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Rare diseases (RDs) are complicated health conditions that are difficult to be managed at

several levels. The scarcity of available data chiefly determines an intricate scenario even

for experts and specialized clinicians, which in turn leads to the so called “diagnostic

odyssey” for the patient. This situation calls for innovative solutions to support the

decision process via quantitative and automated tools. Machine learning brings to the

stage a wealth of powerful inference methods; however, matching the health conditions

with advanced statistical techniques raises methodological, technological, and even

ethical issues. In this contribution, we critically point to the specificities of the dialog

of rare diseases with machine learning techniques concentrating on the key steps and

challenges that may hamper or create actionable knowledge and value for the patient

together with some on-field methodological suggestions and considerations.
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INTRODUCTION

A rare disease (RD) is defined as a low-prevalence condition that affects fewer than one in 2,000
people. Due to the frequent lack of knowledge and treatment (which makes them also known as
“orphan diseases”), they represent a real emerging global public health priority. So far 6,000–7,000
distinct RDs have been recognized, affecting 4–6% of the European population, and 300 million
persons globally (1). From a clinical perspective, RDs are extremely heterogeneous and complex,
often characterized by different clinical subtypes and overlapping phenotypic manifestations.
Although most of the RDs are classified as “genetic diseases,” (2, 3) the causes remain unclear for
many of them, making the identification of therapies troublesome.

Different from other clinical fields, RDs are often lacking specific and adequate public health
policies and can be considered as a real health system challenge. Difficult and delayed diagnosis
(with diagnostic processes taking many years and unnecessary costs), unknown molecular
mechanisms, lack of specific treatments, and scattered patient data are all responsible for the
difficulty in both taking care of these patients and setting up research activities. This makes RDs
a major public health problem, and many challenges hamper the development of therapies. In
addition, they are often neglected by major public and industrial funding with a limited interest
of pharmaceutical companies (4, 5).
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Overall, RDs are responsible for enormous healthcare costs,
just for the difficulties in diagnosis and their often serious health
degenerative consequences. To reduce RDs healthcare costs and
to optimize the assistance of patients, new effective treatments
are required, making it necessary to promote research with new
strategies. Recent advances in next-generation sequencing (NGS)
have already represented a great opportunity (6); in particular,
whole exome or whole genome approaches have strongly
improved the diagnosis and shortened the “diagnostic odyssey”
(7), also helping in the molecular characterization of diseases.
Data coming from many other innovative technologies such
as advanced imaging techniques, multiomics, gait analyses, and
others (depending on the clinical field) represent an invaluable
source of information too. As a result of all these new approaches
and technologies, there is a huge amount of available data (never
collected before) to be managed and analyzed according to
privacy regulations, still with a limited sample set (number of
patients). This scenario is a big data one in the omics component,
but not in terms of the sample size.

As an innovative discipline for data modeling, machine
learning (ML) is becoming a great opportunity. ML is a branch of
artificial intelligence (AI) rooted in statistics that learns from data
(the examples) and then performs predictions on new unseen
data. By using specific algorithms, and typically large datasets, the
goal is to use available data to make classifications or predictions
in general, uncovering not previously discovered key insights,
which will potentially drive the decision on the diagnosis and
treatment options of a patient.

During the last two decades, AI and ML have been
characterized by an unprecedented development, also supported
by empowered computational means (i.e., graphical processing
units). However, to further improve their applicability in
healthcare challenges, it is essential to consider the compatibility
of RDs specificities with respect to ML approaches. In the
following, we critically discuss the role of the two key ingredients
of any ML attempt namely, the data and the methods (and their
interplay) (8). We discuss in detail diseases registries, genuinely
public datasets, and lastly, methodological approaches, and ML
challenges for RDs. Figure 1 summarizes a prototypical pipeline
for the data flow in a clinical decision support system.

DISEASE REGISTRIES

By definition, a registry is “an organized system that uses
observational study methods to collect uniform data (clinical
and other) to evaluate specified outcomes for a population
defined by a particular disease, condition, or exposure, and that
serves one or more predetermined scientific, clinical or policy
purposes” (9). Among different registries, the disease registry
represents the pivotal tool in supporting RD research and care,
since the primary aims are collection, analysis, and dissemination
of information on a group of people defined by a particular
disease (10).

Many stakeholders recognize the crucial role of a high-quality
registry and uniformity in data collection, particularly for
networking activities. In 2015, the European Medicines Agency

has established a patient registry initiative to promote registry
data collection and reuse for postauthorization safety study
and postauthorization effectiveness study (11). Moreover, 24
European Reference Networks (ERNs) [wanted by the European
Commission (EC)] were installed in 2017 to facilitate the
discussion on complex or RDs that require highly specialized
treatment and concentrated knowledge (2014/286/EU). The
EC defined specific criteria for ERNs, encouraging the research
and epidemiological surveillance through shared patient
registries (12–14).

Nonetheless, the RDs domain may greatly benefit from data
pooling, since information on orphan patients is frequently
scattered across different hospitals and institutions (14, 15).
To promote the merging of standardized data, the European
Rare Diseases Platform has released the “Set of common data
elements for Rare Diseases Registration” produced by a Working
Group coordinated by the Joint Research Center. In addition,
the semantic compatibility of phenotypic data captured within
a registry can be ensured by the implementation of ontologies,
standards, and dictionaries, like Human Phenotype Ontology
(16) andORPHAcode. The process tomake registry data findable,
accessible, interoperable, and reusable (FAIR) surely increases
the quality of information, but at the same time enhances the
potential extensive use of the captured data to improve research
and to promote patient health. The FAIR principles allow data
sharing, including tools and workflows, from different registries
using the same syntax (12, 17, 18).

Moreover, some legal and ethical obstacles can afflict data
pooling, restricting the range of action of the registry. The
sharing of personal and clinical data, even pseudonymized,
presents privacy issues. The European General Data Privacy
Regulation (GDPR; EU Regulation 2016/679) allows data-free
movement, even if the sensitive nature of phenotypic information
requires a rigorous balancing between data protection to avoid
mistreatment and the data accessibility to promote accurate
research networking activities. Accordingly, a solid framework
that addresses privacy issues and ethical and social implications
becomes mandatory.

All the mentioned approaches, put in place to pursue the
establishment of a high-quality disease registry, were the grounds
on which our group has created and implemented five RD
registries. These registries realized aiming both care and research
purposes, address four skeletal orphan disorders (Multiple
Osteochondromas, Osteogenesis Imperfecta, Ollier-Maffucci
Diseases, Ehlers-Danlos syndrome), and one oncological rare
condition (Li-Fraumeni syndrome). All of them rely on a web-
based platform, genotype-phenotype data integration (GeDI)
platform, established on a relational database. GeDI was created
considering the JRC “Set of common data elements for Rare
Diseases Registration,” as well as highly recommended ontologies
(HPO, ORPHAcode, HGVS, and ICF), and following GDPR and
privacy requirements.

Until a few years ago, the phenotypic information was
not considered big (19), but with the evolution in terms of
standardization and FAIRness, the consequent simplification in
data merged across healthcare providers, and the integration
among different data sources transformed clinical data into
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FIGURE 1 | A prototypical data flow pipeline in the clinical decision support system (CDSS) dedicated to rare diseases (RDs). Omics and imaging data can either be

integrated from different sources or be collected as part of disease registry data. Data are then fed to the learning engine and the results are provided through a CDSS

GUI interface.

new types of big files. The primary and essential investigation
of skeletal disorders is imaging data, ranging from traditional
X-Rays and ultrasounds, through hybrid imaging such as
positron emission tomography/MRI (PET/MRI) up to innovative
instruments like high-resolution peripheral quantitative CT (HR-
pQCT) (20). These data are increasingly needed to support the
diagnostic process, to longitudinally follow-up disease evolution,
and to promote translational research. The integration of
imaging data with all other detailed phenotypic information
is becoming mandatory to obtain a complete overview of
patient manifestations. Similarly, the rapid advancement in
NGS approaches and the parallel explosion of bioinformatics
has revolutionized the research on RDs, reinforcing the
understanding of biological pathways and pathomechanisms
(21, 22). The accompaniment of NGS and imaging data
to deep phenotyping is a fundamental enrichment for rare
skeletal disease research. The analysis of that notable amount
of data requires ad hoc computational solutions, like ML
approaches (23).

The rarity of orphan patients, despite the presence of
registries, still has an impact on ML analyses highly, hence then
open data can highly contribute to support themodeling attempt.

OPEN DATA

As clearly stated by Cohen, “medical artificial intelligence
is particularly data-hungry” (24); nonetheless, the demand is
limited by the reduced availability of trusted and reliable
biomedical data (25). Public or open datasets must respond

to three main criteria: online availability, the absence of
costs, and reusability (26). Public data may represent a
solution, considering that they create value in multiple
heterogeneous areas (healthcare, city security, savings, etc.);
therefore, numerous worldwide countries have implemented
governmental open data sites (27) to increase findability
and accessibility.

The open data role in biomedical research is widely recognized
and scientists boost public sharing of resources at an increasing
speed. Free access to data would expedite research and open
new opportunities in scientific research, improving care and
treatment; nevertheless, some substantial pitfalls and issues still
exist (28).

The first limitation is represented by the lack of harmonization
principles governing data (28) and the presence of multiple
standards is a known concern on data sharing and biomedical
information reuse (23). Common “languages,” in terms of
formats and ontologies, are continually being improved for
innovative data types (i.e., omics), but compatibility among
sources is affected by the variability of standards (when present)
on many other data elements and related metadata (i.e.,
phenotyping) (23).

Another challenging point is the reliability of public data (29).
This aspect can include a variety of subtopics that carries costs,
like the unavailability of ongoing quality control, the lack of
updating of datasets, the absence of support for potential users
and the need of highly specialized human resources.

The final and critical point is the use of open data for rare
conditions. This peculiar scenario amplifies the aforementioned
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concerns. At the same time, the need for public data is clear
in paving the way for prompt diagnosis, innovative treatments,
personalized care, and research activities (23).

MACHINE LEARNING FOR RARE
DISEASES

Machine learning, as already anticipated, is a wide and largely
heterogeneous subfield of computer science that in the last
20 years has evolved toward a consolidated and largely useful
discipline. In ML, one is interested in building a robust and
predictive model, which for instance, within a certain degree of
accuracy, can predict a class (classification) or find patterns on
data (i.e., groups via clustering). In the first case, when applied
to clinical data, one often talks of diagnosis prediction, and in
the second, it is often about the stratification of patients. Many
other learning paradigms are available and despite the ubiquitous
success achieved in many applications ranging from engineering
problems to the life science, the systematic application of ML
methods to clinical practice is still relativelymodest albeit starting
to be present in clinical decisions support systems (30–33).
There are many reasons that hamper the widespread diffusion
of ML in the clinic, and in the case of RDs, this scenario is
amplified by several specificities (34, 35), which, however, the
scientific community is addressing via methods, protocols, and
technologies in general.

In the RD, the most important limitation in building
meaningful predictive models, either supervised or agnostic, with
respect to a priori labeling, is the data collection process (36–
38). Although deep learning models typically require thousands
of samples to converge to robust solutions, shallow (i.e., limited
parameters) models still require in the order of hundreds of
samples to build acceptably robust models. It should be stressed
that ML aims at building predictive models, in other words,
models that can be used out-of-sample. While it could be
considered sufficient for a qualitative analysis having a limited
sample size and/or finding associations as in epidemiological
studies (39), in the ML case, there is a more ambitious modeling
attempt that is deemed to fail if working in a very restrictive small
sample regime.

To deal with the small sample regime, the machine literature
provides several possibilities: one may use available data possibly
extending the collection outside the disease of interest to collect
unlabeled examples (40–42), one can inherit from similar models
[transfer learning (43)] to just fine-tune the model and lastly,
one could even imagine a data augmentation strategy (44), that
is finding ways to populate the dataset with new artificially
built samples.

The strategy of collecting more unlabeled data is widely
applicable as it requires gathering more data from possibly
more controls or even more from diseases different from the
current disease under analysis. This is particularly relevant for
rare diseases where many patients with “uncertain” diagnosis
can be present; collecting this additional unlabeled data can give
interesting information about the manifold where data live.

On the other side, data augmentation, possibly through
ingenious generative techniques (45), can be another original

way to face the data scarcity problem. In this second
case, however, it is more difficult to assess the reliability
of this modeling. First, generative networks often need a
large amount of data to be trained, and second, inferring
new data based on a manifold implicitly learned on few
data may lead to a partial tautology rendering the overall
strategy perilous.

The small sample regime, despite being probably the most
impactful and first problem to be faced when dealing with
the RD field, is not however the only point to be carefully
addressed when modeling such data. Despite the wide success
of deep learning paradigms in big data scenarios (to be precise
big sample sizes), they often deliver not easily interpretable
models. To allow the clinician to understand the meaning
of a classification result, it is, therefore, necessary to resort
to possibly less complex but explainable models (46). At a
technical level, this brings to the scene chiefly linear models
[possibly sparse ones (47)] and non-linear rule-based models,
such as decision trees (48) or switching neural networks (49)
for instance.

The availability and effectiveness of explainable models
still are necessary, but not sufficient conditions to determine
robust and explainable models. Indeed, explainable models
are valuable when the explanation that they deliver is stable
and robust inside the domain they deal with (assuming
the same learning method) and across learning algorithms,
ideally. This means that feature weighting/extraction must
be a stable process to allow the clinician to get a value
from the obtained results; this far from the trivial problem
is feature stability, something we recently discussed for
epidemiological data (50). Albeit often neglected in practice,
this problem is relevant particularly when coupled with the
small regime of RDs (50) and sample sizes in general;
unsupervised feature selection techniques can mitigate this
issue (50).

However, when dealing with features it can be relevant to
consider the fairness (51). In other words, when determining
a disease condition possibly “confounding” factors, such as
gender and social status should be protected features, that
is a priori one postulates that the gender or another feature
to be protected cannot determine the disease (or any other)
outcome. While this view today is quite uncommon, yet in
clinical ML, for sensitive disease or particular case-dependent
conditions could be of utility and necessary to protect
specific patient characteristics to avoid discriminations and
exacerbate iniquities.

Feature sets (clinical or omics) are associated inevitably
with costs and time. Getting an X-ray is different from other
diagnostic tools, possibly not standard, such as for instance,
collective lipidomic signatures through mass Spectrometry
(52). As these features set links with different time and
cost profiles, feature selection is particularly challenging
as one would like to maintain the representation power of
possibly costly non-standard features, while at the same
time maintaining a fast and inexpensive diagnostic tool.
These contrasting forces together with, again, the small
data regime call for proper solutions that allow obtaining
a quantitative compromise (a multiobjective optimization
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problem) between accuracy, explainability, and cost/time
effectiveness of the selected clinical or omics data necessary
for diagnosis.

It is hence evident that the delivery of knowledge has several,
sometimes tight, prerequisites which if not met cannot allow any
meaningful analysis; while methods development is fundamental
to the ML field, it is tantamount clear that in clinical ML for RD
the data is the undiscussed protagonist.

A last key aspect is the privacy preserving issue that, for
Europe, translates into GDPR compliance, as already mentioned.
Historically, ML methodologies have been devised having in
mind all the data resident in the same local storage; this is
something largely unmet by the clinical reality where each
hospital/research center has its own dataset/registry not in
sync typically with a central shared, common repository. This
situation is the absolute standard for clinical ML and RDs share
this liability. The need to maintain privacy and avoiding to move
a significant amount of data inspired what is now commonly
under the name of federated ML (53). In this learning paradigm,
data is resident on the original data infrastructure and on the
network, only parameters are shared. Federated ML requires a
specific rethinking of algorithms; this is a beneficial stimulus
to the community, but still requires both a theoretical and
programming effort to redesign and reimplement theoretically
sound and well-established mathematical methodologies. It
is promising that for instance in Europe, this need for
federation has been largely and overall correctly perceived by
the policymaker through initiatives like Gaia-X (54) which have
the specific objective of creating a trustable, distributed, and
federated data sharing infrastructure. Interestingly, very recently,
the Swarm distributed learning paradigm (55) has been pushed as
a further development of federated learning, offering the explicit
capability of nodes of avoiding relying on a central repository
of learning parameters, thus creating an effective collective
swarm of collaborating agents. This technology also involves
decentralized data structures as the blockchain and represents a
very interesting protocol to deal safely with privacy concerns.

CONCLUSIONS

In this contribution, we have discussed what ML has to deal
with in trying to effectively face the RD issue to grant robust,

usable, and actionable knowledge to the clinician. While several
points are shared with the more general realm of the clinical
machine learning, RDs pose specific challenges and for instance,
present an unusual big data regime, in which one has potentially
a huge omics data but still for a limited number of patients, thus
bringing the typical bioinformatics scenario of several features,
small samples. The proof-of-time of ML solutions will have to
deal with the discussed specificities, and the solution is inevitably
a well-concerted mix of rigorous math, trusted and privacy
preserving technologies, and chiefly standardization for data
curation and federation.
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