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Background: Today’s machine-learning based dermatologic research has largely
focused on pigmented/non-pigmented lesions concerning skin cancers. However,
studies on machine-learning-aided diagnosis of depigmented non-melanocytic lesions,
which are more difficult to diagnose by unaided eye, are very few.

Objective: We aim to assess the performance of deep learning methods for diagnosing
vitiligo by deploying Convolutional Neural Networks (CNNs) and comparing their
diagnosis accuracy with that of human raters with different levels of experience.

Methods: A Chinese in-house dataset (2,876 images) and a world-wide public dataset
(1,341 images) containing vitiligo and other depigmented/hypopigmented lesions were
constructed. Three CNN models were trained on close-up images in both datasets. The
results by the CNNs were compared with those by 14 human raters from four groups:
expert raters (>10 years of experience), intermediate raters (5-10 years), dermatology
residents, and general practitioners. F1 score, the area under the receiver operating
characteristic curve (AUC), specificity, and sensitivity metrics were used to compare the
performance of the CNNs with that of the raters.

Results: For the in-house dataset, CNNs achieved a comparable F1 score (mean
[standard deviation]) with expert raters (0.8864 [0.005] vs. 0.8933 [0.044]) and
outperformed intermediate raters (0.7603 [0.029]), dermatology residents (0.6161
[0.068]) and general practitioners (0.4964 [0.139]). For the public dataset, CNNs
achieved a higher F1 score (0.9684 [0.005]) compared to the diagnosis of expert raters
(0.9221 [0.031]).

Conclusion: Properly designed and trained CNNs are able to diagnose vitiligo without
the aid of Wood’s lamp images and outperform human raters in an experimental setting.
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INTRODUCTION

Vitiligo, the most common depigmentation disorder (1), can
be a psychologically devastating disease that impacts the
quality of life. Many dermatoses (e.g., pityriasis alba and
nevus depigmentosus) may mimic vitiligo, especially at early
onset. Therefore, differential diagnosis of vitiligo from other
depigmented and hypopigmented lesions can be difficult
(2). At present, vitiligo diagnosis is commonly accomplished
by dermatologists based on patients medical history and
physical examination including inspection with Wood’s lamp
(3). Such a diagnosis method is largely influenced by the
dermatologists’ experience and subjectivity in visual perception
of the depigmented skin lesions. Highly trained expert clinicians
with the aid of Wood’s lamps are indispensable for accurate and
early detection of vitiligo, especially for patients with an atypical
presentation. However, standard clinical diagnosis may fail to
attain high accuracy in differentiating early vitiligo, particularly
for dermatologists with less clinical experience. In the absence of
Wood’s light, the diagnosis accuracy could be further decreased,
which hinders the development of teledermatology services since
such professional equipment may not be available at the patient
side (4).

Different from the diagnosis performed by human physicians
that depends largely on subjective judgement and is not surely
reproducible, standardized and objective deep learning (DL)
tools were regarded as a potential support system able to provide
reliable diagnosis of skin lesions (5). In particular, one of the
common deep learning models, convolutional neural networks
(CNNs), have recently shown expert-level performance in the
classification of skin diseases on medical images (6-8).

Although several previous studies (9-11) have investigated
CNNs for diagnosing skin disorders, prior dermatologic
research involving CNNs has largely focused on pigmented/non-
pigmented lesions concerning skin cancers (12-20). So far, very
few studies exist on CNN-aided diagnosis of depigmented non-
melanocytic lesions, such as for vitiligo which is more common
but difficult to diagnose by the unaided eye (21-24). Therefore,
it is under-explored whether CNNs can benefit the diagnosis of
depigmented skin lesions, especially comparing to dermatologists
with different levels of experience. On the other hand, many prior
studies have exploited the visual recognition of skin lesions using
dermoscopic images (25-28), where a dermatoscope is required.
However, dermatoscopes are usually unnecessary for many kinds
of common skin diseases, e.g., pigmentary issues. Thus, it is
also unclear how CNNs perform if being trained with clinical
photographs but without dermoscopic images.

The goal of our work is to perform a comprehensive
assessment and evaluation of CNN-based techniques for vitiligo
diagnosis considering various clinical scenarios. Toward this, we
investigated the potential of employing CNNs for diagnosing
vitiligo in the absence of highly experienced experts and Wood’s
lamp examination. We collected a large set of clinical close-
up images with suspected vitiligo depigmentation and a public
dataset through collecting a set of publicly available repositories
containing vitiligo-type lesions (e.g., pityriasis alba, rosea, and
versicolor) acrossing different ethnicities/races. We trained and

evaluated CNNs using these images, and compared the CNNS
performance with the diagnosis conducted by dermatologists
with different levels of clinical experience.

MATERIALS AND METHODS

Deep Learning Background

In a standard DL-based process for image classification, a CNN
model is first trained using a training set containing a collection
of images, each image associated with a class label (29). Model
training enables a CNN to take an image as input, extract the
image features (abstraction), and output the final prediction as
class probability. During model training, a subset of data is “held
back” and periodically used for evaluating the accuracy of the
model, which is called the validation set. After the model goes
through the training phase utilizing the training and validation
sets, a test set is used for the final evaluation to assess the
performance (i.e., generalization) of the model. A test set is a
collection of images that are not involved in any part of the
training process and thus allows one to compare different models
(or human raters) in an unbiased way.

Datasets

An in-house dataset and a public dataset were employed for
this study in the various phases of CNN development (shown in
Figure 1), which are discussed below.

In-house Dataset

The in-house dataset consists of images from retrospective
consecutive outpatients obtained by the dermatology department
of Qingdao Women and Children’s Hospital (QWCH) in China.
The data acquisition effort was approved by the institutional
review board of QWCH (QFELL-YJ-2020-22 protocol). For
each patient with suspected vitiligo (e.g., pityriasis alba,
hypopigmented nevus), three to six clinical photographs of the
affected skin areas were taken by medical assistants using a
point-and-shoot camera Canon EOS 200D.

The in-house dataset was divided into two subsets based on
the collection dates of the patients and the reference standard.
The experimental subset contains the photographs taken from
May 2019 to Dec. 2019, and was generated according to
the image-based evaluation. The clinical subset contains the
photographs taken from Jan. 2020 to May 2020, and was
generated by dermatologists performing diagnosis in the clinical
setting. Given the much larger scale, the experimental set was
used throughout the CNN training, validation, and testing
processes. The clinical set, on the other hand, was used as another
test set for simulating a study in which a CNN model is trained
on past data and tested on future cases.

Experimental Set: We extracted 1,1404 lesion images
recording 1,132 patients with suspected vitiligo. Five thousand
nine hundred seventy-one images with insufficient quality
or duplicate lesions were excluded. The remaining 5,433
images (including 2,685 close-up and 2,748 Wood’s lamp
ones) from 989 patients were provided to two board-certified
dermatologists with 10- and 20-years of clinical experience.
The dermatologists classified these images into two classes
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FIGURE 1 | An overview of the datasets used for this study.

(vitiligo, or not vitiligo) using only image-based information.
Unanimous consensus was reached for 2,201 close-up images,
which formed the experimental set. Following the common CNN
training strategy, we performed stratified random sampling and
split the experimental set into the training set (1,320 images),
validation set (220 images), and test set A (661 images) with a
ratio of 60:10:30.

Clinical Set: The clinical set contains 675 close-up images of
225 patients with suspected vitiligo. Each patient was evaluated
through a standard clinical inspection by dermatologists,
including the patient’s medical history and physical examination
with Wood’s lamp. For patients with an atypical presentation,
a blood test for checking autoimmune function was performed.
Each clinical image was then labeled as vitiligo or not vitiligo
according to the clinical diagnosis result. All the images in the
clinical set constituted test set B, with a higher reference standard
than that of test set A.

For patients with suspected vitiligo, the most common
site of onset was the head and neck area (46.1%), followed
by the trunk (25.3%), the limbs (23.3%), and combinations
of these categories if onset occurred in multiple locations
simultaneously (5.3%). The duration of the disease in our in-
house dataset ranged between 0.5 and 132 months with a
mean and SD of 23 £ 57 months. The level of activity for
vitiligo was classified into progressive (37%), regressive (11%),
or stable over the previous 6 months (52%). Most of the
patients for outpatient clinic were with early onset of suspected
vitiligo, and thus the lesions varied in size from 5mm to
23 cm.

Public Dataset

For the sake of comprehensive performance evaluation of CNN
models with an external cohort, we constructed a public dataset
through collecting images of differential diagnosis of vitiligo from
publicly available repositories on the Internet. We used the public
dataset as a complement to the assessment of CNNs using our
in-house dataset, since the public dataset contains patients of
different races, ethnicities, and skin colors. The statistical data of
both the public dataset and the in-house dataset is summarized
in Table 1.

We collected the public dataset from 7 public dermatology
atlas websites: DermNet (30), DermNet NZ (31), AtlasDerm (32),
DermlS (33), SD-260 (34), Kaggle (35), and DanDerm (36). Each
repository contains various types of skin lesions, and we targeted
skin diseases that have similar characteristics as vitiligo. The
images in the integrated public dataset were divided into two
classes: vitiligo (712) and not vitiligo (629), according to the
classification labels in the repositories. Stratified sampling was
performed to split the public dataset into the training set (50%),
validation set (20%), and test set C (30%). The dataset is publicly
available and can be accessed at this link.

CNN Training Setup

We experimented with three commonly-used CNN models
[VGG (37), ResNet (38), and DenseNet (39)] suitable for
classification of medical images. These CNNs share a similar
overall architecture consisting of two connected modules,
the feature extractor module and the classifier module. The
feature extractor module utilizes multiple consecutive layers of
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TABLE 1 | Statistical data of the in-house dataset and public dataset.

Dataset Amount Region Classes
Public DermNet 248 us VL&PA&TV &
PB & AL & NA
DermNet NZ 246 New Zealand VL & ME & MO &
PA & PR & PV
AtlasDerm 147 Brazil VL & HN & PA &
PV&TV&PB &
AL
DermIS 71 Germany VL & HN & PA &
PV
SD-260 251 Worldwide VL & HN & PA &
PV &TV
Kaggle 368 Unknown VL
DanDerm 10 Denmark VL & HN & PA
In-house 2,876 Asian VL & HN & PA &
PV & PB & AL &
NA & AN

VL, vitiligo;, HN, halo nevus; FA, pityriasis alba, PV, pityriasis versicolor; PR, pityriasis rosea;
ME, melasma; MO, morphea; TV, tinea versicolor; PB, piebaldism; AL, albinism; NA, nevus
anemicus; AN, Achromic Nevus.

convolutions to extract a set of relevant high-level features from
an input clinical image. The classifier module employs fully
connected layers to generate the output as class probabilities
associated with each class (vitiligo or not vitiligo). The class with
highest associated probability was selected as the output class for
the image.

To speed up the model training process with improved
classification results, we performed transfer learning (40) that
reused modules of already trained CNN models. In brief, we
employed three models available in the PyTorch framework:
VGG-13, ResNet-18, and DenseNet-121. These models were
pre-trained with tuned network parameters using the ImageNet
dataset (41). The feature extractor architecture of each network
model remained unchanged while the classifier part of the model
was customized for our study. In particular, the last layer of the
classifier in each network model was replaced by a new layer to
generate vitiligo data-specific output.

We used a standard back-propagation implementing the
stochastic optimization algorithm Adam. A class balanced cross-
entropy based loss function was utilized with a learning rate of
0.00002 (B1 = 0.9, B2 = 0.999, ¢ = 1e-8) (42). Experiments
were performed on NVIDIA-TITAN and Tesla P100 GPUs using
the PyTorch framework for 1000 epochs. The batch size for
each experiment was selected as the maximum size allowed by
the GPUs. Images were resized and normalized before training
and evaluation (224x224). Data-augmentation operations such
as horizontal and vertical flips were applied for robust feature
extraction and for avoiding overfitting.

Evaluation

The performances of the three trained CNN models on vitiligo
diagnosis were evaluated using the three test sets of the in-
house dataset and the public dataset, and compared with the

diagnosis given by a pool of dermatologists with different levels
of clinical experience.

Human Raters
The test participants for performance comparison with
CNNs comprised of 14 human raters: four board-certified
dermatologists, five dermatology residents (DRs), and five
general practitioners (GPs). The board-certified dermatologists
were further divided into two groups according to their years
of clinical experience: two intermediate raters (5-10 years, IRs)
and two expert raters (> 10 years, ERs). The raters were asked to
classify the clinical close-up images into vitiligo or not vitiligo.
In order to assess the diagnosis performance of the human
raters in the presence or absence of Woods lamp, the in-
house dataset included two test sets in a similar scale. For test
set A (661 images), corresponding Wood’s lamp images (625
images in total) were provided to the human raters to aid their
diagnosis, and close-up images were always shown before the
corresponding Wood’s lamp images. The final classification of
each clinical image was based on the combination of both the
imaging modalities. For test set B (675 images), only close-up
images (without any Wood’s lamp information) were provided
to all the raters for the same classification task. For test set C
(401 images), only the 2 ERs representing the highest level of
clinical skills were asked to classify the close-up images in the
public dataset.

Statistical Analysis

Using 2-tailed, paired sample t-tests, p-values were computed.
For p < 0:05, observations were considered as statistically
significant. The F1 score (F1), area under the receiver operating
characteristic curve (AUC), sensitivity (SE), and specificity (SP)
metrics were used for performance evaluation. Every experiment
was repeated five times for variability analysis. The mean
and standard deviations were used to report the outcome of
each experiment.

RESULTS

In-house Dataset Results

CNN Results

Experimental results on test set A and test set B obtained by the
three CNN models are shown in Table 2. For test set A, the VGG
model achieved the highest F1 scores and AUC scores. Pairwise
comparison of the F1 scores revealed that the better results
obtained by the VGG model (mean: 0.8864, 95% CI, 0.8913-
0.8821) were statistically significant compared to the ResNet
model (mean: 0.8732, 95% CI, 0.8805-0.8652; p = 0:030) and
the DenseNet model (mean: 0.8808, 95% CI, 0.8897-0.8759; p
= 0:011). Similar analysis for the AUC metric revealed that the
better results obtained by the VGG model (mean: 0.8506, 95%
CI, 0.8565-0.8437) were statistically significant in comparison
to the ResNet model (mean: 0.8397, 95% CI, 0.8466-0.8300; p
= 0:001) but not in comparison to the DenseNet model (mean:
0.8465, 95% CI, 0.8597-0.8306; p > 0:05). Besides, the VGG
model attained the best specificity (SP = 0.9129) and sensitivity
(SE = 0.7905).
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TABLE 2 | Quantitative results of CNN based vitiligo classification.

F1 AUC SP SE

(a) Test

Set A

VGG 0.8864 + 0.005 0.8506 + 0.005 0.9129 + 0.012 0.7905 + 0.023
ResNet 0.8732 + 0.006 0.8397 + 0.007 0.9019 £+ 0.014 0.7753 + 0.025
DenseNet  0.8808 + 0.005 0.8465 + 0.011 0.9064 + 0.013 0.7838 + 0.037
(b) Test

SetB

VGG 0.7649 + 0.015 0.7302 £+ 0.008 0.7905 + 0.021 0.6699 + 0.014
ResNet 0.7363 + 0.031 0.7024 + 0.023 0.7614 £+ 0.042 0.6434 + 0.039
DenseNet  0.7562 + 0.024 0.7401 &+ 0.028 0.7682 + 0.021 0.7119 + 0.038
(c) Test

Set C

VGG 0.9684 + 0.005 0.9946 + 0.005 0.9629 + 0.012 0.9721 + 0.002
ResNet 0.9584 + 0.004 0.9848 + 0.007 0.9567 + 0.016 0.9515 + 0.010
DenseNet  0.9618 £+ 0.030 0.9819 4 0.027 0.9609 + 0.027 0.9623 + 0.032

TABLE 3 | Quantitative results of vitiligo classification by human raters with
different levels of clinical experience.

F1

SP

SE

(a) Test Set A
Expert Raters (ER)
Intermediate Raters
(IR)

Dermatology
Residents (DR)

General
Practitioners (GP)

(b) Test Set B
Expert Raters (ER)

Intermediate Raters
(IR)

0.8933 + 0.0440
0.7608 + 0.0290

0.6161 + 0.0680

0.4964 + 0.1390

0.7708 + 0.0850
0.7193 £ 0.0210

0.9989 + 0.0020
0.7615 £ 0.0020

0.7387 £0.1130

0.5013 £ 0.3194

0.6465 + 0.2070
0.5086 + 0.0120

0.8107 £ 0.0750
0.9369 + 0.0550

0.7840 + 0.1040

0.7520 + 0.0910

0.9375 + 0.0170
0.9625 + 0.05630

On test set B, the VGG model achieved the best F1 scores
(mean: 0.7649, 95% CI, 0.7813-0.7500). Pairwise comparison
revealed that the results by the VGG model were not statistically
significant compared with the ResNet model (mean: 0.7363, 95%
CI, 0.7813-0.7024; p > 0:05) and the DenseNet model (mean:
0.7562, 95% CI, 0.7932-0.7351; p > 0:05). For the AUC metric,
the DenseNet model (mean: 0.7401, 95% CI, 0.7819-0.7175)
achieved the best scores. In comparison to the ResNet model
(mean: 0.7024, 95% CI, 0.7411-0.6825; p = 0:036), DenseNet
showed significant improvement, but not with respect to the
VGG model (mean: 0.7302, 95% CI, 0.7411-0.7228; p > 0:05).
The VGG model achieved the best specificity (SP = 0.7905), and
the DenseNet model achieved the best sensitivity (SE = 0.6699).

Observe that the F1 scores for test set B were overall lower
compared to test set A. This can be attributed to the differences
in the datasets used for the network training and testing.
Specifically, being trained and validated on one dataset, e.g., the
experimental data (test set A), CNN models often suffer from the
domain shift phenomenon (41) when being tested on another
dataset, e.g., the clinical data (test set B), which may have certain
different characteristics and features that the trained models have
not seen sufficiently. Such differences between image datasets
may be induced by different imaging settings (e.g., imaging
equipment, equipment parameters, lighting conditions, etc., used
in different clinics). A domain shift can cause a trained model
to have lower performance when being tested on a dataset with
somewhat (or even considerably) different characteristics, which
may be the case for test set B. We speculate that a domain shift
could even affect some less experienced human raters. Further
inspection revealed that the drop in F1 score (and other metrics)
on test set B was mainly caused by a larger number of false
negative cases, i.e., a vitiligo lesion was classified by the CNNs
as a not vitiligo one.

Comparison With Human Raters
Experimental results on test set A and test set B obtained by
human raters are shown in Table 3. On test set A, the average

Dermatology 0.6243 £ 0.0740 0.6117 +£0.2210 0.7050 £ 0.1580
Residents (DR)

General 0.4633 £ 0.1910 0.6275 £+ 0.2640 0.5200 =+ 0.2830
Practitioners (GP)

(c) Test Set C

Expert Raters (ER) 0.9221 £ 0.0810 0.8028 £ 0.0570 0.9642 4 0.0280

F1 score achieved by the ERs was 0.8933 (mean: 0.8933, 95%
CI, 0.9247-0.8619), which was comparable to the best F1 score
obtained by the VGG model (mean: 0.8864, 95% CI, 0.8913-
0.8821). The average F1 scores of the IRs (mean: 0.7603, 95%
CI, 0.7806-0.7400), the DRs (mean: 0.6161, 95% CI, 0.6939—
0.5231) and GPs (mean: 0.4964, 95% CI, 0.6667-0.3469) were
significantly lower than those of all the CNN models. On test
set B, the ERs had the highest F1 score (mean: 0.7708, 95% CI,
0.8315-0.7103) among all the human raters. IRs, DRs, and GPs
achieved average F1 scores of 0.7193 (mean: 0.7193, 95% ClI,
0.7339-0.7047), 0.6243 (mean: 0.6243, 95% CI, 0.7500-0.5569),
and 0.4633 (mean: 0.4633, 95% CI, 0.6000-0.1363), respectively.
The VGG model attained a similar F1 score as that of ERs,
and significantly outperformed all the other human raters in F1
score (VGG mean: 0.7649, 95% CI, 0.7812-0.7500) on test set
B. It is interesting to note that both ERs and IRs have relatively
high sensitivity compared to the CNNs, indicating lower false
negative cases.

Analysis of Wrongly Predicted Cases

The differential diagnoses leading to wrongly classified cases
by the human raters include pityriasis alba, achromic nevus,
piebaldism, and pityriasis versicolor. Skin lesions with white
patches/macules and clear boundaries were easily misdiagnosed
as vitiligo (see examples in the Supplementary Material), and
only very few vitiligo cases were misclassified as non-vitiligo
due to light patch color. Thus, human raters demonstrated
relatively high sensitivity. The factors causing wrong predictions
can be (i) the color difference between patient skin and lesion,
(ii) the photo lighting, and (iii) the shape and boundary
of lesions. For CNNs with respect to black box predictors,
no distinctive features were observed among all the wrongly
classified cases.
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Public Dataset Results

Table 2(c) shows the experimental results obtained by the CNNs
on the public dataset (test set C). The VGG model (F1-mean:
0.9684, 95% CI, 0.9726-0.9626; AUC-mean: 0.9946, 95% CI,
0.9918-0.9961) outperformed the other two CNNs in both F1
score and AUC ([ResNet] F1 mean: 0.9584, 95% CI, 0.9626-
0.9551; AUC mean: 0.9848, 95% CI, 0.9915-0.9768; [DenseNet]
F1 mean: 0.9618, 95% CI, 0.9825-0.9277; AUC mean: 0.9819,
95% CI, 0.9993-0.9511). However, the improvement shown by
the VGG model was not statistically significant (p > 0:05)
compared to the other two CNN models. In comparison to
the ERs, the VGG model achieved better accuracy in all the
metrics and the reason may be that CNNs were trained using
a portion of the public dataset while human raters were not.
Such high accuracy highlights the effectiveness of the CNNs in
discriminating between vitiligo and not vitiligo skin lesions.

DISCUSSION

Vitiligo is a psychologically devastating skin disorder as it
typically occurs in exposed areas (the face and hands) and
has a major impact on self-esteem. In the new media era,
people’s awareness of vitiligo has increased rapidly. This in
turn has led to an increasing number of people seeking for
vitiligo diagnosis in hospitals. On the other hand, the successes
of CNNs in medical image classification applications have
brought excitement in recent years. In this context, we aimed
to develop and train CNNs to diagnose vitiligo with an accuracy
comparable to human raters by using only clinical photographs.
This enables potential teledermatology with remote diagnosis
services to reduce the reliance on common clinical medical
resources to a certain extent, especially in the context of the
current epidemic.

In order to simulate vitiligo diagnosis in real telemedicine
scenarios, we have used a large and balanced dataset of
clinical images taken by a camera, instead of dermoscopic
images acquired from dermatoscopes. Although dermoscropic
photographs are able to capture accurate details of perilesional
skin lesions (e.g., the starburst appearance, comet tail
appearance), and thus ease the differentiation of vitiligo
lesions from other visually similar hypopigmentary disorders,
dermatoscopes are usually unnecessary for pigmentary issues
in clinical settings and dermoscope is not even available in
many dermatology departments. Furthermore, our in-house
dataset contained images capturing lesions with depigmented
skin or white patches/macules, which can be used for differential
diagnosis of vitiligo. This is markedly different from the known
DL-based vitiligo classifications in the literature where only
normal-looking pigmented skin (22, 24) or vascular tumors (23)
were selected as the non-vitiligo class.

Wood’s lamp is a common diagnostic tool in dermatology.
On vitiligo, due to the loss of epidermal melanin, depigmented
patches appear bright bluish-white with sharp demarcations in
Wood’s light, thus making Wood’s lamp quite useful for the
diagnosis of vitiligo. In this study, Wood’s lamp images were

offered to aid the diagnosis of the human raters in a certain
test set (test set A), while the CNNs used only clinical images
for both training and testing. This provided a distinct advantage
to the human raters on the classification task of test set A.
The reasons why CNNs not using Wood’s lamp images were
two-fold. First, CNN training using both close-up images and
Wood’s lamp images requires that the image acquisition for
both these two types of images captures exactly the regions of
the same lesions with well-aligned one-to-one correspondence,
which is infeasible in practice. Further, new CNN models must
be developed for multi-modal image classification for vitiligo
diagnosis using both close-up and Wood’s lamp images, which
are currently not known in the literature. Second, although
Wood’s lamp itself is quite inexpensive and quite common in
hospitals, such equipment may not be available at the patient
side in teledermatology scenarios and its effective use requires
professional training.

We performed three-fold evaluations on the diagnostic
ability of dermatologists in situations where only image data
were available while face-to-face clinical examination was not
possible. First, during the generation of the experimental
dataset, 484 (18.03%) images were classified into mutually
disagreeing results by the two expert dermatologists. This
demonstrated that even board-certified experts cannot make
highly accurate vitiligo diagnosis using only image-based
information (i.e., clinical and Woods lamp images). This
was further confirmed by the quantitative results of vitiligo
classification by another two experts on test set A for which
the average F1 score was 0.8933. Second, the involvement of
human raters with different levels of experience in our evaluation
demonstrated that vitiligo diagnosis is largely influenced by
the dermatologists’ experience and their subjectivity, as a clear
diagnostic performance difference was observed among human
raters with different clinical experience for both test set A and
test set B. Third, a horizontal comparison for each human
rater group between test set A and test set B solidified the
importance of using Woods lamp in clinical examinations.
Specifically, in the absence of Wood’s lamp information in
test set B, the overall accuracy of the intermediate raters
decreased significantly.

The possibility of deploying CNN models for vitiligo diagnosis
was assessed in two aspects. On the one hand, in comparison
with human raters with different clinical experience, CNNs
outperformed all the dermatologists (except the ERs) when
only clinical images were provided. In the presence of Wood’s
lamp information to human raters, CNNs achieved comparable
accuracy with that of the ERs and outperformed all the human
raters with less experience. On the other hand, the high accuracy
achieved on the public dataset validated the capability of our
trained CNN models on external cohort. The much higher F1
score compared to that for the in-house dataset was possibly
due to the facts that (i) most of the images in the public
dataset capture very typical vitiligo lesions, and (ii) vitiligo in
dark skinned individuals is more easily diagnosed (3). This
observation was consistent for the ERs who achieved a notable
accuracy improvement on test set C over test set B. The
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performance difference among CNN models confirmed that (i) a
CNN should be carefully designed to maximize the performance,
(ii) transfer learning is quite helpful in dealing with small training
datasets in medical applications, and (iii) it would be beneficial to
consider domain shifts (43) in CNN training.

There are still several limitations associated with our study.
First, for our in-house dataset, patients were all ethnically
Asian women and children. Different ethnicities/races will be
incorporated in our future works which may further improve
the vitiligo diagnosis ability of CNNs. Second, this study was
restricted to pure image-based information and we did not
include non-image information such as age, gender, and history
of the lesions (44, 45). Multi-modal data based investigation
could be explored as metadata is commonly available which may
be used as part of the input to teledermatology services. Third,
we adopted clinical evaluation results by expert dermatologists
for data annotation, instead of using histological examinations.
This is because it is rarely necessary to perform a skin biopsy to
confirm a diagnosis in current clinical practice (1).

In conclusion, our findings suggest the potential benefits of
deep learning methods as a remote diagnostic technique for
vitiligo in telemedicine scenarios where Wood’s lamp is not
available. We think that the CNN method assessed in this
work is able to play an assistant role in the teledermatology
setting, while the final diagnosis decision should still be made by
expert dermatologists whenever possible. For example, patients
may upload skin lesion images taken using their smartphones
after which the doctors can determine whether an outpatient
examination is needed based on the CNN output and the patients’
metadata. Further research is needed to evaluate the models’
performance on individuals of different races and ethnicities. As
future work, we will explore the possibility of using CNN models
to evaluate the activity of skin lesions which may significantly
benefit the consequent therapeutic treatment.
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