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Cell therapy practices date back to the 19th century and continue to expand on

investigational and investment grounds. Cell therapy includes stem cell- and non–stem

cell-based, unicellular and multicellular therapies, with different immunophenotypic

profiles, isolation techniques, mechanisms of action, and regulatory levels. Following

the steps of their predecessor cell therapies that have become established or

commercialized, investigational and premarket approval-exempt cell therapies continue

to provide patients with promising therapeutic benefits in different disease areas. In this

review article, we delineate the vast types of cell therapy, including stem cell-based and

non–stem cell-based cell therapies, and create the first-in-literature compilation of the

different “multicellular” therapies used in clinical settings. Besides providing the nuts

and bolts of FDA policies regulating their use, we discuss the benefits of cell therapies

reported in 3 therapeutic areas—regenerative medicine, immune diseases, and cancer.

Finally, we contemplate the recent attention shift toward combined therapy approaches,

highlighting the factors that render multicellular therapies a more attractive option than

their unicellular counterparts.

Keywords: cell therapy, FDA regulations, multicellular therapies, regenerativemedicine, cancer, immune diseases,

bone marrow aspirate concentrate (BMAC), mesenchymal stem cells

INTRODUCTION

Cell therapy refers to the transfer of autologous or allogeneic cellular material into a patient for
medical purposes (1, 2). The year 1889 witnessed the first practices of cell therapy by Charles-
Édouard Brown-Séquard—pioneer in hormone therapy at the time—who attempted to suppress
the effects of aging using injections of animal testicle extracts (3). Today, cell therapy continues
to evolve with ongoing investigations for clinical safety and efficacy, and with a global market size
estimated to expand from USD 9.5 billion in 2021 to USD 23.0 billion in 2028 (4). Cell therapy
combines stem cell- and non–stem cell-based unicellular or multicellular therapies. It typically
employs autologous or allogeneic cells; might involve genetic engineering or manipulations
in formulation; and can be administered topically or as injectables, infusions, bioscaffolds, or
scaffold-free systems (5–9). Cell therapy spans multiple therapeutic areas, such as regenerative
medicine, immunotherapy, and cancer therapy. Currently, most cell therapies are in early stages
of development (phase 1/2), with several exceptions being either a current best practice in specific

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2021.756029
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2021.756029&domain=pdf&date_stamp=2021-11-22
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:moutih.rafei.1@umontreal.ca
mailto:riam.shammaa@utoronto.ca
https://doi.org/10.3389/fmed.2021.756029
https://www.frontiersin.org/articles/10.3389/fmed.2021.756029/full


El-Kadiry et al. Clinical Benefits of Cell Therapy

settings (e.g., bone marrow/stem cell transplants, hepatocyte
transplantation, skin equivalents), or approved for specific
indications, such as PROVENGE R© (sipuleucel-T), LAVIV R©

(azficel-T), MACI R© (autologous cultured chondrocytes on
porcine collagen), and KYMRIAHTM (tisagenlecleucel) among
others (Table 1) (5, 9, 27). Herein, we describe the different
types of cell therapies, including stem cell-based and non–
stem cell-based cell therapies, providing an overview of their
nature as well as isolation and characterization techniques. We
further create the first-in-literature portfolio for the different
“multicellular” therapies, delineating their different cellular
components and areas of use. In addition to reviewing the
FDA’s regulatory guidelines governing their use, we dive into
the pros of cell therapies reported in regenerative medicine,
immune system disorders, and cancer. Finally, we give our
perspective on why multicellular therapies could contribute
to more beneficial clinical outcomes compared to unicellular
therapies, and how their development could be optimized for
faster commercialization.

STEM CELL-BASED CELL THERAPIES

Overview of Stem Cells
Stem cells can be found in an organism in embryos and
adult cells; they are a type of unspecialized, self-renewable
cells prepped to differentiate into any cell type and/or as
many cell types (28). What dictates how many cell types
stem cells can differentiate into is their developmental potency.
Developmental potency represents a differentiation continuum
starting with totipotency (i.e., highest differentiation potential;
e.g., zygote) and dwindling to pluripotency (e.g., embryonic
stem cells), multipotency (e.g., hematopoietic stem cells),
oligopotency (e.g., myeloid stem cells), and unipotency (i.e.,
least differentiation potential; e.g., dermatocytes) (29, 30).
During passage along this continuum of potency toward
mature/specialized cells, stem cells lose their self-renewal and
differentiation potential (30). However, this hierarchy can
be artificially reversed by nuclear reprogramming methods,
including the use of transcriptional factors, which can eventually
induce pluripotency in any cell type (31, 32). Stem cell
specialization is influenced by external signals (e.g., physical
contact between cells, paracrine secretions of nearby tissue,
and tissue type), internal signals (e.g., genes), and epigenetics
(embryonic cell origin) (29, 33). Depending on the type of
stem cells, stem cell specialization can be detected by in silico
gene expression analysis [e.g., PluriTest bioinformatic assay
(34)] and validated by several techniques, including microarrays,
polymerase chain reaction (PCR), and immunocytochemistry
(35–38). Specific surface markers, molecular markers (e.g.,
transcription factors, microRNAs, transcription regulators,
histone modifiers, DNA methylation state, X chromosome
functional state, key molecular signaling pathways) (39–
45), functional assays (e.g., teratoma formation assay, in
vitro differentiation assay, blastocyst chimerism) (46–48), and
culture characteristics (e.g., morphology, tolerance to single cell
dissociation by trypsinization) (33) also help guide the evaluation
of developmental potency.

Stem Cells Used or Targeted by Cell
Therapy
Stem cells used or targeted by cell therapy can be grouped into
three categories: pluripotent stem cells (PSCs), adult stem cells
(ASCs), and cancer stem cells (CSCs).

PSCs: Types and Use in Cell Therapy
PSCs give rise to all cell types except extraembryonic placental
cells; they include embryonic stem cells (ESCs), found in the
inner blastocyst cell mass of preimplantation embryos; epiblast
stem cells (EpiSCs) and embryonic germ cells (EGCs), found in
postimplantation embryos; and induced pluripotent stem cells
(iPSCs), derived from direct reprogramming of postnatal/adult
somatic cells in vitro (30, 33, 49). In 1981, Evans and Kaufman
established the first murine PSC lines in culture following
isolation of ESCs from mouse blastocysts in vitro (50). In
1998, Thomson and colleagues established the first human ESC
line from in vitro-fertilized human embryos (51). In 2006,
Yamanaka and Takahashi generated artificial PSCs (i.e., iPSCs)
from adult and embryonic mouse somatic cells (fibroblasts)
by induction with transcription factors (Oct-3/4, Sox2, KLF4,
and c-Myc) (52). In 2007, Takahashi and colleagues used the
same four transcription factors to generate iPSCs from adult
human somatic cells (dermal fibroblasts) (32). Although ESCs
and iPSCs have been proven to be molecularly and biologically
equivalent, the use of ESCs is restricted due to ethical obligations
related to endangering fetal lives (33). Generally, the clinical use
of PSCs (elaborated further in section Clinical benefits of cell
therapy by select fields) lacks therapeutic evidence and is limited
to investigational regenerative medicine, with the rationale of
cell differentiation/tissue repair in different diseases, including
macular degeneration and heart failure (53–59).

ASCs: Types and Use in Cell Therapy
Somatic or ASCs are rare, undifferentiated cells distributed
among differentiated or specialized cells in organs of a
developed organism (60). With more limited self-renewal and
differentiation potentials than PSCs, ASCs replenish lost cells
or contribute to the healing or growth of cells by giving rise
to precursor or progenitor cells and ultimately differentiated
cells (61). ASCs include hematopoietic stem cells (HSCs), skin
stem cells (SSCs), neural stem cells (NSCs), and mesenchymal
stem cells (MSCs) (62). HSCs are mostly found in the bone
marrow (BM) and give rise to all mature blood cells: red
blood cells, white blood cells, and platelets (63). SSCs, such
as epidermal stem cells and hair follicle stem cells, maintain
skin integrity (64). NSCs are self-renewable stem cells found
in the central nervous system and can give rise to nerve cells,
oligodendrocytes, and astrocytes (65). MSCs are of mesodermal,
non-hematopoietic origins and are present in multiple tissues,
including BM, adipose tissue, peripheral blood, and placenta
(66). They can differentiate into bone, cartilage, and fat cells,
as well as cells of ectodermal or endodermal parentage (67,
68). Unlike ESCs, which are mainly defined by their origin
in embryos using molecular and functional assays, ASCs have
varying defining criteria, with cell morphology and surface
markers being the go-to in most experimental evaluations
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TABLE 1 | FDA-approved cell therapy products.

Therapy Description Indication Mechanism of

action

Initial US approval

date

Manufacturer References

ALLOCORD (HPC,

Cord Blood)

Consists of allogeneic

cord blood

hematopoietic

progenitor cells

(HPCs), monocytes,

lymphocytes, and

granulocytes

Hematopoietic

system disorders

Hematopoietic

stem/progenitor cells

from HPC, Cord Blood

migrate to the bone

marrow where they

divide and mature;

mature cells are then

released into the

blood, restoring

counts and functions

of bone marrow cells.

Mature leukocytes

may also synthesize

enzymes that might

improve cellular

functions of host

tissues (mechanism of

action unknown)

2013 SSM Cardinal Glennon

Children’s Medical Center

(10)

CLEVECORD

(HPC, Cord Blood)

2016 Cleveland Cord Blood

Center

(11)

HEMACORD

(HPC, Cord Blood)

2011 New York Blood Center,

Inc.

(12)

DUCORD (HPC,

Cord Blood)

2012 Duke University School of

Medicine

(13)

HPC, Cord Blood 2012 ClinImmune Labs (14)

HPC, Cord Blood 2018 MD Anderson Cord Blood

Bank

(15)

HPC, Cord Blood 2013 LifeSouth Community

Blood Centers, Inc.

(16)

HPC, Cord Blood 2016 Bloodworks (17)

BREYANZI®

(lisocabtagene

maraleucel)

CD19-directed

genetically modified

autologous T cell

immunotherapy

Relapsed or

refractory large

B-cell lymphom

CAR binding to CD19

expressed on tumor

and normal B cells

induces activation and

proliferation of CAR T

cells and cytotoxic

killing of target cells

2021 Juno Therapeutics, Inc., a

Bristol-Myers Squibb

Company

(18)

KYMRIAHTM

(tisagenlecleucel)

Relapsed or

refractory B-cell

precursor acute

lymphoblastic

leukemia

2017 Novartis Pharmaceuticals

Corporation

(19)

Relapsed or

refractory large

B-cell lymphoma

YESCARTA®

(axicabtagene

ciloleucel)

Relapsed or

refractory large

B-cell lymphoma

2017 Kite Pharma, Inc. (20)

TECARTUSTM

(brexucabtagene

autoleucel)

Relapsed or

refractory mantle

cell lymphoma

2020 (21)

ABECMA®

(idecabtagene

vicleucel)

B-cell maturation

antigen

(BCMA)-directed

genetically modified

autologous chimeric

antigen receptor

(CAR)-positive T cell

immunotherapy

Relapsed or

refractory large

B-cell lymphoma

BCMA expressed by

malignant plasma cells

activates CAR-positive

T cell proliferation, and

subsequent plasma

cell cytolysis

2021 Celgene Corporation, a

Bristol-Myers Squibb

Company

(22)

(Continued)
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TABLE 1 | Continued

Therapy Description Indication Mechanism of

action

Initial US approval

date

Manufacturer References

PROVENGE®

(sipuleucel-T)

Autologous cellular

immunotherapy

consisting of CD54+

cells activated with

PAP-GM-CSF

Metastatic

castration-resistant

prostate cancer

CD54+ cells activated

with PAP-GM-CSF

take up, process, and

express PAP, then

induce an immune

response against

PAP-expressing

prostate cancer cells

2010 Dendreon Corporation (23)

GINTUIT

(Allogeneic

Cultured

Keratinocytes and

Fibroblasts in

Bovine Collagen)

Allogeneic

ready-to-use cellular

scaffold consisting of

human keratinocytes,

fibroblasts, and

extracellular matrix

proteins, as well as

bovine collagen

Surgically created

vascular wound

bed in the

treatment of

mucogingival

conditions

Does not function as a

tissue graft; increases

keratinized tissue at

the treated site in an

unknown mechanism

2012 Organogenesis Inc. (24)

LAVIV® (azficel-T) Autologous cellular

product consisting of

fibroblasts

Aesthetics of

nasolabial fold

wrinkles

Unknown 2011 Fibrocell Technologies,

Inc.

(25)

MACI ®

(autologous

cultured

chondrocytes on

porcine collagen

membrane)

Cellular scaffold

product consisting of

autologous cultured

chondrocytes on a

resorbable porcine

Type I/III collagen

membrane

Symptomatic

full-thickness

cartilage defects of

the knee

Unknown 2016 Vericel Corporation (26)

(61). However, morphology and surface markers of ACSs are
generally indistinguishable from those of mature cells; therefore,
ASCs cannot be readily isolated from tissues, but enriched to
varying degrees of purity in tissue extracts (60, 61). The use
of ASCs (further elaborated in Section Clinical benefits of cell
therapy by select fields) is mainly observed with HSCs or MSCs
and envelops several clinical fields. For example, MSCs and
HSCs are widely used in regenerative settings as, respectively,
investigational and established modalities with the rationale
of repopulating damaged cells or resetting tissue homeostasis
(69–74). In immune system disorders, HSCs and MSCs have
been generally used as investigational agents to alleviate disease
activity with their vast mechanisms of action, and have shown
varying success rates depending on the disease type (75–90).
In cancer, HSCs have long been the standard treatment for
hematological malignancies due to their regenerative potential
(91); they have further been investigated in solid cancers as
progenitors of immune cells, eventually driving tumor regression
(92, 93). MSCs have also been investigated in cancer settings due
to their anti-tumorigenic properties (66, 94, 95) yet have had only
limited successes (96, 97).

Currently a hot topic in translational stem cell research,
PSC- and ASC-derived organoids are highlight-worthy. Despite
pending clinical investigations, these organoids hold promise as
future regenerative medicine applications by offering in vitro

three dimensional (3D) structural and functional mimicry of
organs (98). Originally, these organoids are patient-derived stem
cells manipulated and grown in controlled media formulations

to dictate their differentiation, then propagated into 3D
structures/matrices (99). Besides their potential in organogenesis
and regeneration for cell-based therapy (100), PSC- and ASC-
derived organoids represent useful tools for drug screening and
disease modeling (98, 101). For instance, human PSCs have
been used to grow lung organoids in vitro, with tissular and
cellular compartmentalization similar to the native lung (102,
103). Similarly, kidney organoids structurally equivalent to the
human fetal kidney were derived fromhuman PSCs (104), further
demonstrating native tissue-specific functions (105).

CSCs: A Therapeutic Target
CSCs, or tumor-initiating cells, are found within solid and blood
tumors and originate from normal stem cells or progenitor
cells by several proposed mechanisms, such as mutations, gene
transfer, epigenetic alterations, and microenvironmental factors
(106, 107). CSCs possess self-renewal, differentiation, metastasis,
and immunosuppressive properties and play an important
role in cancer growth, metastasis, relapse, and resistance to
chemotherapy and radiotherapy (107, 108). Identification criteria
of CSCs generally include surface protein markers (e.g., CD133,
CD44, tumor-associated antigens) and metabolic/functional
properties (e.g., high metabolism, slow cell division); however,
they might overlap with those of normal somatic/germ cells
or of other stem cells (49). Generally, the clinical use of CSCs
(see Section Clinical benefits of cell therapy by select fields) is
seen in cancer settings and involves targeting CSCs by different

Frontiers in Medicine | www.frontiersin.org 4 November 2021 | Volume 8 | Article 756029

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


El-Kadiry et al. Clinical Benefits of Cell Therapy

signaling pathway-interfering agents that subsequently prevent
cancer growth and relapse (109, 110).

NON–STEM CELL-BASED CELL
THERAPIES

Non–stem cell-based cell therapies are generally somatic
cells that are isolated from the human body, propagated,
expanded, selected, and subsequently administered to patients
for curative, preventive, or diagnostic purposes (6). Non–stem
cell-based cell therapies include fibroblasts, chondrocytes,
keratinocytes, hepatocytes, pancreatic islet cells, and immune
cells, such as T cells, dendritic cells (DCs), natural killer (NK)
cells, and macrophages (5, 9, 111). Isolation techniques vary
between somatic cells depending on their tissue localization
and could include enzymatic digestion of harvested tissues
(112) or processing of withdrawn blood (113). For example,
peripheral blood mononuclear cells (PBMCs) can be collected
by leukapheresis using automated systems, then cultured
overnight, after which adherent cells (monocytes) can
be separated from non-adherent cells (lymphocytes); DCs
(HLA2DR+CD80+CD83+) can then be obtained by culturing
adherent cells with granulocyte macrophage colony-stimulating
factor, interleukin (IL)-4, and tumor necrosis factor over a week
(114). Similarly variable are the characterization techniques
of somatic cells, which are important to preserve a specific
phenotype in sufficient yields, and can include microscopic
examination, molecular analysis, immunocytochemistry,
and gene expression analysis (112). Somatic cells are highly
specialized (115) and can be further manipulated or treated
before reintroduction into humans (116). Somatic cell-based
therapies are generally employed as an in vivo source of enzymes,
cytokines, and growth factors; as an adoptive cell therapy (ACT)
to treat cancers; as transplanted cells, such as hepatocytes or
pancreatic islet cells, to correct inborn metabolic errors; or as
scaffold-based or -free cellular systems to treat ulcers, burns, or
cartilage lesions (9, 117).

The application of cell grafts, such as hepatocytes, has
only been slowly progressing due to technological hurdles and
limited data supporting clinical efficacy and durability (111). For
instance, hepatocyte transplantation has not yet been able to
replace liver transplantation, due to limitations in post-transplant
histological assessment and engraftment, despite limited clinical
data showing its potential for being a future alternative to
organ transplantation in treating patients with hepatic disease
(118, 119). Contrarily, pancreatic islet cell transplantation for
the treatment of insulin-deficient diabetes and pancreatitis has
shown more promising potential (120), with clinical outcomes
being dependent on islet availability and engraftment success
rates, and limited with non-specific inflammatory/thrombotic
mechanisms post-transplant. Indeed, in Canada, Australia, and
several European countries, islet transplantation has become a
standard of care for select patients (121).

ACT involves the intravenous transfer of modified peripheral
or tumor-resident immune cells into patients to mount an
immunologic reaction against tumors. Modified immune cells

used in ACT include tumor-infiltrating lymphocytes (TILs),
tumor-specific T-cell receptor (TCR)–modified T cells, and
chimeric antigen receptor (CAR)-T cells (122). TILs can be
grown from different tumor types under standard culture
conditions ex vivo. Prior to TIL infusion, patients undergo
lymphodepleting chemotherapy, and shortly after, they are
administered high-dose IL-2 to amplify the therapeutic potency
of TILs (123–125). T cells isolated from peripheral blood
by leukapheresis can be genetically engineered in vitro to
express modified TCRs that can be directed against specific
tumor antigens, such as melanoma differentiation antigens and
cancer/testis antigens (126); however, the downside of this TCR
gene therapy remains its evasion by tumor cells, which can
downregulate their major histocompatibility complex (MHC)
expression (127). TCR gene therapy also generally involves
patient preconditioning with lymphodepleting regimens and
IL-2 support (128). CAR-T cells employ synthetic antibody-
based CARs, which can be of a proteinaceous, carbohydrate,
or glycolipid nature (124). The transfer of CARs to T cells
can be performed by various techniques, including retroviral
infection. The genetic construct of CARs encodes the single-
chain variable fragment (scFv) of a monoclonal antibody (serves
as the extracellular antigen recognitions domain), a CD3ζ
chain (serves as the intracellular signaling domain of TCR),
and a co-receptor, such as CD28, for co-stimulation (129,
130). Upon tumor antigen binding by the scFv domain, CD3ζ
is phosphorylated, resulting in downstream signaling that is
further amplified by co-receptor signals and that culminates
in induction of cytotoxic activity (131). CAR-T cells are
functionally similar to TCR gene therapy yet function in a
non–MHC-restricted manner (132). Since their discovery in
the 1980s (133), CAR-T cells continue to evolve. In 2003,
second-generation CAR-T cells were redesigned to target CD19
in the setting of B-cell malignancies (134). Today, next-
generation CAR-T cells explore innovative strategies aiming
to improve antigen recognition, enhance cell proliferation
and persistence, and evade the immunosuppressive tumor
microenvironment (135, 136).

Other ACT strategies include lymphokine-activated killer
(LAK) cells, cytokine-induced killer (CIK) cells, γδ T cells, and
NK cells (137). LAK cells are PBMCs derived from patients
by multiple leukaphereses and incubated with IL-2; they were
first demonstrated in 1984 to possess antitumor properties
(138). CIK cells are also a heterogenous mixture of lymphocytes
(mostly CD3+CD8+CD56+ T cells) with natural killer T (NKT)
cell phenotype generated by incubation with various types of
molecules, such as IL-2, IFN-γ, and CD3 monoclonal antibodies;
their antitumor capacity can be further elevated by incubation
with other cytokines, including IFN-γ and IL-1β (139). γδ T
cells constitute 5% of peripheral blood T-cell counts and are
characterized by their expression of the γδ TCR instead of
the more conventional αβ TCR (140); following their ex vivo
expansion, γδ T cells become tumor-reactive with strong, non–
MHC-restricted cytotoxicity (141). Like γδ T cells, NK cells
possess the ability to kill tumor cells in a non–MHC-restricted
manner. Immunophenotypically, NK cells are CD3−CD56+

(137, 142). To enhance their antitumor activity, NK cells are
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expanded by IL-2 incubation and/or co-administration (143,
144).

MULTICELLULAR THERAPIES

The term “multicellular therapies” is coined by few sources
and can be defined as therapies containing at least two stem
cell and/or non-stem cell types cultured from isolated cells
or tissue extracts (145–147). The generation of multicellular
therapies involves selective phenotypic expansion, rather than
purification or enrichment processes, and can exploit automated
cell-processing technologies (145, 147, 148). The distinct cell
constituents of a multicellular therapy possess a broad range
of biological activities, which contribute to its typically abstruse
mechanism of action (26, 145). Therefore, the composition
and/or functional intricacies of multicellular therapies might
mirror those of normal tissues (148). Examples of these therapies
include ACT products (149), scaffold-based or -free cellular
products (9), stromal vascular fraction (SVF), stem cell transplant
(150), and bone marrow aspirate (BMA)-derived therapies (151).

ACT Products
Among ACT products, TILs is a multicellular therapy that
includes different lymphocyte lineages, including T cells and B
cells (149). In cancer biology, lymphocytes recognize growing
cancer cells and infiltrate the tumor. Once in the tumor,
TILs try to initiate cancer killing. However, cancer cells
can inactivate TILs to evade immunosurveillance by ligating
their checkpoint receptors [e.g., programmed death 1 (PD-
1), cytotoxic T lymphocyte-associated protein 4 (CTLA-4)],
which are normally bound by specific ligands (e.g., programmed
death-ligand 1 (PD-L1), B7) to control immune activity (152).
Many tumors express PD-1 receptor ligands, such as PD-L1,
permitting the mitigation of anti-tumor immunity (153, 154).
Therefrom, immune checkpoint inhibitors were devised to lift
off immune cell suppression and promote anti-cancer immunity
(155). Indeed, it has been shown that TILs can promote tumor
invasion and metastasis through several mechanisms, including
cancer cell-leukocyte fusion and recruitment of regulatory T
cells (Tregs) (156). The 1970’s recorded the first attempts of
lymphocyte isolation from tumor tissues (157, 158). In the
next decade, IL-2-expanded isolated TILs showed significant
antitumor activity in vivo (159), as opposed to TILs alone
(160). TIL preparation involves tumor excision, digestion, culture
with IL-2, and assessment for specific tumor recognition;
tumor-specific TIL cultures are then expanded using anti-CD3
monoclonal antibody, high IL-2 concentrations, and irradiated
allogeneic feeder cells (161). Characterization methods of TIL
cellularity include gene expression analyses and analytical tools,
such as CIBERSORT (162, 163). TIL products are heterogenous
in terms of CD8+/CD4+ T cell ratios and T-cell differentiation
stage and can be impacted by tumor biology (164). For an
endowment of resistance to tumor suppression and/or enhanced
tumor homing, TILs can be genetically modified either using
different types of vectors or via gene editing technologies (165).

LAK cells are another ACT product composed of IL-2-
activated PBMC’s, mainly NK cells, NKT cells, and T cells, with

non-specific cytotoxicity and non–MHC-restrictive cytotoxic
effects (137). The use of LAK cells is limited to few cancer types
due to their difficult amplification and associated adverse effects
(166, 167). LAK cells have been reported to induce tumor cell
killing by releasing cytolytic mediators, including perforin and
granzymes (168).

CIK cells are a subset of T lymphocytes with an NKT cell
phenotype, and can be expanded ex vivo from PBMC’s or BM
mononuclear cells. When activated, CIK cells stimulate the
immune system to recognize and eradicate tumor cells in a
non–MHC-restricted manner (137, 139).

Scaffold-Based or -Free Cellular Products
Scaffold-based cellular products are engineered technologies that
deliver different cell types (e.g., fibroblasts and keratinocytes)
seeded within 3D biocompatible tissue analogs (9). Traditionally,
scaffold-based cellular products employ biodegradable natural
or synthetic polymers (e.g., bovine collagen, hydrogels, sponges)
with sophisticated porous networks through which oxygen,
nutrients, and metabolites can be exchanged (169, 170).
Current scaffold-based cellular products with FDA approval
are used for the treatment of diabetic foot ulcers (e.g.,
Apligraf R©, Dermagraft R©), burns (OrCel R©), and mucogingival
conditions (GINTUIT) (9, 24, 171, 172). Scaffold-free cellular
products are tissue analogs that are densely populated with
cells carried and protected by their secreted, tissue-specific
extracellular matrix (ECM) (9). This biotechnology can employ
temperature-responsive polymers (e.g., pNIPAM, PVME) that
transition between hydrophobic and hydrophilic states at certain
temperatures, allowing the control of cell culture and growth
and subsequently the deposition of ECM and the formation
of cell sheets that adhere to biological surfaces (173–175).
Several automated technologies (e.g., robots, bioreactors) can
also be used to enhance the scalability, elevate the architectural
biomimicry, or allow for the perfusion of these tissue analogs
(176–178). An example of commercially available, FDA-
approved scaffold-free cellular products is Epicel R© (cultured
epidermal autografts), a petrolatum gauze composed of sheets
of autologous keratinocytes and proliferation-arrested murine
fibroblasts and indicated for deep/full burns (179). Generally,
the specific mechanisms of action of scaffold-based or -free
cellular products are unknown, but are surmised to involve
the production of cytokines and growth factors similar to
healthy human skin (180). Although these products represent
important advances in regenerative medicine, they are still
limited by their high costs and non-regenerative outcomes,
including their inability to fully reconstitute the damaged skin
architecture (181).

SVF
SVF is a heterogeneous mixture of stromal and vascular
cells, including ASCs, granulocytes, monocytes, lymphocytes,
pericytes, and endothelial progenitor cells (EPCs), obtained
from the processing of adipose tissue (e.g., lipoaspirate,
excised fat) (182–185). Besides its use as an investigational
product in different clinical settings (186–188), SVF is used
as a source to isolate ASCs (i.e., adipose-derived stem cells,
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or ADSCs), which can constitute up to 10% of its fraction
depending on the processing technique, usually involving
serial straining and centrifugation of SVF and cell culture
in growth media (189). SVF composition can be identified
immunophenotypically by flowcytometry, for example for
the presence of ADSCs (CD45−CD235a−CD31−CD34+),
which share several surface markers with BM-MSCs but
are CD36+CD106−. Other techniques used for identifying
the cellular composition of SVF include lineage-specific
differentiation assays and biochemical or PCR evaluation (190).
Due to its heterogeneous composition, SVF functions in various
mechanisms, including paracrine signaling through cytokines,
chemokines, and growth factors and cell-cell interactions,
ultimately promoting neovascularization, cell repair, and
immunomodulation (191).

Stem Cell Transplant
Stem cell transplant is performed in settings that damage
the body’s stem cells, including hematologic malignancies
(e.g., leukemia, lymphoma, multiple myeloma, neuroblastoma)
or cancer therapy (e.g., high-dose chemotherapy, total body
irradiation) (192). Stem cell transplant relies on 3 stem cell
sources: bone marrow, peripheral blood, and umbilical cord
blood (193).

Stem cell transplant with bone marrow as the source of
stem cells is known as bone marrow transplantation (BMT),
which has been in practice since the 1960’s (194). BMT entails
BM aspiration (195) for harvesting HSCs (196) as well as
progenitor cells, MSCs, lymphocytes, neutrophils, platelets, red
blood cells, eosinophils, basophils, and monocytes (197, 198)
(see Section BMA-derived therapies). Peripheral blood stem
cell transplantation (PBSCT) is another type of hematopoietic
stem cell transplantation (HSCT) that uses peripheral blood-
derived HSCs (199). PBSCT came forth in the 1990’s (196)
as an alternative to bone marrow transplantation (BMT)
(194), due to easier stem cell collection, higher stem cell
yields, and faster patient recovery post-transplantation (150).
In this procedure, autologous or HLA-matched allogeneic
peripheral blood stem cells (PBSCs) are infused into the
patient’s bloodstream following a preparative conditioning
regimen consisting of chemotherapy with/without total body
irradiation that ensures immune tolerance of the engraftment.
Once in the blood, PBSCs home toward the BM to repopulate
lost blood cells or allow cancer remission (150, 200). PBSCs
are collected by continuous-flow apheresis after mobilization
using medications including granulocyte colony-stimulating
factor (G-CSF) agents and chemokine receptor 4 (CXCR4)
blockers (e.g., plerixafor); chemotherapy can also be used
for mobilization (i.e., chemoembolization) (200). PBSCs are
generally identified and quantified using flowcytometry via
their immunophenotypic patterns (e.g., CD34+CD38−) (192).
Besides CD34+ HSC subpopulations, PBSC grafts contain
nucleated cells including DCs, T cells, B cells, NK cells,
and monocytes (201). Compared to BM-derived stem cells,
PBSCs express more lineage-specific differentiation antigens,
are less metabolically active, and show higher clonogenicity
(202). However, the clinical benefit/risk ratio of PBSCs vs.

BM-derived stem cells is disputed, with the preference being
dependent on the type of hematologic disease, the age of
donors/recipients, and whether the HLA-matched donor is
related or unrelated—factors which influence the incidence
of graft vs. host disease (GVHD) or the patient’s quality
of life (196, 199). The differences in cellular composition
(e.g., CD34+ and lymphocyte numbers) between both stem
cell grafts is also associated with differences in their clinical
outcomes (203).

Another source of stem cell transplantation is cord blood
(CB), whose HSCs and hematopoietic progenitor cells are
observed to differ from those of peripheral blood and BM
in terms of surface markers, recovery speed of blood cells
post-transplant, clinical outcomes, and GVHD incidence (204,
205). As of 2011 to date, eight allogeneic cord blood products
have gained FDA approval for the treatment of hematopoietic
system disorders. These products mainly contain HSCs and
hematopoietic progenitor cells, which migrate to the BM where
they divide, and their progeny cells mature and subsequently
replace lost blood cell reservoirs. Notable, these products are also
composed of monocytes, lymphocytes, and granulocytes, which
render their mechanisms of action only partially known (10–17).

BMA-Derived Therapies
BMA-derived therapies are commonly termed concentrated bone
marrow aspirate (cBMA), bone marrow concentrate (BMC),
or bone marrow aspirate concentrate (BMAC) (151). BM
aspiration is a procedure performed under local or general
anesthesia, in which a liquid sample is collected from the BM
of usually the anterior or posterior iliac crest among other
bones (195). Since the early 1960’s, the BM has been the
chief source for harvesting HSCs for BMT procedures (196);
however, its use in this context has diminished following the
emergence of PBSCT (206, 207). BMA includes various cell
types including HSCs, progenitor cells, MSCs, lymphocytes,
neutrophils, platelets, red blood cells, eosinophils, basophils, and
monocytes (197, 198). The processing of BMA to concentrate
nucleated cell yields, such asMSCs which represent 0.001% of the
non-hematopoietic, multipotent cellular portion of BMA, yields
BMAC (198). The concentration of BMA can be performed by
different techniques, including automated centrifugation systems
(208) or cell filtration systems (209). In BMAC, concentrations
of nucleated cells become 5-fold higher, and concentrations
of MSCs 6-fold higher (210, 211). The composition of
BMAC also includes HSCs, progenitor cells, white blood cells,
platelets, and cytokines/growth factors (212, 213) and can be
characterized by microscopy, flowcytometry, cytogenetic and
molecular analyses, and cytochemical staining (214). Generally,
the clinical application of BMAC spans orthopedic settings, in
which it can be sterilely injected intra-articularly under the
guidance of fluoroscopy or ultrasonography (215). Like SVF,
BMAC functions in various mechanisms involving paracrine
signaling by MSCs and nucleated cells that drive tissue repair
and immunomodulation (66, 209, 210) and by growth factors
and cytokines that induce tissue growth and promote reparative
processes (198, 216).
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ACELLULAR THERAPIES WITH
MULTICELLULAR COMPONENTS

Platelet-rich plasma (PRP) is an anticoagulated blood product
obtained by differential centrifugation of whole blood and
predominantly contains platelets in concentrations that can
exceed up to 5 times physiologic platelet concentrations
(217, 218). Platelets are acellular fragments derived from
maturing megakaryocytes and function mainly in maintaining
primary hemostasis and thrombosis to preserve vascular
integrity (219). Although predominated by platelets—reservoirs
of multitudinous immunologic molecules, soluble proteins,
and growth factors (220)— and plasma components, PRP
contains cellular components, such as leukocytes (217).
Several commercially available kits can be used for PRP
processing with varying outcomes in terms of platelet,
red blood cell, and leukocyte concentrations (221). PRP
composition can be subsequently analyzed using various
analytical methods, such as automated hematology analyzers,
microscopy, flowcytometry, and spectrophotometry (222, 223).
Because of their unstandardized preparation protocols
yielding heterogeneous formulations, PRP products can be
further classified in clinical settings on the bases of platelet
concentrations/activation and cellularity using various non-
consensual classification systems, including the PAW, the PLRA,
and the International Society on Thrombosis and Hemostasis
systems (221, 224). PRP functions in several mechanisms driven
by cytokines, growth factors, platelets, and nucleated cells,
altogether which exert anti-inflammatory effects and promote
tissue repair (225, 226).

REGULATORY CONSIDERATIONS FOR
CELL THERAPY

For manufacturers, as well as researchers and clinicians, it is
important to be aware of the FDA’s regulatory guidance on
cell therapy products. Human cells, tissues, and cellular and
tissue-based products (HCT/P) are defined by the FDA under
the Title 21 of the Code of Federal Regulations (CFR) Part
1271.3(d), or [21 CFR Part 1271.3(d)], as “articles containing
or consisting of human cells or tissues that are intended for
implantation, transplantation, infusion, or transfer into a human
recipient.” Falling under this definition are several examples,
including HSCs/progenitor cells derived from peripheral blood
or CB, manipulated autologous chondrocytes, and epithelial
cells on a synthetic matrix. If the therapy does not meet
the definition of HCT/P in 21 CFR 1271.3(d), such as blood
components/derivatives (e.g., PRP) and minimally manipulated
BMA, the regulations in 21 CFR Part 1271 do not apply (227).

For therapies meeting the definition of HCT/P in 21 CFR
1271.3(d), the 21 CFR 1271.15(b) further guides how HCT/P
are regulated. The “same surgical procedure (SSP) exception” in
21 CFR 1271.15(b) states that it is not required to comply with
the requirements in 21 CFR Part 1271 if the establishment is
collecting and administering the HCT/P autologously, within the
same surgical procedure, and in their original form (if processed,

only rinsing, cleansing, sizing, and shaping are allowed) (227,
228). Otherwise, the algorithm progresses to the requirements of
21 CFR 1271.10(a). The criteria under this title specify that the
HCT/P is minimally manipulated; intended for homologous use;
not combined with other active agents; without a systemic effect;
and—if with a systemic effect—administered autologously or to
first-/second-degree blood relatives (227). If these criteria are
met, the FDA allows the use of the cell therapy in the framework
of regulatory guidelines governing disease transmission, yet
without premarket approval/biologics license application, solely
under section 361 of the Public Health Service (PHS) Act and
regulations in 21 CFR Part 1271. Otherwise, if the cell therapy
does not meet the criteria under 21 CFR 1271.10(a), it is regulated
as a biological product under the Federal Food, Drug, and
Cosmetic (FD&C) Act and/or section 351 of the PHS Act and
applicable regulations. In this case, the cell therapy would require
premarket approval, and the establishment needs to register the
therapy and apply for a biologics license for lawful marketing, or
have an investigational new drug (IND) application in effect if the
therapy is investigational (227, 228).

The importance of being well informed about the above
regulations becomes more obvious with the recent aggressive
enforcement the FDA has begun to undertake to protect patients
from risks of unapproved products being otherwise dispensed as
HCT/P falling under section 361 of the PHS Act and regulations
in 21 CFR Part 1271. In May 2018, the FDA initiated an
action against a stem cell clinic for administering non-compliant
autologous SVF to patients. On June 3, 2019, the Florida court
ruled in favor of the FDA because, according to the FDA
arguments, the isolated SVF no longer represented adipose tissue
(i.e., not in its original form, or adipose tissue) after removal from
the patient, and because the therapeutic use of the SVF differed
from the natural function of adipose tissue (i.e., not intended for
homologous use). Although the stem cell clinic argued that CFR
1271.15(b) and 21 CFR 1271.10(a) apply to their SVF product, the
court saw otherwise, considering the case as a violation of federal
laws and the product as a “drug” falling under the FD&C Act
and necessitating extensive pre-approval. On June 25, 2019, the
court ordered the stem cell clinic to cease its offering SVF services
until further FDA compliance. In addition to that SVF clinic,
the FDA has issued multiple warnings to other clinics working
with stem cells and umbilical cord-derived products (229, 230).
Counterintuitively, a California federal judge has denied a
government motion initiated simultaneously with the former
lawsuit, against a stem cell treatment center. In the trial, the FDA
argued that the center was using illicit SVF therapies that are
manipulated prior to implantation to treat degenerative diseases.
The manipulation according to the FDA occurred in the removal
step of the adipose tissue, thus generating an SVF product
to which the SSP exception does not apply. The defendant
countered that their SVF is unaltered, despite the removal of
adipose tissue, and thus complies with all requirements in 21
CFR Part 1271 (231). In the hearing (232), the judge considered
that the SSP exception is unambiguous and read that it does
not require the reimplantation of all the removed tissue, much
like coronary artery bypass procedures in which surgeons do not
implant the removed blood and excess artery. Based on this logic,
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the judge considered that the SSP exception applies to the SVF
product, whose natural host tissue was removed as part of the
collection process without further alteration to the SVF content.
The court saw that the FDA’s interpretation of the SSP exception
is “unreasonable and creates enforcement inconsistency” and
considered that “the agency’s reading must fall within the bounds
of reasonable interpretation... a requirement an agency can fail.”
(232) These incidents are indicative that the FDA regulations
governing the use of cell therapy products are confusing and
might not be safe from misinterpretations or dispute.

On another note, other multicellular products, such as BMAC,
have not received FDA warnings and continue to be used as
HCT/P under section 361 of the PHS Act and regulations in 21
CFR Part 1271.

CLINICAL BENEFITS OF CELL THERAPY
BY SELECT FIELDS

Regenerative Medicine
Regenerative medicine deploys a body’s own cells and growth
factors to repair tissues by restoring their lost functions (111).
Several cell therapies in regenerative medicine have become
either established practices or commercially available with
FDA approval, such as keratinocyte- and/or fibroblast-derived
skin substitutes for treatment of diabetic foot ulcers (172,
233) or burns (179); keratinocyte- and fibroblast-containing
scaffold products for treatment of surgically created vascular
wound beds in the oral cavity (24); fibroblast intradermal
injections for improvement of appearance of nasolabial fold
wrinkles (25); chondrocyte-containing scaffold implants for
treatment of knee cartilage defects (26); and cord blood-derived
HSC/hematopoietic progenitor cell products for treatment of
hematopoietic system disorders that are inherited, acquired,
or result from myeloablative treatment (10–17). Although
commercial cell therapies are beneficial in repairing tissues, they
are unable yet to regenerate them (234). Clinical development
is also an arduous process that hinders the introduction of new
products into the market (235, 236). This can be seen in the
proportion of approved biologics over a 9 year period, which
reached 23% of all approved drugs. Additionally, biologics in the
US are granted 12 years of exclusivity protection vs. ∼7 years for
new chemical entities (237).

In clinical investigation settings, multiple cell therapies, as
well as acellular therapies with cellular components, have been
assessed for their safety and efficacy in a regenerative context,
including PRP, ESCs, iPSCs, SVF, ADSCs, MSCs, and BMAC
(190, 234, 238, 239).

PRP is widely evaluated in orthopedics due to its enriched
composition of cytokines, growth factors, and platelets,
which establish an anti-inflammatory environment at the
site of injection and promote skeletal and connective tissue
regeneration and reconstruction (225, 226). For instance, PRP
preparations have demonstrated efficacy and safety in tendon
injuries (240, 241), rotator cuff tears (242), osteoarthritis (OA)
of the knee or hip (243, 244), and muscle injuries (245), with
benefits being mostly symptomatic relief. The cellularity of

PRP can also dictate clinical outcomes, thus classifying PRP
preparations into leukocyte-rich PRP (LR-PRP)—with leukocyte
concentrations exceeding baseline levels—and leukocyte-poor
PRP (LP-PRP) —with leukocyte concentrations below baseline
levels (241). Accordingly, it is recommended that PRP be
analyzed for its leukocyte content and used in accordance
with the catabolic vs. anabolic requirements of the treated
condition (246).

The clinical application of ESCs is restricted by ethical
concerns, regulatory bodies, and the lack of preclinical evidence
supporting their use (53, 54). However, few successful outcomes
in regenerative medicine merit acknowledgment. For example,
human embryonic stem cells (hESCs) have improved the vision
of patients with macular degeneration and macular dystrophy by
differentiating into photoreceptors and retinal pigment epithelial
cells (55). In a case report, cardiomyocytes derived from hESCs
have also improved the ejection fraction of a 68 year old
patient with severe heart failure andwithout inducing subsequent
complications (56).

Despite presenting several advantages over ESCs (e.g., non-
invasive collection, less immune rejection, ethically unrestricted
nature), the use of iPSCs in clinical settings is still farfetched
due to lack of therapeutic evidence as well as other preparation
and standardization obstacles (57). Indeed, a data compilation in
2018 showed that the fraction of clinical trials investigating the
aptness of iPSCs as a treatment modality constitutes only 11%
of the total clinical trials of iPSCs, including those terminated
(58). The first and potentially only reported clinical benefits of
iPSC-based therapy are minimal and date to 2017 in a patient
with neovascular age-related macular degeneration (59). On the
other hand, iPSCs—like ESCs—have been extensively employed
as research tools for drug toxicity testing (e.g., drug-induced QT
prolongation) and—unlike ESCs—have been useful for disease
modeling and drug discovery studies (247).

SVF was first clinically investigated in reconstructive surgeries
with the rationale of promoting adipose tissue survival and
thus provide structural tissue support (248). Multiple other
studies followed, in which SVF was investigated for its healing
and regenerative abilities. For example, SVF has promoted
neovascularization and improved tissue hydration in patients
with radiotherapy-induced lesions, owing partially to its ADSC
composition (249). Few other examples of regenerative settings
in which SVF has provided patients with clinical benefits include
knee OA (250, 251), chronic wound healing (252), urogenital
conditions (253), and systemic sclerosis (SS)-associated facial
handicap (254).

In regenerative medicine, ASCs are considered the most
promising among cell therapies, and ADSCs constitute an
ideal option due to their ease of harvest requiring minimal
invasiveness; multi-lineage differentiation potential; and anti-
inflammatory and proangiogenic secretome (255). To date,
there are 11 active or recruiting registered studies involving
ADSCs as an intervention in conditions such as knee OA and
chronic kidney disease (256). Data disclosed hitherto, mostly
by pilot studies, show that—despite not living up fully to
their regenerative rationale—ADSCs have shown a promising
potential in multiple settings, including ischemic heart disease
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(73, 74), acute myocardial infarction (257), knee OA (258, 259),
peripheral vascular disease (260), SS-associated ulcers (261, 262),
ischemic diabetic feet (252), urogenital conditions (263, 264),
and breast cancer-associated lymphedema (265). For example,
an early-phase placebo-controlled trial has shown that the
intracoronary infusion of ADSCs is well tolerated, improves left
ventricular ejection fraction (LVEF), and reduces infarct size
after 6 months of follow-up in patients with acute myocardial
infarction (257). Similarly, the intramyocardial delivery of
ADSCs has been shown to significantly improve LVEF and
exercise tolerance in patients with chronic ischemic heart disease
(73, 74).

Among ASCs, MSCs are gaining considerable attention as a
cell therapy intervention in human studies, especially with the
production of good manufacturing practice (GMP)-compliant
human MSCs (66, 266). To date, there are at least 180 active or
recruiting registered studies involving MSCs as an intervention
in various conditions (69). In regenerative settings, MSCs have
exhibited a promising potential in osteogenesis imperfecta (70),
Crohn’s disease (71), deep burns (72), periodontal defects (267),
chondral/bone defects (268, 269), and diabetic foot (270). The
benefits of MSCs in clinical investigations are mostly linked,
not to their multi-lineage differentiation potential, but rather to
their secretome, which establishes a nutritive microenvironment,
promoting autocrine and paracrine signaling that inhibits
apoptosis and dictates angiogenesis, local tissue mitosis, and
cross-communication with resident stem cells (66, 271–273).

BMAC has emerged as a potential alternative for regenerative
therapy, owing mainly to its enriched composition of growth
factors and MSCs among other cell types (216). In regenerative
settings—mainly orthopedics—BMAC has demonstrated a
promising potential, as it provided patients with clinical benefits
and/or improved diagnostic imaging outcomes of patients
(209, 274, 275). To date, there are at least 14 active or recruiting
registered studies involving BMAC as an intervention mainly
in orthopedic conditions (276). The mechanism of action
of BMAC remains unclear, and no serious attempts have
been made to delineate the interactions between the different
components of BMAC, which might collectively be at the
origins of BMAC outcomes (277, 278). Among the components
theorized to contribute to the therapeutic potential of BMAC
are MSCs, which are endowed with tissue function-enhancing
regenerative and immunologic properties (66, 209, 210); growth
factors, which promote tissue growth; and nucleated cells (e.g.,
lymphocytes), which secrete various reparative cytokines and
growth factors that act via paracrine pathways (198, 216).
However, the conclusions drawn by these reports about the role
of BMAC components—specifically MSCs—in driving clinical
outcomes are based on rather extrapolations than benchwork.
Hence, further molecular investigations are necessary to
fully understand the degree of contribution of each of these
components in the observed orthopedic benefits. Noteworthy,
BMAC could still become an established therapy even with
a partially understood mechanism of action and without
having to erroneously suggest that its beneficial outcomes
are driven by MSCs. This possibility could be observed with
HSCT, which has become an established therapy for treating

immune diseases despite its elusive mechanism of action
(75, 89).

Immune System Disorders
Most immune system disorders develop due to excessive immune
responses or autoimmune attacks (279). Primary treatment thus
aims to alleviate inflammation, minimize symptoms, and prevent
relapse (280). The rationale of exploiting cell therapy in immune
system disorders extends beyond immune suppression and
symptomatic relief to immune system resetting as a permanent
cure (281). As of the late 1990’s, BMT/HSCT has become the
most established cell-based therapy for treating immune system
disorders (75). HSCT has been shown to elicit durable outcomes
in severe SS with acceptable rates of transplant-related mortality
(76). In controlled phase 2/3 trials, HSCT has demonstrated
efficacy in patients with autoimmune disorders, resulting for
instance in 79% improvement in the disability status and marked
improvement in disease relapse rates, MRI lesions, and quality
of life in patients with multiple sclerosis (83). HSCT, including
PBSCT, has also alleviated disease activity and stabilized/reversed
organ dysfunction in patients with systemic lupus erythematosus
(SLE) (84–86). While the benefits of HSCT in SLE are mostly
reported by retrospective studies, prospective trials are limited
and have not found significant benefits (83). On the other hand,
HSCT has only shown transient responses or partial benefits
in other immune diseases, such as rheumatoid arthritis (RA),
vasculitis, and Crohn’s disease (87, 88). Despite its benefits seen in
most immune system disorders, HSCT’s underlying mechanism
of action remains elusive, with non-specific benefits being also
omnipresent and pertaining to the accompanying regimen of
lymphotoxic chemotherapy that reduces autoreactive antibodies
(89). MSCs have also had their share of clinical successes in
immune system disorders, specifically in GVHD, amyotrophic
lateral sclerosis, and Crohn’s anal fistula (77–81, 90). These
benefits are linked to the immunomodulatory actions of MSCs
originating mostly from their immune inhibitory secretome (82).
Although several MSC-based therapies are approved worldwide
for the treatment of immune diseases (including in Canada
and Japan), they have not yet received FDA approval (66).
Albeit to a less documented extent than BM-MSCs, ADSCs
have also shown a promising potential as a cell therapy for
the treatment of immune system disorders, such as GVHD,
Crohn’s disease, psoriasis, and SS (282–285). Other cell-based
therapies with less reported benefits in immune diseases include
PRP, which has been shown to reduce pain and inflammation
with ultrasound imaging evidence in patients with RA (286),
and Tregs, which have been shown to reduce the incidence of
acute GVHD (287). DCs are another type of immunotherapies
exploited in the treatment of patients with immune system
disorders. For instance, tolerogenic DCs—a type of immature
DCs that induce T-cell anergy and Treg differentiation causing
peripheral tolerance (288)—have been reported to stabilize
disease (289) or reduce inflammation and disease scores in
RA (290). Other somatic cell-based therapies like pancreatic
islet cell transplantation have resulted in substantial benefits in
type 1 diabetes. For example, a single-arm phase 3 trial has
shown that pancreatic islet transplantation leads to glycemic
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control and protection against severe hypoglycemic events in
patients with type 1 diabetes (120). Therefore, it has become
recommended globally that pancreatic islet transplantation be
considered for patients whose problematic hypoglycemia persists
despite insulin infusion or glycemic monitoring (291). Notable,
clinical outcomes with pancreatic islet cell transplantation have
been found to be associated with islet availability and engraftment
success rates, which are elevated for instance in allogeneic
transplants, where islets can be isolated from multiple donors
(121). Other immunotherapies like CAR-T cells have not yet been
reported to provide clinical benefits in immune conditions (292),
despite promising preclinical outcomes (293).

Cancer
The rationale of cancer therapy has evolved from the systemic
targeting of tumors with chemotherapy/radiotherapy to a more
targeted approach using novel biologic treatments, including
monoclonal antibodies, oncolytic viruses, and cell therapy, such
as antigen presenting cell (APC)-based anticancer vaccines and
CAR-T cells (294). Another therapeutic approach in patients
with cancer is the aforementioned regeneration of immune
effectors specifically in hematological malignancies, in which
case HSCT has long been the standard treatment (91). The year
2010 witnessed the FDA approval of PROVENGE R© (sipuleucel-
T), the first and only APC-based anticancer vaccine indicated
for the treatment of metastatic castration-resistant prostate
cancer (23). Later in 2017, KYMRIAHTM (tisagenlecleucel)
became the first CAR-T cell therapy to receive FDA approval
for the treatment of relapsed or refractory B-cell precursor
acute lymphoblastic leukemia and large B-cell lymphoma (19).
Following tisagenlecleucel’s steps, other autologous, CD19-
directed CAR-T cell therapies then entered the market with
the indication of treating relapsed or refractory large B-cell
lymphoma or mantle cell lymphoma (Table 1) (18, 20, 21). In
2021, ABECMA R© (idecabtagene vicleucel) became the first B-
cell maturation antigen (BCMA)-directed CAR-T cell therapy to
receive FDA approval for the treatment of relapsed or refractory
large B-cell lymphoma (22), with distinctive selectivity conferred
by the highly selective expression of BCMA by malignant plasma
cells (295).

Besides commercial cell therapy products, a multitude
of cell therapies have been investigated for treating cancer
in clinical settings. Among APC-based anticancer vaccines,
DC-based anticancer vaccines—either created with primary
CD1c+ myeloid DCs or engineered by fusion with patient-
derived tumor cells, pulsation with tumor peptides/lysate,
or electroporation with tumor associated antigen-encoding
mRNA—have elucidated promising immunologic and/or
clinical responses in B-cell lymphoma (296), multiple myeloma
(297), acute myeloid leukemia (298), glioblastoma (299),
and metastatic melanoma (300–302). CD34+ HSC-derived
modified/manipulated DCs have also been clinically investigated
in cancer settings with promising outcomes, such as generation of
tumor-specific immunity and/or induction of tumor regression
in patients with metastatic melanoma (92, 93). Using chemicals
like polyethylene glycol, autologous primary DCs can be fused
with irradiated, resected tumor cells to create tumor-DC

hybrids whose subsequent bioengineering and administration
to patients with glioblastoma receiving standard chemotherapy
has been shown to improve clinical responses (303). Similarly,
the vaccination of patients with acute myeloid leukemia who
achieved remission following chemotherapy using autologous
primary DCs fused with autologous cancer cells has led to
the expansion of tumor-reactive T cell subsets and prolonged
remission (304).

Investigational CAR-T cells have also shown high antitumor
activity in relapsed/refractory multiple myeloma by targeting
BCMA (305). Unlike CD-19- or BMAC-directed CAR-T cell
therapy for hematologic malignancies, CAR-T cells directed
against solid tumor antigens, such as PD-L1 and prostate-
specific membrane antigen (PSMA), have had less clinical success
due to obstacles pertaining to the suppressive nature of the
tumor microenvironment and therapy persistence within the
tumor (306). In small-scale studies, the use of bispecific CAR-
T cells directed against CD19/BCMA in multiple myeloma has
been met with promising patient responses (307). Among ACT,
TCR-modified T cells directed against tumor-specific antigens
have also had promising outcomes in cancer therapy, as they
induced cancer regression in patients with melanoma (308, 309)
and reduced metastases in patients with synovial cell sarcoma
(310, 311). Similarly, TILs and LAK cells have been reported
to induce tumor regression in patients with metastatic cancers
(312–314). Additionally, LAK cells have improved the survival
of patients with melanoma and patients with glioblastoma (315,
316), and TILs have augmented the rates of objective clinical
responses of patients with metastatic melanoma (317). CIK cells
were also reported to reduce disease recurrence or improve
overall survival in patients with hepatocellular carcinoma and
to augment the progression-free survival and overall survival in
patients with renal cell carcinoma (318–320). The mechanism
of action of CIK cells is observed to involve perforin-mediated
tumor killing (321). On the other hand, although few phase 1
clinical trials have demonstrated the benefits of γδ T cells as a
cancer immunotherapy, other studies have reported contrasting
outcomes, revealing the suppressive façade of this T-cell subset
and linking its presence within the tumor microenvironment
to negative outcomes (137). What’s more in ACT, allogeneic
NK cells have only provided modest benefits to patients with
acutemyeloid leukemia (322) and patients with recurrent ovarian
and breast cancer (323), generally due to their inhibition by
host Tregs and/or the tumor as well as the high toxicity of IL-
2 (137). In combined cell therapy approaches, CIK cells and
tumor lysate-pulsed DCs infused intravenously at different time
intervals have been shown to significantly prolong the median
survival time at a rate comparable to chemotherapy in patients
with colorectal cancer (114) and improve the overall survival and
the quality of life in patients with advanced colorectal cancer
(324). Similarly, DC-CIK immunotherapy has been reported
to significantly prolong the overall survival and improve the
quality of life in patients with advanced non-small cell lung
cancer (325). Other combinatorial approaches include tumor
lysate-loaded DC and TIL immunotherapy, which has revealed
a promising potential based on evaluating objective clinical
responses in a phase 1 study in patients with advanced melanoma
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(326). Patients with metastatic melanoma have also experienced
immunologic responses and tumor regression upon treatment
with the combined therapy comprising TCR-modified T cells
directed against melanoma-associated antigen recognized by T
cells (MART-1) and DCs (327).

Albeit to a less documented extent compared to ACT
products or other cellular therapies, genetically engineered
MSCs have been investigated as a cancer treatment due to
their ease of obtainment and demonstrated tumor tropism and
anti-tumorigenic properties; however, no benefits have been
reported to date with patient-administered MSCs (66, 94),
possibly due to their insufficient cell homing to tumors as
reported in a phase 1 study (95) or their paradoxical pro-
tumorigenic potential seen in several preclinical studies
(66, 328). Noteworthy, based on previous promising preliminary
data (329, 330), the first-in-human, first-in-child clinical trial for
Celyvir—an autologous MSC-based therapy carrying oncolytic
adenoviruses—has reported disease stabilization in two pediatric
patients with neuroblastoma (96). Following the steps of this
trial, other groups are exploring the potential of bioengineered
MSCs carrying oncolytic viruses—viruses that evade immune
surveillance and can conditionally replicate in tumor cells, unlike
traditional attenuated viruses (97)—in patients with glioblastoma
(NCT03896568) and patients with ovarian carcinomas
(NCT02068794). Finally, several CSC-targeting agents for cancer
treatment have been approved (e.g., vismodegib, ivosidenib,
venetoclax) or are still under investigation, with mechanisms of
action entailing the involvement with CSC pathways (109, 110).

MULTICELLULAR VS. UNICELLULAR
THERAPIES

Multicellularity in an organism enables cell-cell communication,
which is crucial during the different phases of tissue development
starting early in embryogenesis and persisting through later
regenerative processes (331). In regenerative medicine, there
is a growing notion that a mixture of cell types rather
than one cell type is important to promote long-term tissue
repair driven by complex, poorly understood multicellular
interactions typical of the physiological nature of organisms
(277, 278). Compared to ADSCs, a mixture of ADSCs, EPCs,
and lymphocytes among other cell types (i.e., SVF) has received
more praise in preclinical comparative studies, in part due to the
heterogeneity of cellular composition perceived to exploit more
physiologic properties (e.g., angiogenesis, immunomodulation,
cellular differentiation) that collectively drive better outcomes
(332–335). Notable, the first study to compare MSCs vs. BMAC
(i.e., MSCs, progenitor cells, white blood cells, etc...) on the scale
of clinical and magnetic resonance imaging (MRI) outcomes in
52 patients with chondral knee defects has found no differences
in retrospect between both treatments over a 2 year follow-up
(336). Similarly, a recent retrospective study found no differences
in postoperative radiological findings and pain/functionality
outcomes in patients who underwent high tibial osteotomy with
microfracture combined with either MSCs or BMAC for medial
unicompartmental knee OA (337). No further studies intended

to compare MSCs vs. BMAC have been made. On a similar
note, a recent systematic review of 119 studies (clinical trials or
case series) using MSCs or BMAC for the treatment of patients
with different orthopedic conditions did not include any meta-
analysis, possibly due to the overt disparity in study protocols
and treatment regimens observed even within a single orthopedic
indication (338). Table 2 shows select studies using MSCs and
BMAC for the treatment of osteonecrosis of the femoral head,
with the intention to demonstrate the impracticality of head-
to-head comparisons between MSC vs. BMAC benefits even
with maximal control for different study factors, including study
nature and disease indication.

In cancer treatment, the use of multicellular therapies could
also be more beneficial than biologic therapies comprising one
cell type. Compared to patient-derived CIK cells, combined DCs
and CIK cells have shown stronger anti-tumor effects in in
vitro assays (343). Similarly, the addition of DC-CIK therapy
has led to more enhanced immune responses and therapeutic
outcomes in patients with colorectal cancer receiving routine
therapy (324). This multicellular therapy has also demonstrated
a better safety profile than standard chemotherapy in cancer
patients (344). The clinical advantages of DC-CIK cell therapy
are the result of the complex crosstalk between DCs, NK
cells, and T cells, which leads to reciprocal and constant co-
stimulation and initiates several immune reactions and tumor
lysis mechanisms (345). Preclinical studies have also strongly
suggested that multicellular therapies combining several ACT
products elicit better tumor infiltration, immune responses, and
therapeutic outcomes, such as tumor regression and overall
survival, compared to unicellular approaches (346–350). In a
clinical context, multicellular approaches could be deployed, for
instance, in chemotherapy-induced lymphopenia through the
infusion of DC-based vaccines followed by the adoptive transfer
of naive T cells/TILs, together which trigger immune priming
events culminating in more potent anti-tumor reactions with
well tolerated adverse events (326, 346). From a commercial
perspective, given the advantages of multicellular therapies seen
with HSCT (75, 89) and other FDA-approved regenerative
therapies (10, 11, 17, 24), their elusive mechanisms of action
should not be an obstacle for further development, especially with
the growing field of bioinformatics and computational analyses,
through which simple cell-cell communication can be modeled
in synthetic or digital platforms, thus providing the base for
understanding more complex behaviors (351). Similarly, online
platforms that map physiological networks, such as immune
interactions, are available to explore cell-cell communications
between different immune players. Indeed, systems immunology
can be employed to study interactions within multicellular
therapies or further predict their therapeutic efficacy (352),
ultimately accelerating the translational pipeline between bench
and bedside (353).

CONCLUSION

Cell therapy is an expanding global market encompassing stem
cell- and non–stem cell-based unicellular and multicellular
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TABLE 2 | Select studies using MSCs or BMAC for treatment of osteonecrosis of the femoral head.

Study nature Patient population Main clinical outcomes References

MSCs

Study 1: RCT (N = 100)

- Control group: core decompression alone

- Intervention group: core decompression plus

implantation of autologous BM-MSCs

- Radiological progression: 22.7% control vs. 3.7%

in intervention

- Greater improvement in HHS score (hip

functionality) in intervention group

- Significant decrease in osteonecrotic area

(339)

Study 2: Uncontrolled

case series

(N = 9)

Patients treated with allogeneic human umbilical

cord-derived MSCs

- Reduction of necrotic area on MRI

- Improvement in HHS up to 12 months

post-intervention (a decrease after 24 months

was reported)

(340)

BMAC

Study 1: RCT (N = 18)

- Control group: core decompression alone

- Intervention group: core decompression plus

BMAC injection

- Greater improvement in VAS and WOMAC scores

(hip pain and functionality) in intervention group

- Significant differences in MRI outcomes: No

deterioration in the intervention group and 71%

worsening in control group

(341)

Study 2: Uncontrolled

case series

(N = 62) Patients treated with an intra-arterial

injection of BMAC

- Improvement in HHS compared to baseline on

each follow-up (a decline was reported after 36

months)

- Overall rate of radiological progression: 43.59%

(342)

BM, bone marrow; BMAC, bone marrow aspirate concentrate; HHS, Harris Hip Scale; RCT, randomized controlled trial; MRI, magnetic resonance imaging; MSCs, mesenchymal stem

cells; N, number of patients; VAS, visual analog scale; WOMAC, Western Ontario and McMaster Universities Osteoarthritis Index.

therapies, which largely differ in their characteristics, isolation
sources, and areas of use. A multitude of cell therapies
have either become established practices or received FDA
approval for certain indications. Other investigational and
premarket approval-exempt cellular therapies have achieved a
highly reputable track record in clinical settings, providing
significant benefits to patients with degenerative disorders,
immune diseases, and cancer. However, the clinical application
of cell therapies in areas like neurodegenerative diseases still
need to bypass several issues, including the standardization of
cell manufacturing methods and the slow disease progression
rendering clinical outcomes hard tomeasure (354). Other hurdles
limiting the advancement of cell therapies are related to safety,
which with certain products like CAR-T cells could pose life-
threatening toxicities (355). Limited clinical indications, high
production cost, and high patient costs are other issues associated
with cell therapies that need to be addressed by ongoing and
future clinical trials (356). On another note, recent investigations
have surfaced a partially supported notion that a mixture of cell
types, such as SVF or BMAC, more closely mimics physiological
interactions and could thus be more important than a single
cell type, such as ADSCs or MSCs, in regenerative medicine
and cancer treatment. Although more comparative studies are
required to strengthen the quality of current evidence about their

possible therapeutic superiority, multicellular therapies present
with other advantages over unicellular therapies, including their
lower cost (357, 358) and greater potential for exploitation
by currently advancing gene engineering technologies and
bioinformatic tools as a bridge to precision medicine (351–353).
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GLOSSARY

ACT, adoptive cell therapy; ADSCs, adipose-derived stem cells;
APC, antigen presenting cell; ASCs, adult stem cells; BCMA, B-
cell maturation antigen; BM, bone marrow; BMA, bone marrow
aspirate; BMAC, bone marrow aspirate concentrate; BMC,
bone marrow concentrate; BMT, bone marrow transplantation;
CAR, chimeric antigen receptor; CB, cord blood; CFR, Code of
Federal Regulations; CIK, cytokine-induced killer; CSCs, cancer
stem cells; CTLA-4, cytotoxic T lymphocyte-associated protein
4; CXCR4, chemokine receptor 4; DCs, dendritic cells; ECM,
extracellular matrix; EPCs, endothelial progenitor cells; ESCs,
embryonic stem cells; FD&C, Federal Food, Drug, and Cosmetic;
GMP, good manufacturing practice; GVHD, graft-versus-host
disease; HCT/P, human cells, tissues, and cellular and tissue-
based products; hESCs, human embryonic stem cells; HPCs,

hematopoietic progenitor cells; HSCs, hematopoietic stem cells;
HSCT, hematopoietic stem cell transplantation; IL, interleukin;
IND, investigational new drug; iPSCs, induced pluripotent stem
cells; LAK, lymphokine-activated killer; LVEF, left ventricular
ejection fraction; MHC, major histocompatibility complex;
MRI, magnetic resonance imaging; MSCs, mesenchymal
stem cells; NK, natural killer; NKT, natural killer T; OA,
osteoarthritis; PBMCs, peripheral blood mononuclear cells;
PBSCs, peripheral blood stem cells; PBSCT, peripheral blood
stem cell transplantation; PCR, polymerase chain reaction;
PD-1, programmed death 1; PD-L1, programmed death-ligand
1; PHS, Public Health Service; PRP, platelet-rich plasma; PSCs,
pluripotent stem cells; RA, rheumatoid arthritis; SLE, systemic
lupus erythematosus; SS, systemic sclerosis; SSP, same surgical
procedure; SVF, stromal vascular fraction; TCR, T-cell receptor;
TILs, tumor-infiltrating lymphocytes.
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