leads to the accumulation of
precursors, which may overload the cells and contribute to
inflammation and fibrosis. Among these precursors, some also
have direct toxic effects; blocking FAO will for example increase
intracellular concentrations of fatty acids. This results in a toxic
environment, impacting ATP production and inducing apoptosis
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(14). Flux analysis of metabolites indicate that the kidney also
plays a major role in clearing circulating citrate and lactate (118,
119); in the case of gluconeogenesis blockade, as observed in AKI,
a decrease in lactate clearance occurs (74). Although some biases
exist, lactate clearance has been associated with mortality in AKI
(120), as well as metabolic alterations (74). Recent papers indicate
a potential toxic role of tubule-derived lactate, with increased
fibrogenesis (121). Indeed, the inhibition of lactate production
via glycolysis inhibition was able to reduce the activation of
fibroblasts in a model of folic acid-induced AKI. In CKD, the
effects of gluconeogenesis decrease are less described but can
be inferred from enzymatic deficits. Deficiency in glucose-6-
phosphatase (G6PC), a major gluconeogenesis enzyme, has been
extensively studied in humans with glycogen storage disease
type I. These patients are especially prone to CKD development,
due to lipid and glycogen accumulation in the kidneys and
the activation of the renin-angiotensin system. G6PC knock-out
mice also develop renal cysts. G6PC deficiency seems to be linked
with the loss of polycystic kidney genes and HNF1B (122).

SYSTEMIC EFFECTS OF GLUCOSE
METABOLISM ALTERATIONS IN THE
KIDNEY

Besides its potential effects on the outcome of kidney disease,
modifying renal glucose metabolism has a systemic impact.
Alteration of tubular cell metabolism may also imply release of
new metabolites that can affect unexpected systemic functions
(Figure 3).

Hypoglycemia Risk
In a fasting state, once glycogen stores are depleted,
gluconeogenesis becomes increasingly important and represents
up to 90% of total glucose production after 40 h of fasting in
order to maintain normoglycemia (123). In fasting conditions,
the kidney is able to provide up to 40% of systemic glucose
(13, 59, 60).

As demonstrated recently, the enhancement in glycolysis
and decrease in gluconeogenesis in AKI leads to a negative
renal glucose balance and increases hypoglycemia risk (74).
The role of glucose production of the kidney has probably as
much importance in CKD as in AKI. In the ACCORD study,
diabetic patients with low renal function displayed a higher
risk of hypoglycemia and mortality (124). Similarly in another
study, both diabetic and non-diabetic patients with CKD had an
increased risk of in-hospital hypoglycemia (125). Although not
clearly described or studied in CKD, the enhanced risk could be
partly related to loss of gluconeogenesis.

Lactate and Acid-Base Homeostasis
In the kidney, gluconeogenesis uses lactate as its main substrate.
In renal arteriovenous catheterization experiments, impaired
renal gluconeogenesis due to AKI induced a decrease in glucose
production and lactate clearance. The increased lactate and
lower glucose levels were associated with higher mortality in a
retrospective cohort of critically ill patients (74).

Changes in glucose metabolism impacts acid-base regulation
as illustrated by the close correlation between gluconeogenesis
and ammoniagenesis. To counterbalance acidosis, the kidney
generates ammonia, mainly from glutamine deamination,
which forms α-ketoglutarate (α-KG) and NH4+ via the
ammoniagenesis pathway (126, 127). After its uptake by
PTCs, glutamine is catalyzed into glutamate. Glutamate is
then converted to α-ketoglutarate, the carbon skeleton of
glutamine. α-KG is further metabolized and is ultimately
transformed into glucose, through the gluconeogenic pathway
(128). Renal ammoniagenesis and gluconeogenesis are hence
two closely interdependent pathways. Despite the ability of all
segments to produce ammonia, metabolic acidosis will only
enhance ammoniagenesis in the proximal segments S1 and
S2 (127), a process which is altered in AKI and CKD. As
the complete metabolism of glutamine requires PCK1 activity
(129), gluconeogenesis alterations may participate in the loss
of ammoniagenesis abilities of PTCs and hence decrease their
defense against metabolic acidosis.

FGF23 and Glycerol-3-Phosphate
Local changes of metabolism lead to modification of arterial
and venous kidney metabolite profile. Fibroblast growth factor
23 (FGF23) is a protein implicated in vitamin D metabolism
and phosphatemia regulation. FGF23 levels increase with any
type of kidney injury; in AKI, in early and late CKD, and
could be linked with cardiovascular mortality (130–132). Despite
that, the regulatory factors of FGF23 during AKI and CKD
are poorly described. A recent study identified glycerol-3-
phosphate (G3P) renal venous production as the most predictive
factor for FGF23 elevation in AKI, which was confirmed
experimentally (133). In human and rodent with AKI, G3P levels
increased rapidly, a process mediated by glycerol-3-phosphate
acyltransferase and lysophosphatidic acid (LPA) (133). G3P
can arise from three mechanisms, one being the glycolytic
pathway via the conversion of dihydroxyacetone phosphate
in G3P glucose (134). As glycolysis increases during AKI,
it may explain these results and outlines the importance
of renal glucose metabolism during AKI and its potential
systemic effects. A second pathway for G3P production is
from glycerol, which is indirectly linked to gluconeogenesis
as PCK1 is involved in glycerol production. As glycolysis and
gluconeogenesis are also dysregulated during CKD, similar
effects could be expected in this condition. Therefore, kidney
metabolic switches may impact pathways as diverse as mineral
metabolism and heart hypertrophy, both processes being
regulated by FGF23 (135). This example shows how local
metabolic change in PTCs can influence very diverse systemic
pathways, many of which are probably still unknown to
this date.

CONCLUSION AND PERSPECTIVES

Metabolic adaptation of renal cells during acute or sustained
injury is a complex mechanism. The metabolic switch from fatty
acid oxidation and gluconeogenesis toward glycolysis is part
of a cytoprotective stress mechanism. However, persistence of
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this metabolic profile is associated with fibrogenesis. Glucose
metabolism impairment could have a broad impact, ranging
from local to systemic consequences. Interestingly, renal glucose
metabolism is amenable to therapeutic interventions.
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