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Objectives: To develop and validate the model for distinguishing brain abscess from

cystic glioma by combining deep transfer learning (DTL) features and hand-crafted

radiomics (HCR) features in conventional T1-weighted imaging (T1WI) and T2-weighted

imaging (T2WI).

Methods: This single-center retrospective analysis involved 188 patients with

pathologically proven brain abscess (102) or cystic glioma (86). One thousand DTL

and 105 HCR features were extracted from the T1WI and T2WI of the patients. Three

feature selection methods and four classifiers, such as k-nearest neighbors (KNN),

random forest classifier (RFC), logistic regression (LR), and support vector machine

(SVM), for distinguishing brain abscess from cystic glioma were compared. The best

feature combination and classifier were chosen according to the quantitative metrics

including area under the curve (AUC), Youden Index, and accuracy.

Results: In most cases, deep learning-based radiomics (DLR) features, i.e., DTL features

combined with HCR features, contributed to a higher accuracy than HCR and DTL

features alone for distinguishing brain abscesses from cystic gliomas. The AUC values

of the model established, based on the DLR features in T2WI, were 0.86 (95% CI: 0.81,

0.91) in the training cohort and 0.85 (95% CI: 0.75, 0.95) in the test cohort, respectively.

Conclusions: The model established with the DLR features can distinguish brain

abscess from cystic glioma efficiently, providing a useful, inexpensive, convenient, and

non-invasive method for differential diagnosis. This is the first time that conventional MRI

radiomics is applied to identify these diseases. Also, the combination of HCR and DTL

features can lead to get impressive performance.

Keywords: brain abscess, deep transfer learning, radiomics, convolutional neural network, cystic glioma

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2021.748144
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2021.748144&domain=pdf&date_stamp=2021-11-12
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:zhixiongliu@csu.edu.cn
mailto:dengwang@sdnu.edu.cn
mailto:chengquan@csu.edu.cn
https://doi.org/10.3389/fmed.2021.748144
https://www.frontiersin.org/articles/10.3389/fmed.2021.748144/full


Bo et al. DLR for Brain Lesion Differentitation

INTRODUCTION

Brain glioma is the most common intracranial brain tumor
that is extremely difficult to treat. Currently, surgical resection
is the standard treatment of resectable diseases, followed by
postoperative radiotherapy and chemotherapy (1). The majority
of gliomas are solid tumors, but some present cystic changes, such
as cystic glioma, which has different clinicopathological features
from other tumors. Brain abscess is an infectious disease that
has high morbidity and mortality (2, 3). Though the treatment
and prognosis of these two diseases are different, accurate and
timely differential diagnosis is crucial. In many cases, CT and
MR images lack specificity for cystic glioma and brain abscess,
especially when the medical history and clinical manifestations
of the diseases cannot provide a differential diagnosis for
timely treatment measures. At present, the two diseases are
mainly distinguished by pathological examination, with the
caveat of invasive procedure and intra-operator variability. To
accurately distinguish the two diseases, previous studies have
proposed advanced MR images diagnosis techniques (2, 4),
such as susceptibility-weighted imaging and apparent diffusion
coefficients (ADC). However, these diagnosis techniques cannot
obtain high accuracy, and they rely on the experience of
radiologists (5). The use of the most rudimentary imaging
modalities of T1-weighted imaging (T1WI) and T2-weighted
imaging (T2WI) for a training model with a large sample size
contributes to more universality and fewer errors.

As a method of machine learning, radiomics is used for
quantitative image feature extraction from tumor regions of
interest. It has great potential for oncology practice, including
differential diagnosis, prediction of pathological classification,
lymph node metastasis, and survival (6–10). Radiomics has
been applied to brain tumor diseases (11–15), especially in
differentiating brain tumors (16–21). For example, Qian et
al. investigated the ability of radiomic analysis to distinguish
between isolated brain metastases and glioblastoma (16); Dong
et al. used the radiomic features derived from the areas
of peripheral enhancing edema to differentiate glioblastoma
from supratentorial single brain metastasis (17); Zhang et al.
investigated the feasibility of contrast-enhanced T1WI radiomics
features extracted by machine-learning algorithms to distinguish
between low-grade oligodendroglioma and atypical anaplastic
oligodendroglioma (18); Chen et al. applied radiomics analysis to
distinguish between metastatic brain tumors and glioblastomas
based on contrast-enhanced T1WI, and they validated the
discriminative performance of this method (19); Artzi et
al. used radiomics-based machine learning to differentiate
between brain metastasis subtypes and glioblastoma based on
conventional postcontrast T1WI (20). However, the radiomics

Abbreviations:DTL, deep transfer learning; HCR, hand-crafted radiomics; T1WI,

T1-weighted image; T2WI, T2-weighted image; KNN, k-nearest neighbors; RFC,

random forest classifier; LR, logistic regression; SVM, support vector machine;

AUC, Area Under the Curve; DLR, deep learning-based radiomics; ADC, apparent

diffusion coefficients; CNN, convolutional neural networks; LASSO, least absolute

shrinkage and selection operator; RFE, recursive feature elimination; comb-HCR,

combined HCR; comb-DTL, combined DTL; comb-DLR, combined DLR; ROC,

receiver operating characteristic; RQS, radiomics quality score.

features are mainly the texture, size, volume, shape, and intensity
characteristics of the tumor, limiting the potential of this
method. Therefore, extracting more complex features and fusing
them with radiomic features may improve the prediction and
generalization capabilities of the model (21–23).

In recent years, deep convolutional neural networks (CNNs)
(24) with complex network structures have achieved remarkable
results in the field of computer vision, such as tumor grade
prediction, patient prognosis, pathology classification, and organ
segmentation (25, 26). The successful application of deep
learning requires a large number of training cohort sets.
Since the available medical data sets have a limited size, a
pretrained CNN known as “transfer learning” can be employed
to avoid overfitting and replace deep learning in many practical
applications (21, 27, 28).

It is not clear whether T1WI and T2WI, as conventional
routine images in hospitals, also have diagnostic values for
distinguishing brain abscess from cystic glioma. In this study,
we hypothesized that conventional T1WI and T2WI would also
be valuable in distinguishing between these two diseases. To
this end, the DLR features extracted from patients with brain
abscesses or cystic gliomas were used to validate the diagnostic
capability of T1WI and T2WI.

MATERIALS AND METHODS

Patients
This study was reviewed and approved by the Institutional
Review Board of Xiangya Hospital and informed consent was
provided by the patient participating in this study. From January
2017 to October 2020, 216 patients who met requirements
and underwent T1WI and T2WI MRI were included in the
cohort after an initial case screening. Twenty-eight patients were
excluded due to poor MRI quality caused by technical operations
or inspection processes. Finally, 188 patients were enrolled in
this study, among which, 102 patients were diagnosed with brain
abscesses (age [mean ± SD], 47.8 ± 17.6 years; 33 males and 69
females) and 86 were diagnosed with cystic gliomas (age [mean
± SD], 46.2 ± 15.1 years; 27 males and 59 females). The training
cohort and test cohort were divided by stratified sampling with a
ratio of 7:3, and the distribution of the two diseases was almost
the same as that of the overall data set. Then, a nested 5-fold
cross-validation was performed on the training cohort.

Figure 1 showed the flowchart of our study, consisting of
image preprocessing, feature extraction, feature analysis, and
model construction.

Image Acquisition
All MRI examinations were conducted in the radiology
department of Xiangya hospital with a 3.0T MR Scanner.
High-quality MR images were obtained under the following
configurations: ①axial T1WI: layer thickness = 5mm, layer
spacing = 1.5mm, matrix = 512 × 416, field of view = 24
× 24 cm. ②axial T2WI: layer thickness = 5mm, layer spacing
= 1.5mm, matrix = 416 × 512, field of view = 24 × 24 cm.
All MR images were retrieved from the picture archiving and
communication system for further image feature extraction.
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FIGURE 1 | Study workflow overview. (A) Imaging processing; (B) Feature extraction; (C) Feature analysis and model construction.

Image Preprocessing and Tumor
Segmentation
To convert T1WI images to the space of T2WI images,
automatic rigid registration was performed with the ITK-SNAP
software (Version 3.8.0, http://www.itksnap.org/) to segment
the structures in the 3D medical image. Meanwhile, manual
segmentation of the lesions of all subjects was performed on
registered T2WI and T1WI images by a neuroradiologist with
10 years of experience. Then, a radiologist (with 10-years
experience) segmented 50 cases, consisting of 25 pathologically
proven brain abscess cases and 25 cystic glioma cases randomly
selected from all samples. In this way, the consistency of the
extracted HCR and DTL features of the neuroradiologist and
radiologist was evaluated, and the impact of inter-operator
variation on model stability and generalizability was reduced.
Besides, the intra-class correlation coefficient of each feature of
these 50 cases is calculated.

Image preprocessing was performed as follows. Before DTL
features were extracted, an image of the largest cross-sectional
area and its upper and lower layers were chosen as a three-
channel image. Then, a rectangular region of interest around the
tumor contour was used to crop the MR image. Next, the size
of the tumor patch was resized to 224 × 224 to meet the input

size requirement of the pretrained CNN model. Before the HCR
features were extracted, B-spline interpolation was adopted to
resample all images to the same voxel size of 1 × 1 × 1 mm3.
To avoid the influence of different MR image machine scanners
on feature extraction, all images were normalized. Moreover, it
seems that deep learning is less affected by different MR machine
types than radiomics.

Feature Extraction
In line with the Imaging Biomarker Standardization Initiative,
two kinds of features were extracted, i.e., DTL feature and HCR
feature. As for the extraction of the DTL feature, ResNet-50
(29) and VGG-19 (30) pretrained on the natural image dataset
ImageNet (http://www.image-net.org/) were taken as our base
models. (Visual Geometry Group) VGG-19 contains 19 hidden
layers (16 convolution layers and 3 full connection layers). It
uses 3 × 3 convolutional kernels in all layers to deepen the
number of layers and avoid excessive parameters. As for ResNet,
it integrates residual learning to avoid gradient dispersion and
accuracy reduction in deep networks, improving the network
efficiency, accuracy, and execution speed. The internal deep
learning features in the image are also visualized while the
convolutional layer receives the input features and generates
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the output feature mapping. As for the extraction of the HCR
feature, 105 original HCR features were extracted from each of
the axial T1WI and T2WI images using PyRadiomics (Version
2.1.0, https://pyradiomics.readthedocs.io/).

Feature Selection
To prevent overfitting, the multistep feature selection method
was adopted to select the best features for distinguishing brain
abscesses from cystic gliomas. First, all the HCR features were
analyzed in order by the Spearman rank correlation test and
mutual information method. The Spearman rank correlation
test was used to investigate the internal linear correlation
between individual features. The higher the absolute value of
the correlation coefficient, the stronger the correlation. As for
the non-redundant features (with a linear correlation coefficient
< 0.95), the mutual information method was used to capture
arbitrary relationships (both linear and non-linear) between each
feature and object variable. Then, according to the imaging
modality and feature category, the remaining radiomics features
and all DLR features were divided into four feature groups, i.e.,
T1WI-HCR, T2WI-HCR, T1WI-DTL, and T2WI-DTL group.
Finally, the least absolute shrinkage and selection operator
(LASSO) and recursive feature elimination (RFE) method based
on LR and SVMwere adopted to repeatedly create the model and
select the best feature subset in each feature group.

Feature Fusion
Feature fusion indicates that two feature groups are put together.
The T1WI-HCR and T2WI-HCR feature groups were fused to
combined HCR (comb-HCR), and 10 optimal MR image features
were selected; similarly, T1WI-DTL and T2WI-DTL were fused
to combined DTL (comb-DTL); the T1WI-HCR and T1WI-DTL
feature groups were fused to T1WI-DLR, and 10 optimal MR
image features were selected; the T2WI-HCR and T2WI-DTL
feature groups were fused to T2WI-DLR, and 10 optimal MR
image features were selected; the comb-HCR and comb-DTL
feature groups were fused to combined DLR (comb-DLR), and
10 optimal MR image features were selected. Refer Figure 2 for
details of feature selection and fusion flow chart.

Feature Analysis/Model Construction and
Validation
After feature fusion and selection, we used each feature
group separately to build machine learning classification
models, including LR, RFC, KNN, and SVM, implemented by
Python Scikit-learn (https://scikit-learn.org/stable/user_guide.
html). The performance of different classifiers was compared.
To prevent overfitting, we performed 1,000 iterations of nested
5-fold cross-validation to select the best parameters for the
classifier in the training cohorts. The discriminative power
of the model was assessed by AUC values, Youden Index,
and receiver operating characteristic (ROC) curves. Accuracy,
precision, recall, specificity, and F1-score were also used as
quantitative metrics. The AUC values for comparative disease
identification were carried out using DeLong test.

Clinical ADC Maps vs. Our Model
In this study, two experienced radiologists (with more than
10 years of experience in brain tumor MRI) were assigned
to jointly perform image ADC diagnosis, but they were not
involved in the quantitative image analysis described above.
All clinicopathological information were removed, and the
radiologists distinguished brain abscesses from cystic gliomas
based on ADC images only. The proportion of ADCmaps in our
study cohort was counted. Besides, the diagnostic performance
of the two radiologists on the same dataset following the current
clinical practice (including the use of ADC maps) was compared
to that of the established classifier.

Statistical Analysis
The comparison of categorical variables was performed through
chi-square tests or Fisher tests, and the comparison between
quantitative variables was performed through t-tests or Mann-
Whitney U-test. Meanwhile, the Spearman rank correlation test
was adopted to evaluate the correlation and executed in Python.
A p < 0.05 (two-sided) indicates a significant difference in
distinguishing cystic gliomas from brain abscesses. Statistical
analysis was performed with IBM SPSS Statistics (version 25;
IBM Corporation, Armonk, NY, USA), R (https://cran.r-project.
org/), and Python (version 3.6.6, https://www.python.org). A
pretrained CNN model was run using Keras with a Tensorflow
backend (https://keras.io/applications/#Resnet-50 and https://
keras.io/applications/#VGG-19).

RESULTS

Patient Characteristics
A total of 131 and 57 patients were involved in the training
and test cohort of this study, respectively. Specifically, the
training cohort involved 71 patients with brain abscesses and
60 patients with gliomas, while the test cohort involved 31
patients with brain abscesses and 26 patients with gliomas. The
patient characteristics are provided in Supplementary Table 1.
The gold standard for distinguishing between brain abscess
and cystic glioma was confirmed by pathologists through
pathological examination.

Results of the Feature Extraction
To extract the DTL features, the tumor patch images were
input to the pretrained CNN to extract 1,000 features from
each MR image modality, and the extracted features were
outputs from the last fully connected layer of VGG-19 and
ResNet-50. The extracted HCR features included First Order
Statistics (18 features), Shape-based (3D) (14 features), Gray
Level Cooccurrence Matrix (22 features), Gray Level Run Length
Matrix (16 features), Gray Level Size Zone Matrix (16 features),
Neighboring Gray Tone Difference Matrix (5 features), and Gray
Level Dependence Matrix (14 features).

Results of the Feature Selection and
Fusion
After feature selection and fusion, only the features with intra-
class correlation coefficients >0.95 were retained, indicating that
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FIGURE 2 | Feature selection and fusion flow chart. The red box is the original extracted feature. The black box is the feature group. Each feature group contains 10

features. A new feature group was formed after feature fusion and screening of two feature groups.

these features are not affected by multiple tumor segmentation
operators and present high reproducibility. For single image
modality analysis, a feature selection method was used to
preserve 10 optimal features in each group. In multimodality
analysis, the two groups of each modality were combined, and
10 features were filtered out. Refer Supplementary Table 2 for
detailed feature selection results.

DLR vs. DTL vs. HCR
The modeling effects of the combined modality feature with
different category were compared. On the test cohort, the feature
obtained from comb-DLR presented higher diagnostic accuracy
than those from comb-HCR and comb-DTL for distinguishing
brain abscess from cystic glioma. The AUC values of the models

established with the comb-DLR, comb-HCR, and comb-DTL
models features were 0.82, 0.79, and 0.76, respectively; the
AUC values of the models established with the T2WI-DLR,
T2WI-HCR, and T2WI-DTL features were 0.85, 0.80, and 0.71,
respectively; the AUC values of the models established with the
T1WI-DLR, T1WI-HCR, and T1WI-DTL features were 0.74,
0.77, and 0.80, respectively. Refer Figure 3, Table 1 for details of
model comparison results.

Multimodality vs. Single Modality
Since the AUC value of the model established with the
DLR features was statistically higher than that of the models
established with the HCR and DTL features in most cases, the
DLR features were used in the multimodal experiments. On
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FIGURE 3 | ROC comparison. (A,B), comb-HCR vs. comb-DTL vs. comb-DLR in the training cohort (A) and test cohort (B). (C,D) T1WI-DLR vs. T2WI-DLR vs.

comb-DLR in the training cohort (C) and test cohort (D).

the test cohort, the AUC value of the model established with
the T2WI-DLR features was statistically higher than that of the
model established with the T1WI-DLR and com-DLR features.
Model comparison results are provided in Figure 3, Table 1.

Construction and Validation of the Final
Model
As can be seen from Table 1, the optimal model was obtained by
using the T2WI-DLR features combined with an SVM-based RFE
feature selection method, and an SVM classifier. The AUC value
of themodel on the training and test cohort reached 0.86 (95%CI:
0.81, 0.91) and 0.85 (95% CI: 0.75, 0.95) for distinguishing brain
abscess from cystic glioma, respectively. Figure 4 presents the
performance of the optimal model. It can be seen from the figure
that on the training set, the AUC values of the nested 5-fold were
0.86, 0.86, 0.92, 0.88, and 0.80, respectively. Besides, the standard
deviation of the mean AUC value was 0.04, indicating that our
model has good stability and robustness and reduces overfitting.
The optimal cutoff value of the model was determined by Youden

Index. On the test cohort, the sensitivity and specificity of the
model were 73.1 and 87.1%, respectively, with an optimal critical
value of 0.512 and a Jorden index of 0.601. The details of HCR
and DTL feature selection and model construction are listed in
Tables 2, 3, respectively. The selection of the hyperparameters
for each model is listed in Supplementary Table 3. Moreover,
the ROC curves for each model were compared, and the Delong
test results are detailed in Supplementary Table 4. It can be seen
from the table, that T2WI-DLR features (AUC, 0.85) are superior
to T2WI-DTL (AUC, 0.71; P = 0.0058; DeLong test).

DTL Feature Visualization
As shown in Figure 5, the feature maps output by the last
convolutional layer in the VGG-19 and Resnet-50 model are
visualized. The feature map of the visually perceptible tumor
region captures most of the details in the image. To a certain
extent, it confirms the reliability of transfer learning for feature
extraction. By visualizing the learning of the features in the
image by these two networks, more insight into the working of
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TABLE 1 | Model representation.

Imaging modality

and feature category

Features

selection+

Classifier

Training

cohort(Cross

validation)

Test cohort

Mean AUC

(95% CI)

AUC (95% CI) Accuracy Precision Recall F1-score Specificity

HCR T1 WI-HCR RFE(LR)+LR 0.75 (95% CI: 0.61,

0.89)

0.79 (0.67–0.91) 0.67 0.65 0.77 0.61 0.74

T2WI-HCR RFE(LR)+SVM 0.84 (95% CI: 0.72,

0.96)

0.75 (0.62–0.88) 0.75 0.73 0.73 0.73 0.77

comb-HCR RFE(LR)+LR 0.85 (95% CI: 0.74,

0.96)

0.79 (0.68–0.91) 0.77 0.77 0.74 0.75 0.77

DTL T1 WI-DTL RFE(SVM)+SVM 0.89(95% CI: 0.84,

0.94)

0.81 (0.69–0.93) 0.74 0.76 0.62 0.68 0.84

T2WI-DTL RFE(SVM)+SVM 0.9(95% CI: 0.85, 0.95) 0.71 (0.58–0.85) 0.68 0.72 0.5 0.59 0.84

comb-DTL RFE(LR)+LR 0.88(95% CI: 0.81,

0.95)

0.77 (0.65–0.90) 0.65 0.69 0.42 0.52 0.84

DLR T1 WI-DLR RFE(LR)+LR 0.86(95% CI: 0.80,

0.92)

0.75 (0.63–0.88) 0.67 0.65 0.63 0.64 0.68

T2 WI-DLR RFE(SVM)+SVM 0.86(95% CI: 0.81,

0.91)

0.85 (0.75–0.95) 0.77 0.73 0.76 0.75 0.81

comb-DLR RFE(SVM)+SVM 0.89(95% CI: 0.82,

0.96)

0.83 (0.73–0.94) 0.72 0.65 0.71 0.68 0.77

FIGURE 4 | ROC curves of the optimal model (T2WI-DLR). (A) training cohort; (B) test cohort.

the networks can be obtained, and the reasons why the disease
may be correctly identified by transfer learning models can
be understood.

Clinical ADC Maps vs. Our Model
The cases containing ADC maps in the cohort were counted.
There were 33 cases in total, including 21 cases of brain abscess
and 12 cases of cystic glioma. A detailed comparison of the
distinguishment performance between the clinical ADC maps
diagnosis and our model is shown in Table 4. For each patient,

the diagnosis of the radiologist and the model prediction are
listed in Supplementary Table 5. It can be found that our model
has the same accuracy as the clinical ADC assessment, so it has
great potential for distinguishing between the two diseases.

DISCUSSIONS

Accurate identification of brain abscesses and cystic gliomas is
essential to planning appropriate treatment, assessing outcome,
and future prognosis. However, due to the similarity in the
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TABLE 2 | HCR model construction.

Classifier Feature selection method T1 T2

Optimal Mean AUC AUC Optimal Mean AUC AUC

feature number (training cohort) (test cohort) feature number (training cohort) (test cohort)

LR RFE(LR) 10 0.75 0.77 10 0.84 0.81

RFE(SVM) 10 0.74 0.76 10 0.83 0.81

LASSO 5 0.72 0.75 11 0.81 0.80

SVM RFE(LR) 10 0.72 0.75 10 0.84 0.80

RFE(SVM) 10 0.75 0.71 10 0.84 0.80

LASSO 5 0.72 0.75 11 0.82 0.79

KNN RFE(LR) 10 0.70 0.75 10 0.75 0.88

RFE(SVM) 10 0.71 0.78 10 0.74 0.81

LASSO 5 0.71 0.75 11 0.79 0.82

RFC RFE(LR) 10 0.69 0.75 10 0.76 0.83

RFE(SVM) 10 0.73 0.72 10 0.75 0.80

LASSO 5 0.71 0.72 11 0.74 0.86

TABLE 3 | DTL model construction.

Classifier Feature selection method T1 T2

Optimal Mean AUC AUC Optimal Mean AUC AUC

feature number (training cohort) (test cohort) feature number (training cohort) (test cohort)

LR RFE(LR) 10 0.84 0.72 10 0.87 0.73

RFE(SVM) 10 0.89 0.80 10 0.87 0.68

LASSO 0 – – 9 0.81 0.75

SVM RFE(LR) 10 0.86 0.70 10 0.86 0.85

RFE(SVM) 10 0.90 0.71 10 0.83 0.69

LASSO 0 – – 9 0.81 0.75

KNN RFE(LR) 10 0.72 0.54 10 0.82 0.75

RFE(SVM) 10 0.73 0.60 10 0.81 0.61

LASSO 0 – – 9 0.80 0.63

RFC RFE(LR) 10 0.69 0.71 10 0.79 0.69

RFE(SVM) 10 0.72 0.69 10 0.82 0.74

LASSO 0 – – 9 0.72 0.71

conventional MR images, i.e., ring enhancement, it is difficult
to distinguish between the two diseases. In this study, a deep
learning-based statistical analysis method based on multistep
feature selection and fusion was demonstrated and verified.
The experimental results indicate that the method can be
used to distinguish between brain abscess and cystic glioma in
conventional T1WI and T2WI. The previous literature on disease
prediction prognosis and classification differential diagnosis
for quantitative image analysis has shown that deep learning
contributes to better performance of radiomics analysis (21, 27,
31, 32). Our study demonstrates that by extracting DTL features
with VGG-19, a model with excellent feature learning and feature
representation abilities can be obtained. Besides, as shown in
Figure 5, VGG-19 can better focus on the details of the tumor
region than Resnet-50.

According to the feature selection results of the optimal
model, two “good” HCR features were selected for statistical
significance analysis. It can be seen from the box plots in Figure 6
that there is notmuch difference in the distribution of the features
between brain abscess and cystic glioma. All corresponding p-
values of the statistical tests for distinguishing the two diseases
are presented in the figure. These results indicate that these two
features have a good identification ability in this work, showing
the reproducibility and usefulness of feature engineering. Besides,
the two “good” HCR features are all texture features, which reflect
the homogeneous phenomenon in the image, which once again
demonstrates the superiority of texture features in distinguishing
brain abscess from cystic glioma. Previous studies have also
shown that texture features are highly predictive in many tasks,
which is consistent with the results obtained in this study (33, 34).
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FIGURE 5 | Feature visualization. (A,D) The grayscale T1WI, T2WI, and the corresponding heat map are shown, and the red areas indicating greater weighting, with

color bars on the right side of the plot. (B,E), the feature map of the last convolutional layer in the VGG-19 model. (C,F), the feature map of the last convolutional layer

in the Resnet-50 model.

TABLE 4 | Clinical ADC maps vs. our model.

Accuracy Precision Recall F1-score Specificity

ADC maps 0.848 0.818 0.75 0.783 0.905

T2WI-DLR 0.848 0.706 1 0.889 0.762

Compared with using T1WI and T2WI alone in DLR, the
model based on combined modality does not achieve improved
performance. This indicates that the single modality of T2WI is
also a good predictor for distinguishing between brain abscesses
and gliomas, and this is consistent with the fact that the T2
modality is more commonly used in imaging diagnosis of brain
diseases in clinical practice. When the performance of the two
models is stable and the results are complementary, model fusion
can lead to better performance (35).

Previous studies (5, 36–38) have demonstrated that the
advanced MRI techniques, such as magnetic resonance
spectroscopy, susceptibility-weighted imaging, ADC, and
dynamic susceptibility contrast-enhanced, can distinguish
brain abscesses from gliomas, but these techniques have
some limitations. Refer Supplementary Table 6 for model
performance comparison. First, the sample size of these
techniques is small, and only a few cases of pyogenic abscess
and glioblastoma are included, hindering the direct application
of the results to daily clinical practice. Second, the model

based on the combination of intralesional susceptibility
signal and ADC achieved a good AUC value (38). However,
the combination does not lead to obvious improvement of
differential diagnosis, because only a small number of patients
with abscess/glioblastoma show atypical high/low ADC. Finally,
none of the techniques were based on conventional MR images,
increasing the image acquisition difficulty and cost. In this study,
some measures were taken to overcome these limitations. The
relatively larger sample size contributes to a better performance
of conventional MR images for distinguishing brain abscesses
and gliomas. The comparison of dataset size is listed in
Supplementary Table 6. Also, the HCR and DTL features were
extracted from conventional MR images. To our knowledge,
there is no report on integrating HCR and DTL features for
distinguishing brain abscesses from cystic gliomas. Besides,
our research is based on some ordinary image data and does
not require special training, so it has significant potential. In
addition, DTL feature extraction uses a fixed-size bounding
box for the tumor region, which not only provides information
about intertumoral heterogeneity but also provides tumor
microenvironment information to a certain extent.

To promote the development of radiomics as imaging
biomarkers, a plethora of studies have used radiomics quality
score (RQS) to evaluate and standardize radiomics (8, 39, 40).
The RQS of our study was satisfactory at 15 points (41.7%
of the ideal quality score), and the detailed result is listed in
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FIGURE 6 | The box plots of two “good” T2WI-HCR of T2WI-DLR with the results of the statistical test. (A) original_glszm_SmallAreaEmphasis; (B)

original_gldm_DependenceNonUniformityNormalized. Brain abscess:0; Cystic glioma:1.

Supplementary Table 7. The RQSs of the relevant work (16–
20) were analyzed in our study, but only our study is open
to science and data, only one study conducted a multivariable
analysis with non-radiomics features (20), and only one study
based on multicenter validation (16). Besides, no research has
conducted a phantom study, collected images of individuals at
additional time points, discussed biological correlates, conducted
a prospective study, or reported the cost-effectiveness of the
clinical application.

The limitations of our work are as follows. First, due to
the difficulty of obtaining external validation data, the patients
in our study were single-center. The effects of clinical ADC
maps diagnosis were compared with our proposed model,
but this sequence was not added to our model due to the
insufficient sample size of ADC maps. Multicenter validation,
multi-MRI sequences, and prospective studies will be involved
in our future work. Meanwhile, additional features such as
proteomics, transcriptomics, pathomics, and genomic features
were not considered in our study. Multi-omics joint analysis that
integrates complex structural systems with multiple layers, levels,
and functions may enhance the performance to identify brain
abscess and cystic glioma and overcome the limitations of a single
theoretical model. Besides, this study only used the image of the
largest cross-section area with the upper and lower layers as the
input to the VGG-19 or ResNet-50 model. The use of the 3D
volume of the tumor/region of interest should be investigated in
future research. Finally, the application of our study to identify
other brain tumors and the enhancement of the algorithm will
be explored.

CONCLUSIONS

This paper first reports a model combining DTL features and
HCR features from conventional MRI for distinguishing brain
abscesses from cystic glioma. The study results provide an
effective, inexpensive, convenient, and non-invasive method for
differential diagnosis.
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